
Ph.D. Qualifying Exam: Algebraic Topology 1 (August 2020)

Justify your answers fully. You should state the theorems and the results that you are using exactly. One

can obtain partial points for rough ideas but not the full scores. Also, one must write in good English and in

a well-organized way for better grades. You must also write the answers in order and not mix up the answers

here and there. If answers are not well organized, we will take points off. (Total 100 pts.)

1. (20 pts.) Let X and Y be disjoint subspaces in S3 homeomorphic to a circle. Compute H∗(S3−X−Y,G) for

a given finitely generated abelian group G. (Hint: We may not assume that X and Y are contained in disjoint

cells respectively. )

2. (25 pts.) Let π : X → Y be a two-sheeted covering map, and let g : X → X be the unique nontrivial

deck transformation. We define a chain map t : C∗(Y,Z2) → C∗(Y,Z2) by sending a simplex τ : ∆p → Y to

σ + g ◦ σ : ∆p → X where σ is a lift of τ .

(1) (7 pts.) Show that t is a well-defined chain map.

(2) (8 pts.) Show that there is a long exact sequence

· · · → Hp(Y,Z2)
t∗→ Hp(X,Z2)

π∗→ Hp(Y,Z2)
∂∗→ Hp−1(Y,Z2)→ · · · .

(3) (10 pts.) Do this for X = Sn and Y = RPn and describe the maps and the homology groups using

generators.

3. (25 pts.) Let X be the space S1 × S1 − {p} for a point p.

(1) (5 pts.) Compute the fundamental group of X.

(2) (5 pts.) Find two finite covering spaces of X that are not homeomorphic.

(3) (8 pts) Let π : Y → X be a covering map. There is a homomorphism π∗ : π1(Y, y0) → π1(X,x0). π

induces a homology homomorphism πH : H1(Y ;Z) → H1(X,Z). Discuss the relationship between π∗

and πH and prove your discussions.

(4) (7 pts.) Compute π∗ and πH explicitly for a finite covering and an infinite covering of X.

4. (30 pts.) Let X be the space Sn− Y −Z where Y and Z are disjoint embedded subspaces homeomorphic to

spheres of dimension l and k for 0 < l, k < n. Let f be the inclusion map Y → Sn − Z. Let f∗ : H̃∗(Y,Z) →
H̃∗(Sn − Z,Z) denote the induced homomorphism. Here, H̃∗ indicates the reduced homology groups.

(1) (15 pts.) For each n, n > 2, find an example of Y and Z where f∗ is not trivial.

(2) (15 pts.) Let T be an (n − 1)-sphere embedded as a subcomplex of Sn realized as a cell-complex.

Suppose that Y and Z are in different components of Sn−T . Show that f∗ is trivial. (hint: The closure

of each component is also a subcomplex.)



Ph.D. Qualifying Exam: Algebraic Topology II (August 2020)

Justify your answers fully. You should state the theorems and the results that you are using exactly. One

can obtain partial points for rough ideas but not the full scores. Also, one must write in good English and in

a well-organized way for better grades. You must also write the answers in order and not mix up the answers

here and there. If answers are not well organized, we will take points off. The meaning of “describe the ring”

means that you need to find a basis and write the products of two basis elements in terms of the basis. (Total

100 pts.)

1. (15 pts.) Let X be a union of m mutually disjoint spheres of respective dimensions ij , 0 < ij < n − 1,

j = 1, . . . ,m, in Sn, n ≥ 3. Compute H∗(Sn −X;Z).

2. (20 pts.) Let X and Y be cellular complexes. Let T : X × Y → Y ×X be a map given by (x, y) 7→ (y, x).

(1) (10 pts.) Prove that α× β = (−1)pqT ∗(β × α) for α ∈ Hp(X,Z) and β ∈ Hq(Y,Z).

(2) (10 pts.) Show that α ∪ β = (−1)pqβ ∪ α for α ∈ Hp(X,Z) and β ∈ Hq(X,Z).

3. (20 pts.)

(1) (8 pts.) Describe the cohomology ring H∗(RPn,Z2) where n ≥ 2.

(2) (12 pts.) Describe the cohomology ring H∗(X,Z2) where X := S4 ×RP4.

4. (25 pts.) Let S3 ⊂ C2 be a unit sphere. Let ω = e2πi/p for a prime number p. Let q be an integer relatively

prime to p. Let Tq : S3 → S3 be a map defined by (u, v) = (ωu, ωqv) for u, v ∈ C. A lens space L is defined as

S3/〈Tq〉.

(1) (13 pts.) Compute H∗(L,Z) and describe the ring structure under cup product operations.

(2) (12 pts.) Compute H∗(L,Zl) for any integer l, l > 1.

5. (20 pts.) Find examples of compact cell complexes and the coefficient groups denoted by G with the following

properties. If it is not possible, prove the nonexistence.

(1) (5 pts.) H∗(M,G) 6= H∗(M)⊗G.

(2) (7 pts.) H∗(M,G) 6= H∗(M)⊗G.

(3) (8 pts.) H∗(M,Zp) = H∗(M)⊗ Zp for a prime p, but this fails for some other primes.



Ph.D. Qualifying Exam: Algebra I
August 2020

Department of Mathematical Sciences, KAIST

Student ID: Name:

1. (20 pts) Let n ≥ 3 be an odd integer. Let G = D2n×Q8, where D2n denotes the dihedral group

of order 2n and Q8 denotes the quaternion group of order 8.

(a) (10 pts) Find all conjugacy classes of G.

(b) (10 pts) Determine the group of inner automorphisms of G.

2. (20 pts) Let p and q be prime integers with 5 ≤ p < q and let G be a group of order 4pq.

Determine whether G is simple or not.

3. (20 pts) Let R be a domain such that for all a ∈ F (the field of fractions of R) either a ∈ R or

a−1 ∈ R, i.e., R is a valuation ring. Let I be an ideal of R.

(a) (10 pts) Show that R is local and integrally closed.

(b) (10 pts) Show that if R is Noetherian, then I = (pn) for some prime p and some nonnegative

integer n.

4. (20 pts) Let R be the ring of 2× 2 upper triangular matrices over a field.

(a) (10 pts) Determine all two-sided ideals of R.

(b) (10 pts) Show that the group of units of R is solvable.

5. (20 pts) Let G be a group of order p4 for some prime integer p. Assume that G has a normal

subgroup H of order p2. Prove that G has an abelian subgroup A with |A| ≥ p3.

(Hint: One may consider a homomorphism φ : G→ Aut(H) given by φ(g)(h) = ghg−1)

THE END



Ph.D. Qualifying Exam: Algebra II
August 2020

Department of Mathematical Sciences, KAIST

Student ID: Name:

1. (20 pts) Let p be a prime integer. Determine whether the polynomial xp
n −x− 1 is reducible or

irreducible over the field of p elements.

2. (15 pts) Find all square free integers d ≥ 2 such that Z[
√
−d] is a unique factorization domain.

3. (20 pts) Compute the degree of the splitting field of x6 + 5x3 − 2 over Q, where Q denotes the

field of rational numbers.

4. (30 pts) Determine the Galois group over K of each of the following polynomials f(x).

(a) (15 pts) K = Q, f(x) = x15 + 3.

(b) (15 pts) K = Q(
√
−3), f(x) = x6 − 3.

5. (15 pts) Let K(x) be the rational function field over a field K and let y ∈ K(x). Prove that

K(x) = K(y) if and only if y =
ax + b

cx + d
for some a, b, c, d ∈ K with ad− bc 6= 0.

THE END



Ph.D. Qualifying Exam: Differential Geometry

August 2020

Student ID: Name:

Note: Be sure use English for your answers.

1. [15 pts] Prove directly the following special case of Stokes’ Theorem. Sup-
pose P (x, y, z), Q(x, y, z), and R(x, y, z) are C∞ functions on R3 which
vanish identically if max{|x|, |y|, |z|} ≥ 5. Prove that∫ 6

−6

∫ 6

−6

∫ 6

−6
d(Pdy ∧ dz +Qdx ∧ dz +Rdx ∧ dy) = 0.

2. [15 pts] Show that there is no smooth submersion F : Sn → Rn for any
n > 0.

3. [15 pts] Let M be a smooth manifold of dimension n. Let ω1, ..., ωk be
smooth 1-forms that {ω1|p, ..., ωk|p} is linearly independent for each p ∈M .
Given smooth 1-forms α1, ..., αk such that

k∑
i=1

ωi ∧ αi = 0,

show that there exist smooth functions fij so that

αi =

k∑
i=1

fijωj , i = 1, ..., k.

4. [15 pts] Let M be a smooth manifold and V,W,X be smooth vector fields
on M . Show that

L[V,W ]X = LV LWX − LWLVX,

where LVW is the Lie derivative of W with respect to V and [V,W ] is the
Lie bracket of V, and W .

5. [20 pts] The vector field V on R3 whose value at p = (x, y, z) ∈ R3 is

Vp = x
∂

∂x

∣∣∣∣
p

+ y
∂

∂y

∣∣∣∣
p

+ z
∂

∂z

∣∣∣∣
p

.

Let c be real number, and let f : R3 \ {0} → R be a smooth function that
is positively homogeneous of degree c, meaning that f(λx) = λcf(x) for all
λ > 0 and x ∈ R3 \ {0}.
(a) Show that V f = cf .
(b) Show that if g ∈ C∞(R3 \ {0}) satisfies V g = cg for some c ∈ R, then

g is positively homogeneous of degree c.

6. [20 pts] Let M(n;R) be the space of n× n real matrices and Mk(n;R) be
the subspace of all matrices of rank k in M(n;R).
(a) Show that M1(2;R) is a 3-dimensional submanifold of M(2;R) ≡ R4.

(b) Show that Mk(n;R) is a smooth submanifold of M(n;R) ≡ Rn2

of
codimension (n− k)2.

THE END



Ph.D. Qualifying Exam: Complex Analysis
August 2020

Student ID:

Note: use English only for your answers.

Problem 1 (5+8 pts) Let G ⊂ C be a connected open set and f : G→ C analytic.
a) Show that g(z) = f(z) is analytic in G = {z : z ∈ G}.
b) Show that h(z) = f(z) is not analytic in G, unless f is constant.

Problem 2 (11 pts) Let f : C→ C be analytic and suppose that there is a constant M and an integer n such
that

|f(z)| ≤M(1 + |z|n)

for all z ∈ C. Show that f is a polynomial of degree ≤ n.

Problem 3 (11 pts) Let f be a non-constant entire function. Show that f(C) is dense in C.

Problem 4 (11 pts) D is the open unit disc centered at the origin. Let f : D → C be a bounded analytic
function and assume that f extends continously to ∂D \ {1}. Show that |f | ≤ 1 in D if |f | ≤ 1 on ∂D \ {1}.
Hint: find a function related to f that is subharmonic and use the maximum principle.

Problem 5 (4 pts each) Let 0 < |a| < |b| <∞ and consider the function f(z) = 1
(z−a)(z−b) . Find the Laurent

series of f in the three domains {|z| < |a|}, {|a| < |z| < |b|} and {|b| < |z|}.

Problem 4 (7 pts each) Calculate ∫ ∞
0

dx

(x2 + 1)2

and ∫ ∞
0

dx

x3 + 1
.

Problem 7 (4+11 pts) State the Schwarz Lemma. Use this lemma to show that f is an analytic bijection of
D to itself if and only if

f(z) = eiθ
z − a

1− az

for some a ∈ D.

Problem 8 (13 pts)
Give an example of a domain and a bounded harmonic function u whose harmonic conjugate v (i.e., a function
v such that f = u + iv is analytic) is not bounded.



Ph.D. Qualifying Exam: Numerical Analysis
August 2020

1. [5 points each] Let p(x) be a continuously differentiable function from R into

R with p(x) > 0 and
∫∞
−∞ p(x) dx = 1. Define F (x) =

∫ x
−∞ p(t) dt .

(a) Show that F (x) is invertible.

(b) Let x ∈ F−1(y). Write Newton’s method to solve for x given y ∈ (0, 1)

using only evaluations of the functions p(x) and F (x).

(c) Explain why the method is locally at least quadratically convergent for

every y ∈ (0, 1).

2. [5 points each]

(a) Determine the values of a, b, c so that the following is a cubic spline with

knots at 0, 1, 2:

s(x) =

{
3− 2x+ 2x3 for x ∈ [0, 1]
a+ b(x− 1) + c(x− 1)2 + d(x− 1)3 for x ∈ [1, 2]

(b) A spline is called natural if the second derivatives are zero at two end

points. Is there a value for d that makes s(x) a natural cubic spline?

Explain your answer.

3. Consider the integral
∫∞
0 f(x) dx where f is continuous, f ′(0) 6= 0, and f(x)

decays like x−1−α with α > 0 in the limit x→∞.

(a) [5 points] Suppose you apply the equispaced composite trapezoidal rule

with n subintervals to approximate
∫ L
0 f(x) dx. What is the asymptotic

error formula for the error in the limit n→∞ with L fixed?

(b) [10 points] Suppose you consider the quadrature from (a) to be an ap-

proximation to the full integral from 0 to∞. How should L increase with

n to optimize the asymptotic rate of total error decay? What is the rate

of error decrease with this choice of L?

(c) [10 points] Make the following change of variable x = L(1+y)/(1−y), y =

(x−L)/(x+L) in the original integral to obtain
∫ 1
−1 FL(y) dy. Suppose you

apply the equispaced composite trapezoidal rule; what is the asymptotic

error formula for fixed L?

(d) [5 points] Depending on α, which method - domain truncation or change-

of-variable - is preferable?



4. [5 points each] Consider the 1D linear ODE

u′(t) = λu ,

where λ < 0 is a constant.

(a) Write down the forward Euler, backward Euler and trapezoidal schemes.

What is the order of accuracy of each of these methods (in terms of 
the local truncation error)?

(b) What are the advantages of forward Euler and backward Euler schemes,

respectively? Write down a few sentences to explain the reasons.

(c) Starting with the same initial value and using the same time step, is the

trapezoidal scheme always more accurate than the backward Euler? Show

your proof or give a counterexample.

(d) Write down a two-stage explicit and second order accurate Runge-Kutta

scheme. Using the local truncation error, prove that it is second order ac-

curate. State the meaning of each of the two stages and explain intuitively

that this method is second order accurate.

5. (a) [5 points] Let A be an N × N symmetric positive definite matrix and

f ∈ RN . Prove that

min
u∈RN

1

2
uTAu− fTu

is equivalent to

Au = f .

(b) [10 points] Write down the steps of the gradient descent method with

fixed time step for computing the solution to Au = f . Show when the

method is guaranteed to converge.

(c) [5 points] Write down the power method.

(d) [5 points] Why must a method for determining the eigenvalue of a matrix

A (size bigger than 5) generally be iterative instead of direct?

THE END



2020 QUALIFYING EXAM - REAL ANALYSIS

1.(20pt) Find a sequence of functions {ϕn}∞n=1 on [0, 1] such that {ϕn}
is a dense subset of Lp(Ω) for any p ∈ [1,∞).

2.(20pt) Prove that for any f ∈ L1(R), its Fourier transform f̂ is

continuous and lim|x|→∞ f̂(x) = 0, that is, f̂ ∈ C0(R).

3.(20pt) Let {fn}∞n=1 be a sequence in Lp([0, 1]) for p ∈ (1,∞). Sup-

pose that there exists a f ∈ Lp([0, 1]) satisfying limn→∞
∫ 1

0
fn(x)g(x)dx =∫ 1

0
f(x)g(x)dx for any g ∈ Lq([0.1]) with 1

p
+1

q
= 1. Prove that limn→∞ ‖fn−

f‖p = 0 if limn→∞ ‖fn‖p = ‖f‖p.

4.(20pt) Let f ∈ L1([0, 1]) and F (x) =
∫ x

0
f(t)dt. Show that F is

absolutely continuous, and that F is differentiable a.e. in [0, 1].

5.(20pt) Prove or disprove that if a function f ∈ L1([0, 1]) is differen-
tible a.e. in [0, 1] and f ′ = 0 a.e. in [0, 1], f is identically constant in
[0, 1].

1



Qualifying Exam in Probability Theory, August 2020

Student ID: Name:

You have to explain your solutions as well as your answers. No points will be
considered for answers without detailed explanations.

1. (20 pts) Let X be a random variable with the distribution function F (x) shown in the following
figure. Compute E[X3].

each ºn an interval (xk, xk+1] contains c and the interval length shrinks to zero.

Hence

F (xk+1) ° F (xk) ! F (c) ° F (c°).

If F (·) is diÆerentiable at c,

F (xk+1) ° F (xk) =
F (xk+1) ° F (xk)

xk+1 ° xk
(xk+1 ° xk) !

dF (x)

dx

ØØØØ
x=c

dx = F 0(c)dx.

Assuming that F (·) is diÆerentiable except at a < c1 < c2 < · · · < cm < b,

then (after setting c0 = a and cm+1 = b)

E[g(X)] =

Z b

a

g(x)dF (x)

=
mX

k=0

Z ck+1

ck

g(x)F 0(x)dx +
mX

k=1

g(ck)
≥
F (ck) ° F (ck°)

¥
.

Note that the integration is based on summation which is linear and we have

•
R b

a g(x)d
°
Æ£ F1(x) + F2(x)

¢
= Æ

R b

a g(x)dF1(x) +
R b

a g(x)dF2(x);

•
R b

a

°
Æ£ g1(x) + g2(x)

¢
dF (x) = Æ

R b

a g1(x)dF (x) +
R b

a g2(x)dF (x);

•
R b

a g(x)dF (x) =
R c

a g(x)dF (x) +
R b

c g(x)dF (x) for a < c < b;

• If g1(x) ∑ g2(x) on (a, b], then
R b

a g1(x)dF (x) ∑
R b

a g2(x)dF (x);

•
ØØØ
R b

a g(x)dF (x)
ØØØ ∑

R b

a |g(x)| dF (x).

Example) Let X be a random variable with the distribution function F (x)

shown in the following figure:

-

6
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^
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F (x)

Compute E[X].

2

2. (20 pts) Let X1, X2, . . . be iid with E[Xi] = 0 and E[X2
i ] = σ2 ∈ (0,∞). Characterize the

limiting distribution of

lim
n→∞

∑n
k=1Xk√∑n
k=1X

2
k

.

3. (20 pts) Compute the value of

lim
n→∞

2n
∫ ∞

0

· · ·
∫ ∞

0

cos
(x1 + · · ·+ xn

n

)
e−2(x1+···+xn)dx1 · · · dxn .

4. (20 pts) Suppose that X1, . . . , Xn are independent, but not necessarily identical, random vari-
ables with EXi = 0 and E[X2

i ] <∞. Set Sn = X1 + . . .+Xn. Show that

P
(

max
1≤k≤n

|Sk| ≥ λ
)
≤ λ−2Var(Sn).

5. (20 pts) Let Xi be iid with P(Xi = 1) = P(Xi = −1) = 1
2 and Sn = X1 + . . . + Xn. Suppose

that S0 = x for some integer x and T = min{n : Sn 6= (a, b)} for some integers a, b with
a < x < b. Compute E[T ].



each º

n

an interval (x
k

, x

k+1] contains c and the interval length shrinks to zero.

Hence

F (x
k+1)° F (x

k

) ! F (c)° F (c°).

If F (·) is diÆerentiable at c,

F (x
k+1)° F (x

k

) =
F (x

k+1)° F (x
k

)

x

k+1 ° x

k

(x
k+1 ° x

k

) ! dF (x)

dx

ØØØØ
x=c

dx = F

0(c)dx.

Assuming that F (·) is diÆerentiable except at a < c1 < c2 < · · · < c

m

< b,

then (after setting c0 = a and c

m+1 = b)

E[g(X)] =

Z
b

a

g(x)dF (x)

=
mX

k=0

Z
ck+1

ck

g(x)F 0(x)dx +
mX

k=1

g(c
k

)
≥
F (c

k

)° F (c
k

°)
¥
.

Note that the integration is based on summation which is linear and we have

•
R

b

a

g(x)d
°
Æ£ F1(x) + F2(x)

¢
= Æ

R
b

a

g(x)dF1(x) +
R

b

a

g(x)dF2(x);

•
R

b

a

°
Æ£ g1(x) + g2(x)

¢
dF (x) = Æ

R
b

a

g1(x)dF (x) +
R

b

a

g2(x)dF (x);

•
R

b

a

g(x)dF (x) =
R

c

a

g(x)dF (x) +
R

b

c

g(x)dF (x) for a < c < b;

• If g1(x) ∑ g2(x) on (a, b], then
R

b

a

g1(x)dF (x) ∑
R

b

a

g2(x)dF (x);

•
ØØØ
R

b

a

g(x)dF (x)
ØØØ ∑

R
b

a

|g(x)| dF (x).

Example) Let X be a random variable with the distribution function F (x)

shown in the following figure:

-
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