대수학 I 박사 자격시험

2013. 2. 6

- 1. (10 Points) Let R be an integral domain. Prove that if R is finite, then R is a field.
- 2. (10 Points) Let F be a field and $f(x)(\neq 0) \in F[x]$ with deg f(x) = n. Prove that f(x) has at most n roots in F.
- 3. (20 Points) Show that $f(x) = x^4 5x^2 + 1$ is irreducible in $\mathbb{Q}[x]$.
- 4. (20 Points) Find all abelian groups of order 72, up to isomorphism, in terms of both elementary divisors and invariant factors.
- 5. (20 Points) Prove that every group is isomorphic to a group of permutations.
- 6. (20 Points) Let p, q be distinct primes with p < q.
 - (a) Determine whether any group G of order pq is simple.
 - (b) Prove that if $q \not\equiv 1 \mod p$, G is abelian and cyclic.

Doctoral Qualifying Exam

Differential Geometry (Spring, 2013)

- 1. (30 points) Answer the following questions:
 - (a) If N is a closed embedded submanifold of a smooth manifold M, U is any open neighborhood of N, and $f: N \to \mathbb{R}$ is a real-valued smooth function, show that there is a smooth function $\tilde{f}: M \to \mathbb{R}$ with $\tilde{f} = f$ on N such that the support of \tilde{f} is contained in U.
 - (b) Prove or disprove (a) above if $M = \mathbb{R}$ and $N = (0, 1) \subset M = \mathbb{R}$.
 - (c) Prove or disprove (a) above if $M = \mathbb{R}^2$, $N = S^1$, the unit circle in \mathbb{R}^2 , and \mathbb{R} , the codomain of f, is replaced by S^1 .
- 2. (30 points) Answer the following questions:
 - (a) Give a definition of a complete smooth vector field on a smooth manifold.
 - (b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function given by $f(x, y) = \sqrt{1 + x^2 + y^2}$. Then define a smooth vector field ∇f on \mathbb{R}^2 by the relation

$$df = \frac{xdx + ydy}{\sqrt{1 + x^2 + y^2}} = \frac{4}{\sqrt{(1 + x^2 + y^2)^3}} \langle \nabla f, \cdot \rangle,$$

where $\langle \cdot, \cdot \rangle$ denotes the standard inner product on \mathbb{R}^2 . Find explicitly the vector field ∇f on \mathbb{R}^2 .

- (c) Prove or disprove that ∇f from (b) is complete.
- 3. (20 points) Answer the following questions:
 - (a) Prove that for a smooth 1-form α on a smooth manifold M

$$d\alpha(X,Y) = X(\alpha(Y)) - Y(\alpha(X)) - \alpha([X,Y])$$

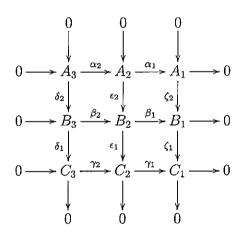
for smooth vector fields X and Y.

- (b) Let $\omega = \sum_{i < j < k} \omega_{ijk} dx^i \wedge dx^j \wedge dx^k$ on \mathbb{R}^n for n > 3. Find a necessary and sufficient condition for ω to be closed.
- **4.** (10 points) Let $f: M \to N$ be a proper map between oriented n-manifolds such that the differential $f_*: T_pM \to T_{f(p)}N$ is orientation-preserving whenever p is a regular point of f. Assume that N is connected and that f is not surjective. Show that all points of M are critical points of f.
- **5.** (10 points) Let $f: S^k \times S^{n-k} \to T^n$ be a smooth map for integers $n \ge 4$ and $2 \le k \le n-2$, where S^k (resp. S^{n-k}) is the unit sphere in \mathbb{R}^{k+1} (resp. \mathbb{R}^{n-k+1}) and T^n is the *n*-dimensional torus $S^1 \times \cdots \times S^1$ (*n* times). Determine the degree of f.

2013 Spring KAIST Qualifying Exam for Ph. D program Algebraic Topology I

Choose 5 problems out of the following 6 problems to solve. Mark the number of the problems that you choose to solve with black circle.

- 1. Answer the following question with reasons. (20 points)
 - (a) Suppose $n \geq 2$. Does there exist a continuous map $f: S^n \to S^1$ which is not homotopic to a constant?
 - (b) Suppose $n \geq 2$. Does there exist a continuous map $f : \mathbb{R}P^n \to S^1$ which is not homotopic to a constant?
 - (c) Let $T = S^1 \times S^1$ be the torus. Does there exist a continuous map $f: T \to S^1$ which is not homotopic to a constant?
- 2. Let X be the pinched torus, that is, X is the quotient space $(S^1 \times S^1)/(\{pt.\} \times S^1)$. Compute $\pi_1(X)$ and $H_*(X)$. (20 points)
- 3. Prove the following 3×3 lemma. Consider the following commutative diagram of abelian groups.



If all three columns and the first two rows are short exact sequences, then show that the last row is also a short exact sequence. (20 points)

- 4. Let $X = \{(x, y, z) \in \mathbb{R}^3 \mid xy = 0\}$. (20 points)
 - (a) Compute $H_1(X (0, 0, 0))$.

- (b) Using part (a) prove that X is not homeomorpic to \mathbb{R}^3 .
- (c) Prove or disprove: X is homotopy equivalent to \mathbb{R}^2 .
- 5. Let X be a CW-complex with exactly one (n+1)-cell. Prove that if $H_n(X; \mathbb{Z})$ is a nontrivial finite group, then $H_{n+1}(X; \mathbb{Z}) = 0$. (20 points)
- 6. It is known that if C is a homeomorphic cop of the circle in S^3 , then $H_*(S^3 C) \cong H_*(S^1)$. Assuming this fact compute the homology groups of the following spaces. (20 points)
 - (a) $Y = \mathbb{R}^3 C$ where C is a homeomorphic copy of a circle in \mathbb{R}^3 .
 - (b) $Z = \mathbb{R}^3 X$ where X os a homeomorphic copy of the figure-eight space (i.e., the one-point union of two circles).

Real Analysis, Ph.D. Qualifying Exam (February 2013)

- 1. [10] Let (X, \mathcal{A}, μ) be a measure space. Let $f \in L^{\infty}(X, \mathcal{A}, \mu)$ and $g \in L^{1}(X, \mathcal{A}, \mu)$ with $||fg||_{1} = ||f||_{\infty} ||g||_{1}$. Show that $|f| = ||f||_{\infty}$ a.e. on the set $\{x \in X | g(x) \neq 0\}$.
- 2. [10] Let (X, \mathcal{A}, μ) be a semifinite measure space and f be a measurable function on (X, \mathcal{A}) . Let Γ be the set of all simple functions φ on (X, \mathcal{A}) with $\int_X |\varphi| d\mu \leq 1$. Show that if $|\int_X f \varphi d\mu| \leq 2$ for all $\varphi \in \Gamma$, then $|f| \leq 2$ a.e..
- 3. [15] For each polynomial f on [0,1], let $||f|| = ||f||_{\infty} + ||f'||_{\infty}$. Let X be the normed vector space of polynomials on [0,1] with the norm $||\cdot||_{\infty}$ and Y be the normed vector space of polynomials on [0,1] with the norm $||\cdot||_{\infty}$. Let A be the linear operator from X to Y defined by A(f) = f' for $f \in X$. Show that A is unbounded. Does A have a closed graph?
- 4. [15] Let (X, \mathcal{A}, μ) be a measure space and $f \in L^1(X, \mathcal{A}, \mu)$. Let $\{f_n\}$ be a sequence in $L^1(X, \mathcal{A}, \mu)$ that converges pointwise to f on X and $\sup_{n \in \mathbb{N}} f_n \leq f$ a.e.. Show that if $\lim_{n \to \infty} \int_E |f_n| d\mu = \int_E |f| d\mu$ for each $E \in \mathcal{A}$, then $\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu$. You may use Fatou Lemma.
- 5. [15] Let (X, \mathcal{A}, μ) be a measure space and f be a measurable function on (X, \mathcal{A}) . Let ν be a finite measure on \mathcal{A} such that $\nu(E) = \int_E f d(\mu + \nu)$ for all $E \in \mathcal{A}$. For each $E \in \mathcal{A}$, let $\rho(E) = \nu(\{x \in E | f(x) < 1\})$. Show that $\rho \ll \mu$ and $(\nu \rho) \perp \mu$.
- 6. [15] Let X be a nonempty set and Ω be a collection of subsets of X with \emptyset , $X \in \Omega$. Let ρ be a nonnegative set function on Ω with $\rho(\emptyset) = 0$. For each subset E of X, define

$$\mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \rho(E_n) \middle| E \subseteq \bigcup_{n=1}^{\infty} E_n \text{ with } E_n \in \Omega \right\}.$$

Show that μ^* is an outer measure on X.

7. [20] Let X be a normed vector space and let \mathcal{F} be a nonempty subset of X^* such that $\sup_{f\in\mathcal{F}}|f(x)|<\infty$ for each $x\in X$. Let Γ be the set of all real-valued functions γ on \mathcal{F} such that $\|\gamma\|=\sup_{f\in\mathcal{F}}|\gamma(f)|<\infty$. Let A be the linear operator from X to the Banach space Γ with the norm $\|\cdot\|$ given by A(x)(f)=f(x) for $x\in X$ and $f\in\mathcal{F}$. Must A be bounded? Show that if X is complete, then A is bounded and $\sup_{f\in\mathcal{F}}\|f\|<\infty$. You may use Closed Graph Theorem.

MAS 541 Complex Function Theory - February 2012 Ph.D. Qualifying Exam

No document, cell phone or any electronic device allowed. If you can not solve a problem, it is better to write clear and relevant ideas than irrelevant computations. Do not claim that you solved a problem unless you think you did. Good luck! =)

We denote by $\mathbb{D} = \{ z \in \mathbb{C} \mid |z| < 1 \}$ the unit disk in \mathbb{C} .

- 1. -10 pts- Give the statement (not the proof) of Liouville Theorem.
- 2. -10 pts- Give the definition of a meromorphic function on \mathbb{C} .
- 3. -10 pts- Does there exist a holomorphic bijection between $\mathbb D$ and $\{z=x+iy\in\mathbb C\mid x>0,\ y>0,\ x+y<1\}$? Justify your answer in no more than two lines.
- 4. -10 pts- Prove or disprove: Any holomorphic function $f:\mathbb{C}\to\mathbb{C}$ has a dense image.
- 5. -10 pts- Recall that a family of functions \mathcal{F} is called *normal* when: for every sequence in \mathcal{F} , there is a subsequence that converges uniformly on compact sets (the limit need not be in \mathcal{F}). Let \mathcal{A} be a family of holomorphic functions on \mathbb{D} . Denote $\mathcal{A}' = \{ f' \mid f \in \mathcal{A} \}$. Assume \mathcal{A}' is normal and

$$\sup\big\{\,|f(0)|\;\big|\;f\in\mathcal{A}\big\}<\infty.$$

Show that A is normal.

- 6. (a) -5 pts- Let f be a holomorphic function with a zero of order $m \ge 1$ at the origin. Show that on some neighborhood of the origin, we can write $f(z) = z^m h(z)$ where h is a nonvanishing holomorphic function.
 - (b) -10 pts- Let f be a holomorphic function with a zero of order $m \ge 1$ at the origin. Show that on a small neighborhood D of the origin, there exists $g \in \mathcal{O}(D)$ such that $g'(0) \ne 0$ and $f(z) = \left(g(z)\right)^m$ on D. Hint: use the fact that a nonvanishing holomorphic function has a local logarithm.
 - (c) -10 pts- Let $f: \Omega \to \mathbb{C}$ be a nonconstant holomorphic map. Show that f is open, i.e., the image of any open set is open. Hint: you can use the complex version of the inverse function theorem.
 - (d) -10 pts- Prove or disprove: If a holomorphic function $f: \Omega \to \mathbb{C}$ is one-to-one (i.e., injective), then its derivative never vanishes.
- 7. -15 pts- Let $f: z \mapsto \sum a_n z^n$ be an entire function. Assume that for some positive constants A, a and ρ , for all z,

$$|f(z)| \le Ae^{a|z|^{\rho}}.$$

Show that $(|a_n|^{1/n}n^{1/\rho})_n$ is bounded.

KAIST DMS Qualifying Exam in Probability Theory, February 2013

Student ID:

Name:

1. (10 pts) If $\{A_n : n \geq 0\}$ is an independent sequence of events, show

$$\mathbb{P}(\cap_{n=1}^{\infty} A_n) = \prod_{n=1}^{\infty} \mathbb{P}(A_n).$$

2. (10 pts) A finite family \mathcal{F}_i , $i \in I$ of σ -algebras is independent iff for every choice of non-negative \mathcal{F}_i -measurable random variables X_i , $i \in I$, we have

$$\mathbb{E}[\prod_{i\in I} X_i] = \prod_{i\in I} \mathbb{E}[X_i].$$

- 3. (10 pts) Let $\{X_n\}$ be independent random variables and $S_n = X_1 + \ldots + X_n$. Show that the event $\{\omega : S_n(\omega)/n \to 0\}$ has probability 0 or 1.
- 4. (10 pts) Suppose X and Y are independent random variables and $h: \mathbb{R}^2 \to [0, \infty)$ is measurable. Define $g(x) = \mathbb{E}[h(x, Y)]$. Show that $g(\cdot)$ is measurable and $\mathbb{E}[g(X)] = \mathbb{E}[h(X, Y)]$.
- 5. (10 pts) Suppose that X_1, \ldots, X_n are independent random variables with $\mathbb{E}X_i = 0$ and $\text{Var}(X_i) < \infty$. Set $S_n = X_1 + \ldots + X_n$. Show that

$$\mathbb{P}\Big(\max_{1\leq k\leq n}|S_k|\geq \lambda\Big)\leq \lambda^{-2}\mathrm{Var}(S_n).$$

6. (10 pts) Let $\{X_i, i \geq 1\}$ be iid with $\mathbb{E}X_i = 0$ and $\mathbb{E}X_i^2 = \sigma^2 \in (0, \infty)$. Set $S_n = X_1 + \ldots + X_n$. Let R_n be a sequence of non-negative random variables and a_n a sequence of integers with $a_n \to \infty$ and $R_n/a_n \to 1$ in probability. Show that

$$\frac{S_{R_n}}{\sigma\sqrt{a_n}} \Rightarrow N(0,1).$$

- 7. (10 pts) Suppose $\{X_n, n \geq 1\}$ are random variables with a common unit exponential distribution, i.e. $\mathbb{P}(X_n > x) = e^{-x}$, x > 0 and set $M_n = \max\{X_1, \dots, X_n\}$, $n \geq 1$. Find the distribution of Y which satisfies $M_n \log n \Rightarrow Y$. \Rightarrow denotes the convergence in distribution.
- 8. (10 pts) Find the characteristic functions of $N(\mu, \sigma^2)$, $\exp(\lambda)$, and $Poisson(\lambda)$.
- 9. (10 pts) Consider a Markov chain $\{X_n, n \geq 0\}$ on the state space $\{0, 1, 2, ...\}$ with transition probabilities $p_{ij} = \frac{e^{-i_i j}}{j!}$, $i, j \geq 0$ and $p_{00} = 1$. Show that $\{X_n\}$ is a martingale with respect to $\mathcal{F}_n = \sigma(X_0, X_1, ..., X_n)$ and that

$$\mathbb{P}(\sup\{X_n, n \ge 0\} \ge x | X_0 = i) \le i/x.$$

10. (10 pts) Suppose that $\{(X_n, \mathcal{F}_n), n \geq 0\}$ is an L_1 -bounded martingale. If there exists an integrable random variable Y such that $X_n \leq \mathbb{E}[Y|\mathcal{F}_n]$ then $X_n \leq \mathbb{E}[X_\infty|\mathcal{F}_n]$ for all $n \geq 0$ where $X_\infty = \lim_{n \to \infty} X_n$ almost surely.

Qualifying Exam-1 2013 in Advanced Statistics

- 1. [10 pts] Define a curved exponential family and give an example of it with the graph of its corresponding parameter space.
- 2. [6 pts] For two random variables, X and Y, find $g^*(X)$ so that

$$\min_{g(x)} E(Y - g(X))^2 = E(Y - g^*(X))^2.$$

- 3. [10 pts] Let X_1, \dots, X_n be a random sample from $N(\theta, 1)$. Find, if any, the best unbiased estimator of θ^2 and check if its variance is equal to the Cramer-Rao lower bound.
- 4. It may be that a person cannot actually discriminate between the two choices (can you tell Coke from Pepsi?), but the setup of the experiment is such that a choice must be made between two products A and B. Therefore, there is a confounding between discriminating correctly and guessing correctly. Consider the following parameters:

p = probability that a person can actually discriminate,

c = probability that a person discriminates correctly.

Suppose that n people participate the discrimination experiment and that the probability p varies across the participants according to a beta distribution, $beta(\alpha, \beta)$. Let X_i be the indicator of a correct discrimination by person i, $i = 1, 2, \dots, n$.

- (a) [3 pts] Express the probability c as a function of p.
- (b) [8 pts] Find the mean and variance of $\sum_{i=1}^{n} X_i$.
- (c) [4 pts] Is the distribution of $\sum_{i=1}^{n}$ a beta-binomial? Why?
- 5. Let there be a random sample of size n, $\mathbf{X}_i = (X_{i1}, X_{i2}, X_{i3})'$, $i = 1, 2, \dots, n$, from a tri-variate normal distribution $N(\mu, \Sigma)$ where μ is a 3-dimensional mean vector and Σ a 3 × 3 covariance matrix. Let ρ_{jk} be the correlation coefficient between the jth and kth component of \mathbf{X}_i .
 - (a) [10 pts] Construct a procedure for testing if all the ρ_{jk} 's are zero at the significance level α .
 - (b) [7 pts] Let $U = aX_{11} + BX_{12}$ and $V = CX_{12} + dX_{13}$, where a and d are fixed constants and $(1-B)/2 \sim beta(\alpha_1, \beta_1)$ and $(1-C)/2 \sim beta(\alpha_2, \beta_2)$. B and C are independent of each other and they are also independent of X_i 's. Find corr(U, V).
- 6. [10 pts] For any bounded pdf f(x) on [a,b], define $c = \max_{a \le x \le b} f(x)$. Let X and Y be independent, with $X \sim uniform(a,b)$ and $Y \sim uniform(0,c)$. For a number d > b, define a new random variable

$$W = \begin{cases} X & \text{if } Y < f(X) \\ d & \text{if } Y \ge f(X). \end{cases}$$

Show that

$$P(W \le w) = \frac{1}{c(b-a)} \int_a^w f(t)dt \quad \text{for } a \le w \le b.$$

7. Let (X_i, Y_i) , $i = 1, 2, \dots, n$, be a random sample from the distribution with the joint pdf

$$f(x,y) = \exp\{-(\theta x + y/\theta)\}, x > 0, y > 0.$$

- (a) [6 pts] Find the Fisher information, $I(\theta)$, in the sample.
- (b) [10 pts] Let

$$T = \sqrt{\sum_{i=1}^{n} Y_i / \sum_{i=1}^{n} X_i}$$
 and $U = \sqrt{\sum_{i=1}^{n} X_i \sum_{i=1}^{n} Y_i}$.

Find the Fisher information in (T, U).

- (c) [6 pts] Show that (T, U) is jointly sufficient but not complete.
- 8. [10 pts] Prove the invariance property of MLE's. Namely, prove that, if $\hat{\theta}$ is the MLE of θ , then for any function $g(\theta)$, the MLE of $g(\theta)$ is $g(\hat{\theta})$.

THE END

Numerical Analysis Qualifying Exam

February 2013

- 1. (10 points each)
 - (a) State Newton's method to find zeros of f(x) = 0 and prove the convergence.
 - (b) When $f'(\alpha) = 0$ for some zero α of f, what do you think of the Newton's method? Modify the Newton's method in this case.
- 2. (20 points) What is the Chebyshev zeros and give a motive for them.
- 3. (15 points) Consider the difference equation $U^{n+4} = U^n$ with four starting values U^0, U^1, U^2, U^3 . Use the roots of the characteristic polynomial to find a representation of the solution to this equation.
- 4. (10 points each) Consider the conjugate gradient method for the minimization of $\frac{1}{2}(Ax, x) (b, x)$. (A is a symmetric and positive definite matrix) in the form: Starting with $x_0 = 0, r_0 = b$ and $p_1 = r_0$, the successive approximations to the minimizer are computed by

$$x_k = x_{k-1} + \alpha_k p_k, \quad r_k = r_{k-1} - \alpha_k A p_k, \quad p_{k+1} = r_k + \beta_{k+1} p_k$$

where $\alpha_k = (r_k, p_k) / \|p_k\|_A^2$ and $\beta_{k+1} = -(r_k, p_k)_A / \|p_k\|_A^2$.

(a) Show that for $k = 0, 1, 2, \dots$, the following relations are true:

$$\mathrm{span}\{p_1, p_2, \cdots, p_{k+1}\} = \mathrm{span}\{r_0, r_1, \cdots, r_k\} = \mathrm{span}\{r_0, Ar_0, \cdots, A^k r_0\}.$$

- (b) Show that if $A \in \mathbb{R}^{n \times n}$ then for some $m \leq n$, $r_m = 0$ (assume that all operations are performed exactly).
- 5. (25 points) Suppose that an $n \times n$ matrix A has eigenvalues $\lambda_1, \dots, \lambda_n$ ordered by

$$|\lambda_1| > |\lambda_2| > |\lambda_3| \ge \cdots \ge |\lambda_n|$$

with linearly independent eigenvectors $v^{(1)}, v^{(2)}, \cdots, v^{(n)}$.

(a) Show how, and prove why, the Power method can be applied to an initial vectors $x^{(0)}$ given by

$$x^{(0)} = \beta_2 v^{(2)} + \beta_3 v^{(3)} + \dots + \beta_n v^{(n)},$$

to get a sequence that converges to λ_2 .

- (b) Show that for any vector $x = \sum_{i=1}^{n} \beta_i v^{(i)}$, the vector $x^{(0)} = (A \lambda_1 I)x$ satisfies the property given in part (a).
- (c) Show how one can continue this method to find λ_3 by using a suitably chosen $x^{(0)}$.