# Department Seminars & Colloquia

When you're logged in, you can subscribe seminars via e-mail

For motivational purposes, we begin by explaining the classical Satake isomorphism from which we deduce the unramified local Langlands correspondence. Then we explain a geometric interpretation of the Satake isomorphism. More precisely, we explain how one can view Hecke operators as global functions on the moduli space of unramified L-parameters. This viewpoint arises from the categorical local Langlands correspondence. The main content of the talk is p-adic and mod p analogues of this interpretation, where the space of unramified L-parameters is replaced by certain loci in the moduli stack of p-adic Galois representations (so-called the Emerton-Gee stack). We will also discuss their relationship with the categorical p-adic local Langlands program.

Mr. Saqib Mushtaq Shah, a KAIX visiting graduate student from ISI Bangalore who will stay at KAIST for 8 weeks, is going to give a series of weekly talks on the Milnor K-theory from the beginning. It is part of his KAIX summer internship works.

Let S be a simply-connected rational homology complex projective plane with quotient singularities. The algebraic Montgomery-Yang problem conjectures that the number of singular points of S is at most three. In this talk, we leverage results from the study of smooth 4-manifolds, such as the Donaldson diagonalization theorem, to establish additional conditions for S. As a result, we eliminate the possibility of a rational homology complex projective plane of specific types with four singularities. We also identify infinite families of singularities that satisfy properties in algebraic geometry, including the orbifold BMY inequality, but are obstructed from being a rational homology complex projective plane due to smooth conditions. Additionally, we discuss experimental results related to this problem. This is joint work with Jongil Park and Kyungbae Park.

As part of the Langlands conjecture, it is predicted that every $\ell$-adic Galois representation attached to an algebraic cuspidal automorphic representation of $\mathrm{GL}_n$ over a number field is irreducible. In this talk, we will prove that a type $A_1$ Galois representation attached to a regular algebraic (polarized) cuspidal automorphic representation of $\mathrm{GL}_n$ over a totally real field $K$ is irreducible for all $\ell$, subject to some mild conditions. We will also prove that the attached Galois representation is residually irreducible for almost all $\ell$. Moreover, if $K=\mathbb Q$, we will prove that the attached Galois representation can be constructed from two-dimensional modular Galois representations up to twist. This is a joint work with Professor Chun-Yin Hui.

In this talk, I will talk about isotopy problems of Seifert surfaces pushed in to the 4-ball. In particular, I will prove that every Seifert surface of a non-split alternating link become isotopic in the 4-ball. This is a joint work with Maggie Miller and Jaehoon Yoo.

In the first part of the talk, I will discuss the asymptotic expansions of the Euclidean Φ^4-measure in the low-temperature regime. Consequently, we derive limit theorems, specifically the law of large numbers and the central limit theorem for the Φ^4-measure in the low-temperature limit. In the second part of the talk, I will focus on the infinite volume limit of the focusing Φ^4-measure. Specifically, with appropriate scaling, the focusing Φ^4-measure exhibits Gaussian fluctuations around a scaled solitary wave, that is, the central limit theorem.
This talk is based on joint works with Benjamin Gess, Pavlos Tsatsoulis, and Philippe Sosoe.

Kahn-Sujatha's birational motive is a variant of Chow motive that synthesis the ideas of birational geometry and motives. We explain our result saying that the unramified cohomology is a universal invariant for torsion motives of surfaces. We also exhibit examples of complex varieties violating the integral Hodge conjecture. If time permits, we discuss a pathology in positive characteristic.
(Joint work with Kanetomo Sato.)