Ph.D. Qualifying Exam: Algebra August 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

- 1. [10 pts] Find the greatest common divisor of 8 + 6i and 5 15i in $\mathbb{Z}[i]$.
- 2. [15 pts] Let G be a finite group and suppose that G acts transitively on the finite set A. Let H be a normal subgroup of G and B_1, B_2, \ldots, B_r be the distinct orbits of H on A. Prove that for each $g \in G$ and $i \in \{1, 2, \ldots, r\}$, there is a j such that $gB_i = B_j$
- 3. [15 pts] Let k be a field and X an independent variable over k. Show that k(X) is a finite extension of $k\left(\frac{f(X)}{g(X)}\right)$ of degree $\max\{\deg f(X),\deg g(X)\}$.
- 4. [20 pts] Let E be a splitting field over F which is also a finite extension, and f(X) be an irreducible polynomial in F[X]. Suppose that g(X) and h(X) are two irreducible factors of f(X) in E[X].
 - (a) Show that there exists an automorphism $\sigma \in G(E/F)$ such that $g(X) = h^{\sigma}(X)$ where $h^{\sigma}(X) = \sigma(a_0) + \sigma(a_1)^X + \cdots + \sigma(a_r)X^r$ if $h(X) = a_0 + a_1X + \cdots + a_rX^r$.
 - (b) Show by an example that the conclusion in (a) is false if E is not a splitting field over F.
- 5. [10 pts] Show that any finite subring of a division ring is a division ring.
- 6. [15 pts] Let A be a local ring with maximal ideal \mathfrak{m} and M, N be finitely generated A-modules. Show that if $M \otimes N = 0$, then either M = 0 or N = 0.
- 7. [15 pts] Let R be a commutative ring with identity. Let I and J are ideals of R. Prove that $R/I \otimes_R R/J$ is isomorphic to R/(I+J) as R-modules.

Ph.D. Qualifying Exam: Advanced Statistics August 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

- 1. [20 pts] Let the column vector $(X_1, X_2, X_3)'$ be a Normal random vector with distribution $N_3(\mu, \Sigma)$ where the mean is $\mu = (\mu_1, \mu_2, \mu_3)'$ and Σ is the covariance matrix whose value at entry (i, j) is σ_{ij} , for i, j = 1, 2, 3. Let the (1,3)-and (3,1)-entries of Σ^{-1} be equal to 0 and non-zero at the other entries.
 - (a) Check if X_1 and X_3 are independent.
 - (b) Check if X_1 and X_3 are conditionally independent given X_2 .
 - (c) Denote by ρ_{ij} the correlation coefficient between X_i and X_j . Express ρ_{13} in terms of ρ_{ij} except ρ_{13} .
- 2. [20 pts] Let X_1, \dots, X_n be iid $N(\theta, 1)$.
 - (a) Find the conditional distribution of X_1 given $\sum_{i=1}^n X_i = t$.
 - (b) Find the best unbiased estimator W of θ^2 .
 - (c) Find the variance of W.
 - (d) Compare the variance of W with the Cramer-Rao lower bound.
- 3. [15 pts] Let X_1, X_2 be iid uniform $(\theta, \theta+1)$. For testing $H_0: \theta=0$ vs $H_1: \theta>0$, we have two competing tests, ϕ_1 and ϕ_2 :

 $\begin{array}{ll} \phi_1(X_1) & : \text{ Reject } H_0 \text{ if } X_1 > 0.95, \\ \phi_2(X_1, X_2) & : \text{ Reject } H_0 \text{ if } X_1 + X_2 > C. \end{array}$

- (a) Find the value of C so that test ϕ_2 has the same size as test ϕ_1 .
- (b) Compute the power function of each test and draw the graph of each power function.
- 4. [15 pts] Prove that convergence in probability implies convergence in distribution.
- 5. [15 pts] Let X_1, \dots, X_n be a random sample from an $N(\theta, \theta^2)$ population, where $\theta > 0$.
 - (a) Find a pivotal quantity based on the sample.
 - (b) Find a 1α confidence interval for θ using the pivotal quantity.
 - (c) Check if $T = \sum_{i=1}^{n} X_i$ is complete.
- 6. [15 pts] Prove the following statement: Let there be a random sample from a distribution $f(x;\theta)$ and T be a statistic defined on the sample. Let T be complete and sufficient for θ , and let $\phi(T)$ be a function of T only. Then $\phi(T)$ is the best unbiased estimator of $E(\phi(T))$.

Ph.D. Qualifying Exam: Combinatorics August 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

1. [20 pts] Let \mathcal{F} be a family of nonempty subsets of $\{1, 2, ..., n\}$. Suppose for any subsets $A, C \in \mathcal{F}$, if $A \subset B \subset C$, then $B \in \mathcal{F}$. Show that

$$\left| \sum_{A \in \mathcal{F}} (-1)^{|A|} \right| \leq \binom{n}{\lfloor n/2 \rfloor} \,.$$

2. [20 pts] Find the chromatic polynomial of the following graph:



- 3. [20 pts] Let \mathcal{A} be a subset of vectors in \mathbb{Z}_3^n . Suppose that for every pair of distinct vectors $u=(u_1,u_2,\ldots,u_n)$ and $v=(v_1,v_2,\ldots,v_n)$ in \mathcal{A} , there exists some coordinate $i\in\{1,2,\ldots,n\}$ such that $u_i-v_i=1\pmod{3}$. Show that $|\mathcal{A}|\leq 2^n$.
- 4. [20 pts] Let \mathcal{H} be a 3-uniform hypergraph with n vertices and αn^3 edges, where $n \geq \frac{1}{2\sqrt{\alpha}}$. Show that \mathcal{H} has an independent set of vertices of size at least $\frac{3}{8\sqrt{\alpha}}$.
- 5. [20 pts] Let $C = \binom{[17]}{\geq 2}$, that is, C is the family of subsets of $\{1, 2, \ldots, 17\}$ which contain at least two elements. Show that for any partition of C into 3 parts $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$, there exists distinct sets $A, B \in C$, such that A, B, and $A \cup B$ belong to the same part \mathcal{P}_i .

Ph.D. Qualifying Exam: Algebraic Topology I August 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

- 1. [20 pts] Let $p: E \to B$ be the simply connected covering with E and B path-connected and locally path-connected. Let $T: B \to B$ be a map with a fixed point such that $T^m = \text{Id}$. Show that there exists a map $\widetilde{T}: E \to E$ such that $p \circ \widetilde{T} = T \circ p$ and $\widetilde{T}^m = \text{Id}$.
- 2. [10 pts each] Prove the following statements.
 - (a) Let X be a topological space, and let $f, g: X \to S^n$ be any two continuous maps such that $f(x) \neq g(x)$ for every $x \in X$. Then f is homotopic to g.
 - (b) Any continuous map $f: S^n \to S^1$ with $n \ge 2$ is homotopic to a constant map.
- 3. Let X be a path connected and locally path connected space such that $\pi_1(X)$ is finite. Let $Y = S^1 \times S^1 \times S^2$.
 - (a) [5 pts] Find the universal covering of Y.
 - (b) [15 pts] Show that any continuous map $f: X \to Y$ induces the trivial map $f_*: H_i(X:\mathbb{Z}) \to H_i(Y:\mathbb{Z})$ for all i different from 0 and 2.
- 4. Let X be a connected CW-complex with two 0-cells, three 1-cells, and three 2-cells. Assume that $H_1(X) \cong \mathbb{Z} \oplus \mathbb{Z}_3$.
 - (a) [5 pts] Determine the Euler characteristic $\chi(X)$ of X.
 - (b) [15 pts] Determine $H_2(X)$
- 5. [20 pts] For a topological space X, let ΣX denote the unreduced suspension of X. Using only the Eilenberg-Steenrod homology axioms (homotopy, exactness, excision, dimension) prove that $\widetilde{H}_i(\Sigma X)$ is naturally isomorphic to $\widetilde{H}_{i-1}(X)$. Here \widetilde{H}_i denotes the reduced singular homology.

Ph.D. Qualifying Exam: Complex Analysis August 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

- 1. [15 pts] Show that if function f is holomorphic in a disk then f has a primitive in that disk.
- 2. [15 pts] State and give a proof of Casorati-Weierstrass Theorem.
- 3. [20 pts]
 - (a) Show that the first terms of the Laurent series for $f(z) = \frac{\pi \csc \pi z}{z^2}$ are

$$\frac{1}{z^3} + \frac{\pi^2}{6z} + \frac{7\pi^4 z}{360} + \dots$$

- (b) Determine the value of $\sum_{n=1}^{\infty} \frac{(-1)^2}{n^2}$ by integrating $f(z) = \frac{\pi \csc \pi z}{z^2}$ on an appropriate domain of the complex plane.
- 4. [15 pts] Suppose that f is holomorphic on a closed domain Ω , whose boundary is a simple closed curve γ . Suppose that f has n zeros $\{p_k\}$, $k=1,\ldots,n$, in the interior of Ω and $f(z) \neq 0$ for $z \in \gamma$. If m_k is the multiplicity of the k-th zero $p_k \in \Omega$, show that

$$\frac{1}{2\pi i} \int_{\gamma} z \frac{f'}{f} dz = \sum_{k=1}^{n} m_k p_k.$$

5. [15 pts] Show that the map

$$f(z) = \frac{1+z}{1-z}$$

is conformal on the upper half-disk $D^+ := \{z = x + iy : |z| < 1, y > 0\}$ and that $f(D^+)$ is the first quadrant $\{w = u + iv : u > 0, v > 0\}$. Study also the behavior of f on the boundary of D^+ .

- 6. [10 pts] Show that if an entire function f has bounded real part, then f must be constant.
- 7. [10 pts] Consider the function $f(z) = e^{-iz^2}$ on the domain

$$S:=\{x+iy\in C\,:\, x\ge 0, y\ge 0\}.$$

Find the value for |f(z)| when z is a point of the boundary of S. Find a set of points in the interior of S such that $|f(z)| \to +\infty$ for $|z| \to +\infty$. Does that contradict the maximum modulus principle?

Ph.D. Qualifying Exam: Real Analysis August 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

- 1. [15 pts] Suppose that $\{f_k\}_{k=1}^{\infty}$ is a sequence of Lebesgue measurable functions in \mathbb{R}^d . Assume that $f_k \to f$ pointwise almost everywhere on a Lebesgue measurable set $E \in \mathbb{R}^d$ with $m(E) < \infty$. Prove that, for any $\epsilon > 0$, there exists a closed set $A_{\epsilon} \subset E$ such that $m(E \setminus A_{\epsilon}) < \epsilon$ and $f_k \to f$ uniformly on A_{ϵ} .
- 2. Compute the following with justification.
 - (a) [10 pts] $\lim_{n\to\infty} \int_0^n (1+\frac{x}{n})^n e^{-x/2} dx$.
 - (b) [10 pts] $\int_{E} ye^{-xy} \sin x \, dx dy$, where $E = (0, \infty) \times (0, 1)$.
- 3. [15 pts] Let $f: \mathbb{R} \to \mathbb{R}$. Prove that f satisfies the Lipschitz condition

$$|f(x) - f(y)| \le M|x - y|$$

for some M and all $x,y\in\mathbb{R}$ if and only if f is absolutely continuous and $|f'(x)|\leq M$ for a.e. x.

- 4. For an operator on a Hilbert space \mathcal{H} , we say that T is an isometry if ||Tf|| = ||f|| for all $f \in \mathcal{H}$.
 - (a) [10 pts] Prove that $T^*T = I$ if T is an isometry.
 - (b) [10 pts] Give an example of an isometry that is not unitary.
- 5. [15 pts] Assume that μ is a σ -finite measure on S. Suppose that $1 \leq p, q \leq \infty$ and 1/p + 1/q = 1. Prove that, for every $f \in L^p(S, \mu)$,

$$||f||_p = \sup \left\{ \left| \int_S fg \, d\mu \right| : g \in L^q(X,\mu), ||g||_q = 1 \right\}.$$

6. [15 pts] Let ν be a signed measure. Prove that the total variation $|\nu|$ is a positive measure that satisfies $\nu \leq |\nu|$.

Ph.D. Qualifying Exam: Numerical Analysis August 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

- 1. [20 pts]
 - (a) State Newton's method to find zeros of f(x) = 0 and prove the convergence. Consider various cases such as $f'(\alpha) = 0$ for some zero of f.
 - (b) Generalize Newton's method to the system of nonlinear equations f(x) = 0. (No need to prove any theorem in this case)
- 2. [10 pts] Let $A,C\in\mathbb{C}^{n,n}$ and assume A is invertible with $\|A^{-1}\|\leq\alpha$. If $\|A-C\|\leq\beta$ and $\beta\alpha<1$, then C is invertible and

$$||C^{-1}|| \le \frac{\alpha}{1 - \alpha\beta}.$$

3. [10 pts] Let $f \in C^2[a, b]$ and s be the natural cubic spline approximation of f with nodes $\{x_i\}_{i=0}^n$, $a = x_0$ and $b = x_n$ with $h = \max_k h_k$. Prove

$$||f - s||_{\infty} \le h^{3/2} \left(\int_a^b |f''(x)|^2 dx \right)^{1/2}.$$

- 4. [10 pts] State Gaussian quadrature using n points for the approximation of integral $\int_a^b f(x)dx$ and prove it is exact for polynomials of degree 2n-1.
- 5. [20 pts] When we solve a system of equations numerically,

$$A\mathbf{x} = \mathbf{b}$$

we usually get approximate solution $\mathbf{x} + \mathbf{h}$. We would like analyze the relative error $\frac{\|\mathbf{h}\|}{\|\mathbf{x}\|}$ and find its relation with matrix A. We can view $\mathbf{x} + \mathbf{h}$ as the solution of a perturbed problem

$$(A+E)(\mathbf{x}+\mathbf{h}) = \mathbf{b} + \mathbf{k}.$$

Find a reasonable bound of $\frac{\|\mathbf{h}\|}{\|\mathbf{x}\|}$ in terms of the relative errors of $\|\mathbf{k}\|$ and $\|E\|$ under the assumption that the error $\|E\|$ is small enough.

- 6. [10 pts] State the Givens Householder algorithm to reduce an $n \times n$ real matrix A to an upper Hessenberg form.
- 7. [20 pts] State QR algorithm to find all the eigenvalues of A. Explain a detailed algorithm, computational complexity (i.e., the number of operations), effectiveness and efficiency, etc.

Ph.D. Qualifying Exam: Probability Theory August 2016

Student ID:

Name:

Note: Be sure to use English for your answers.

- 1. [10 pts] Let $\Omega = \{-1, 0, 1, 2\}$ and a function X on Ω be defined by $X(\omega) = \omega^2$ for $\omega \in \Omega$. Find the smallest σ -field $\sigma(X)$ that makes X a random variable.
- 2. [20 pts] Show the following statements.
 - (a) [10 pts] Two random variables X_1 and X_2 are independent if and only if for every pair f_1, f_2 of non-negative bounded continuous functions, we have

 $E[f_1(X_1)f_2(X_2)] = E[f_1(X_1)]E[f_2(X_2)].$

- (b) [10 pts] Suppose for each n, that the pair ξ_n and η_n are independent random variables and that pointwise $\xi_n \to \xi_\infty$ and $\eta_n \to \eta_\infty$. Then the pair ξ_∞ and η_∞ are independent.
- 3. [10 pts] Show the following Kolmogorov Convergence Criterion: Suppose that $\{X_n, n \geq 1\}$ is a sequence of independent random variables. If $\sum_{i=1}^{\infty} Var[X_i] < \infty$, then $\sum_{i=1}^{\infty} (X_i E[X_i])$ converges almost surely.
- 4. [15 pts] If X_n converges to X in L_p for $p \ge 1$, then show that $E[X_n^p]$ converges to $E[X^p]$.
- 5. [10 pts] If X_n converges in distribution to X_0 and $\sup_{n\geq 1} E[|X_n|^{2+\delta}] < \infty$ for some $\delta > 0$, then show that $\lim_{n\to\infty} E[X_n] = E[X_0]$ and $\lim_{n\to\infty} Var[X_n] = Var[X_0]$.
- 6. [10 pts] Let X, Y be random variables satisfying $X, XY \in L_1$. If $Y \in \mathcal{G}$, show that

 $E[XY|\mathcal{G}] = YE[X|\mathcal{G}]$ almost surely.

- 7. [25 pts] Let $\{\mathcal{F}_n, n \geq 1\}$ be an increasing sequence of σ -fields such that $\mathcal{F}_n \uparrow \mathcal{F}_{\infty}$. Consider a random variable X with $E[|X|] < \infty$.
 - (a) [13 pts] Show that $\{E[X|\mathcal{F}_n], n \geq 1\}$ is a martingale with respect to $\{\mathcal{F}_n, n \geq 1\}$ and is uniformly integrable.
 - (b) [12 pts] Show that $E[X|\mathcal{F}_n]$ converges to $E[X|\mathcal{F}_\infty]$ almost surely and in L_1 .