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Abstract

In an effort to cope with the fact that functional magnetic resonance imaging
(fMRI) data are spatio-temporally correlated, we propose a novel statistical
method with a view to improve the detection of brain regions with increased
neuronal activity in fMRI. In this method, we make use of information from
neighboring voxels of a voxel, for estimation at the voxel. We examined
performance of the method against the statistical parametric mapping (SPM)
method using both simulated and real data. The proposed method is shown
to be considerably better than the SPM in the context of Receiver Operating
Characteristics (ROC) curves.
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1. INTRODUCTION

Functional Magnetic Resonance Imaging is based on the principles of mag-
netic resonance and the fact that increases in neural activity are accompanied
by changes in regional cerebral blood flow (rCBF) and blood oxygenation.
This blood oxygenation level dependent (BOLD) effect is the basis for most
of the fMRI studies to map patterns of activation in the working human
brain. The mapping and assigning of brain functions is well reflected in its
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name, functional MRI.

fMRI has been in use for investigator of a variety of neuronal processes
from activities in the primary visual and auditory cortices to cognitive func-
tions such as sensation or listening. In an fMRI experiment, baseline images
are scanned of equal spaced time points while the subject is at rest and acti-
vation images are acquired while the subject is performing a particular task.
Lueck et al.[1989] and Friston et al.[1994] are among the first to develop
a statistical parametric mapping package(SPM: www.fil.ion.ucl.ac.uk/spm)
based on a voxel-wise analysis.

There are two major problems related to SPM: 1) modeling evoked hemo-
dynamic response function (HRF) in fMRI time series data; and 2) autocor-
relation of random errors, (i.e., successive fMRI scans are not independent).
A linear time-invariant or a convolution model was proposed to overcome
the first problem [Kiebel et al., 2003]. It is difficult to find the correct form
of the convolution kernel to accurately describe the hemodynamic response
function. The second problem is important in analysis of fMRI scans where
successive time series scans are not independent. A solution to the problem
was given by Worsely and Friston(2002) and provided a general framework
for the estimation of serial correlations among error terms.

In the SPM, we estimate the error covariance matrix, σ2V say, by em-
ploying the restricted maximum likelihood method [Harville, 1974]. In the
method, constraints are imposed on V in the form of V =

∑2
l=1 λlQl with

Q1 = I, Q2 =
(
e−|i−j| : i 6= j

)
, where I is an identity matrix and the hyper-

parameters (error variance components) λl are estimated based on pooled
data from all the interested voxels. The V is used to de-correlate the data
of all the voxels of the brain and the σ is estimated for each voxel.

The fMRI noise is autocorrelated and functional imaging data have some
spatial correlation. This correlation is further enhanced by some operations
such as smoothing and reslicing fMRI data, and also, fMRI data of low
resolution from an individual voxel will contain some signal from the tissue
around that voxel. This spatio-temporal autocorrelation [Valdes-Sosa, 2004]
has led us to propose a method in which we incorporate estimation results
at neighboring voxels of a voxel, v say, in the estimation at voxel v. This
proposed method is shown to increase substantially the statistical significance
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of activated regions as compared to the traditional SPM approach.

2. THE PROPOSED METHOD

Many methods are available for the statistical analysis of fMRI data that
range from a simple linear model for the response and a global first-order
autoregressive model [Watson, 1955; Seber, 1977 and Worsely et al., 2002]
for the temporal errors, to a more sophisticated non-linear model for the
response with a local state space model for the temporal errors [Purdon et
al., 2001]. In the analysis of fMRI data, the SPM adopts an AR(1) model for
the noise in the original data, whose autocorrelation coefficient, ρ, is assumed
to be constant across the voxels of the brain rather than varying spatially as
proposed in our method.

There is a considerable evidence that the error covariance matrix is not
homogeneous [Purdon et al., 2001]. In the SPM, we analyze data with regard
to temporal correlation but not consider any relationship between voxels to
decorrelate the fMRI data. The estimates of ρ and the variance of the white
noise (σ2

ξ ) of all the voxels of a slice are shown in Fig. 9 and 10 which are ob-
tained from real data. Inspired by this variation of the estimates we propose
an efficient, pre-whitening strategy [Worsley et al., 2002] with estimation
made at every voxel in the brain. We will call this method a neighborhood
method (NH). It also incorporates the spatial correlation between neighbor-
ing voxels and improves the detection accuracy of active voxels. The NH
increases substantially the statistical significance of activated regions, which
makes it possible to decide with higher confidence if a certain brain region is
activated or not. We compare our approach to functional imaging with the
SPM method [Friston et al., 1995a; Worsley et al., 1995].

The NH algorithm is as follows:

1. The general linear model which we apply at voxel v is given by

Yv = Xvβv + εv, εv ∼ N(0, Vv), (1)

where Xv is a design matrix.

2. Suppose the parameter estimation begins at voxel v1. We obtain ε̂v1 =
Yv1 − Ŷv1 where Ŷv1 = Xv1 β̂v1 and β̂v1 = (XT

v1
Xv1)

−1XT
v1

Yv1 . We calcu-

late V̂v1 by adopting the first order autoregressive model proposed by
Bullmore et al.[1996]. In this model images are equally spaced in time
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and the errors from previous images, εv1(t− 1), are mixed up with a
white noise ξv1(t) into the error of the current image, εv1(t) :

εv1(t) = ρεv1(t− 1) + ξv1(t) (2)

where |ρ| < 1 and {ξv1(t)} forms a sequence of independent and identi-
cally distributed errors with ξv1(t) ∼ N(0, σ2

ξv1
). The correlation matrix

of the first order autoregressive model is given by

Vv1 = ρ|s|v1

σ2
ξv1

1− ρ2
v1

, (3)

where ρ|s| is a square matrix whose (i, j)th entry is ρ|i−j|, i, j = 1, · · · , s.
i.e.,

ρ|s| =




1 ρ ρ2 . . . ρs−1

ρ 1 ρ . . . ρs−2

...
...

...
...

ρs−1 ρs−2 ρs−3 . . . 1




3. Calculate the de-correlating matrix Ŵv1 as Ŵv1 = V̂
−1/2
v1 . Multiply the

general linear model (1) by Ŵv1 :

Ŵv1Yv1 = Ŵv1Xv1βv1 + Ŵv1εv1

or
Y ∗

v1
= X∗

v1
β∗v1

+ ε∗v1
, ε∗v1

∼ N(0, σ2I), (4)

where the terms matching in the above two equations are the same,
e.g., Ŵv1Yv1 = Y ∗

v1
. β∗v1

is then estimated as

β̂∗v1
= (X∗T

v1
X∗

v1
)−1X∗T

v1
Y ∗

v1
(5)

4a. For a neighboring voxel v2 of v1, set initial values of the estimates as:

β̂∗(0)
v2

= β̂∗v1
,

ε̂∗(0)
v2

= Ŵv1Yv2 − Ŵv1Xv2 β̂
∗(0)
v2

,

V̂ ∗(0)
v2

= ρ̂|s|v1

σ̂
2(0)
ξv2

1− ρ̂2
v1

,

Ŵ (0)
v2

= (V̂ ∗(0)
v2

)
−1/2

.

where σ̂
2(0)
ξv2

is computed based on ε̂
∗(0)
v2 by using equation (2).
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4b. Repeat updating β̂
∗(k−1)
v2 , ε̂

∗(k−1)
v2 , and Ŵ

(k−1)
v2 until convergence takes

place (e.g., |β̂∗(k)
v2 −β̂

∗(k−1)
v2 | ≤ 0.001, |ε̂∗(k)

v2 −ε̂
∗(k−1)
v2 | ≤ 0.001 and ||Ŵ (k)

v2,ij−
Ŵ

(k−1)
v2,ij || ≤ 0.001):

X∗
v2

= Ŵ (k−1)
v2

Xv2

Y ∗
v2

= Ŵ (k−1)
v2

Yv2

β̂∗(k)
v2

= (X∗T
v2

X∗
v2

)−1X∗T
v2

Y ∗
v2

,

ε̂∗(k)
v2

= Y ∗
v2
−X∗

v2
β̂∗(k)

v2
,

V̂ ∗(k)
v2

= ρ̂|s|v2

σ̂
2(k)
ξv2

1− ρ̂2
v2

,

Ŵ (k)
v2

= (V̂ ∗(k)
v2

)
−1/2

,

4c. If a voxel v has more than one voxels where estimation is already made,
then we take averages of the estimates from the neighboring voxels for
the initial values of the parameters β, ε, V , and W . In other words,
the right-hand sides of the equations in step 4a are replaced with the
corresponding averages of the estimates.

5. Apply step 4 to all the voxels of the brain that are involved in the data.

3. EXPERIMENTAL RESULTS

3.1. Using Simulated fMRI Data

In order to evaluate our method, we generated a Gaussian artificial ac-
tivation in 4-D fMRI, with the size of 6 × 5 × 5 voxels per volume in four
locations and 80 volumes. The 80 volumes of fMRI had alternating blocks
of 40 non-active and 40 active volumes, beginning with non-active volumes.
The activations were made in four different regions of interest (ROI) as shown
in Table 1 and in the three slices, 17, 20, and 4, as shown in Fig. 1. The
means and standard deviations (SD) of voxel values of 40 active volumes
corresponding to the four ROI’s are also shown in Table 1. The artificial
activation signals, Zit as shown in Fig. 2, in four ROI’s are generated from
Gaussian distributions according to the following model:
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Yit = Xtβi + εit, (6)

Zit = Yit + ait ; ait ∼ N(µ, 25), i = 1, · · · , 150 (7)

The 4-D fMRI data contain BOLD/EPI acquisitions consisting of 35 slices
(image volume size in voxels: x = 128, y = 128, z = 35). 80 acquisitions
or volumes were made: 8 blocks and 10 reps in each block for active and
non-active conditions. In the 10 repetitions block, we assume a task stimu-
lus, and rest conditions for the next 10 repetitions block. Successive blocks
alternated between task and rest and the design matrix settled up a blocked
paradigm for the simulation data.

Table 1: Artificial activation in four different ROI’s
ROI Voxel Positions Mean SD Artificial activation

X Y Z
1 150 51-56 65-69 14-18 729.66 99.51 N(20, 25)
2 150 74-79 65-69 14-18 733.54 105.23 N(20, 25)
3 150 63-69 95-99 18-22 984.44 183.90 N(15, 25)
4 150 63-69 31-35 4-8 844.10 130.07 N(15, 25)

Figure 1: Three slice views of artificial activation areas of four ROI’s in the brain.

A volume of SPM {t} map was constructed with a task-and-rest condi-
tion of design matrix corresponding to p < 0.01 (corrected) level by using
the SPM method as shown in Fig. 3 and by using the NH method as shown
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Figure 2: Artificial signals at four ROI’s

in Fig. 4. In the figures the images to the left show a so-called “glass brain”
view of activated voxels of the whole brain. The bar-graph on the right
represents the design matrix of task and rest conditions and above it is a
graphical representation of the contrast c=[1 0]. The tables in the figures
show statistical ‘t’ maps of activated voxels corresponding to p < 0.01 (cor-
rected). The number of voxels in the activated regions clearly shows that
the NH method increases substantially the statistical significance of the four
activated regions.

We will make use of the well-known Receiver Operating Characteristics
(ROC) curve analysis [Kim et al., 2005] to compare the SPM and NH meth-
ods. A ROC curve is a graphical representation of the true positive rate
(sensitivity) versus the false positive rate (1 - specificity) for a binary classi-
fier system over a range of its discrimination threshold. The frequencies of
true positive and false positive voxels are obtained by applying four different
threshold levels to the SPM {t} maps of simulation data for both methods.
The sensitivity or cumulative rates of true and false positive voxels corre-
sponding to these threshold levels for both methods are estimated as shown
in Table 2 and the ROC curves are fitted to four of the bivariate pairs, as
shown in Fig. 5(a). The area under the ROC curve from each of the two
methods is 0.9316 and 0.9218 respectively for the NH and the SPM method.
The difference of the area between the two methods is relatively small since
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Figure 3: Results of the test of artificial activations by using the SPM method. (Top right)
This is an image representation of the design matrix. The contrast is displayed above the
column of design matrix that corresponds to the activation effect c=[1 0]. (Top left) SPM
{t}: This is a maximum intensity of the projection of SPM {t}. The display format is
standard and provides three views of the brain from the front, below, and right-hand side.
The grayscale squared and rectangular shapes are the activated areas of our ROIs that are
described in the atlas of Talairach. (Bottom) Tabular data are presented for “significant”
regions p < 0.01 (corrected). The location of the maximal voxel in each region (right
column) with the size of region (KE) or cluster up to three t and z maxima. For each
maximum the significance is assessed in term of p–values, t–values and z–values. In this
figure there are mainly four (ROI) significant regions with p < 0.01 (corrected).
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Figure 4: Results of the test of artificial activations by using the NH method. The parts
of this figure are as explained in Fig. 3.
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the artificial signals are added to only 600 voxels (150 voxels for each ROI).
The ROC curve and Table 2 show that the NH method has: (1) larger true
positive rate; (2) lower false positive rate; (3) larger frequencies of true pos-
itive; (4) a slightly larger area under the ROC curve by the NH than by the
SPM.

In the NH method, we assume that each voxel is highly correlated with
the neighboring voxels partly due to the smoothing of the data images and
we make use of the information from neighboring voxels of a voxel, for esti-
mation at the voxel. The distinction of the ROC curves between the NH and
the SPM methods becomes more apparent for real data as we will see in the
next subsection.

Table 2: Sensitivity analysis with the SPM and NH methods

Observed Frequencies Cumulative Rates
Threshold level False Positive True Positive False Positive True Positive

SPM{t} SPM NH SPM NH SPM NH SPM NH
≥5.75 1 1 311 351 0.0667 0.0417 0.7814 0.7817
≥5.50 2 3 44 50 0.2000 0.1667 0.8920 0.8931
≥5.25 5 7 23 27 0.5333 0.4583 0.9497 0.9532
≥5.0 7 13 20 21 1 1 1 1
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Figure 5: ROC curves by the SPM and NH methods. Panel (a) shows the result from
simulation data and the result from real data is in panel (b).
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3.2. Using Real fMRI Data

We also compared the SPM and the NH methods with real fMRI data
obtained from a visual block design experiment, which is available in the
public domain at http://cnl.web.arizona.edu/spm.htm. The three condition
(“study”) block images data were acquired on a GE 1.5T Sigma 5x Whole-
body Echospeed Horizon System. The whole brain BOLD/EPI acquisition
consisted of 17 slices, each 5 mm thick, with a 1 mm skip (image volume
size in voxels: x = 64, y = 64, z = 17; voxel size: 3.44 mm × 3.44 mm ×
6 mm; FOV=220). The acquisition took 160 seconds, with the scan-to-scan
repetition time (TR) set to 2 secconds. A total of 80 acquisitions were made:
8 blocks of 20 seconds each (i.e., 8 blocks of 10 reps each). During each 20
second block, we presented 4 stimuli of bird pictures, each for 5 seconds. Suc-
cessive blocks alternated between hard and easy learned birds and a control
condition of familiar birds (crows and swans), starting with learned birds.
The pattern was as in Table 3.

Table 3: Block design of fMRI “study” data

Block 1 Block 2 Block 2 Block 4 Block 5 Block 6 Block 7 Block 8

20 sec 20 sec 20 sec 20 sec 20 sec 20 sec 20 sec 20 sec

10 TRs 10 TRs 10 TRs 10 TRs 10 TRs 10 TRs 10 TRs 10 TRs

4 easy 4 controls 4 hard 4 controls 4 easy 4 controls 4 hard 4 controls

A “2D” T1 anatomical (same plane and section as the BOLD image; Series
2) and a “3D” image (124 Sagittal slices, Series 4) were also acquired to be
used as structural images. We obtained SPMs of the real fMRI data after
pre-processing with smoothing {FWHM = 7 mm} using the NH and the
SPM methods with p < 0.05 (corrected) and contrast c=[1 -2 1]. Results
are displayed in the “glass-brain” views. Gray areas reflect the easy and
hard conditions causing higher brain activities than the control condition as
shown in Fig. 6. An increase in the cerebral blood flow is detected in the
temporal lobe, the thalamus, and the Wernicke area as a result of “study”
conditions. Small scattered areas of activity are seen in the projection of the
anterior commissure, sensory cortex, and frontal and temporal lobes.
Fig. 7 depicts the SPMs overlaid on the rendering of the structural MRI.

The brain images in panel (a) depicts SPMs on the rendering obtained by
the SPM method and the images in panel (b) by the NH.
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(a)

(b)

Figure 6: Three plane fMRI “glass-brain” images. The detection of the active regions
using the traditional SPM approach (a), and the NH method (b). Gray areas reflect the
higher activities in the brain as a result of the easy and hard conditions than the control
condition.

A comparison of the two methods is also made with p < 0.05 (corrected).
The SPM method detected 8814 voxels whereas the NH method detected
12710 voxels; the p-values of all the voxels are shown in Fig. 8. The figure
shows that the NH method has smaller p-values of activated voxels than the
SPM. The ROC curves in Fig. 5(b) shows that the NH method is superior
to the SPM method and the areas under the ROC curves by the NH and the
SPM are 0.8238 and 0.7356, respectively. The p-values by the NH method
are dispersed over a much wider range than the SPM method which is re-
flected in the ROC curves with larger true positive rates and smaller false
positive rates for the NH method.

4. DISCUSSION

In the SPM, the error covariance matrix, σ2V , involves hyperparameters
which do not vary over voxels, but the σ is estimated at each voxel to best
match the error covariance at that voxel. On the other hand, we admit more
heterogeneity of the covariance matrix in the NH method.
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(a)

(b)

Figure 7: Regions are rendered in red on the MNI template of SPM of activated regions
of the brain as a result of “higher active” of easy and hard conditions than the control
condition. Active regions detected with the use of the SPM method (a), and the NH
method (b) correspond to p < 0.05 (corrected).
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Figure 8: The p-values of all the voxels corresponding to p(< 0.05) corrected FDR by
using the SPM method (blue line) and the NH method (red line)

Fig. 9 and 10 show the estimates of ρ and σ2
ξ in (3) of all the voxels of

slice Z = 35, which are estimated based on the real fMRI data. The fluc-
tuation of the values of the estimates across the voxels called our attention
to a method which can incorporate the fluctuation into the estimation pro-
cedure of the parameters in the model (1). Under the assumption that the
estimates may change smoothly across neighboring voxels, we used the esti-
mates of neighboring voxels of a voxel for the initial values of the estimates
for the voxel. The variation of the parameter values ρ and σ2

ξ across voxels
and the assumed smoothness among neighboring voxels are reflected in the
estimation procedure of the NH method.

Worsley et al. [2002] used pre-whitening strategy with a spatially varying
V which is repeated at every voxel to estimate β in (1) without using infor-
mation from neighboring voxels. Zhang et al. [2006] used the matrix V −1/2

to estimate parameter β of whitened model and then applied Durbin-Watson
(AR(1) correlation test) on the residuals of whitened model to improve on
the accuracy of the autocorrelation model. The variation of the autocorrela-
tion coefficient (ρ) calls for the need for autocorrelation modeling with initial
estimates borrowed from neighboring voxels in order to attain more accurate
inferences at every voxel.

In the analysis of simulated data, the NH method detects, over four ROIs,
8%, 20%, 6% and 22% more activated voxels as shown in Table 4 than the
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Table 4: Detection of activated voxels in the four ROI’s

ROI Activated voxels Percentage of more detection
SPM NH

1 104 112 8 %

2 74 89 20 %

3 69 73 6 %

4 67 82 22 %

Total 314 356 14 %

SPM method, and with smoothing {FWHM = 7mm} of real data detects
40% more activated voxels. The proposed method detects on average 14%
more of the activated voxels of the simulated data than the SPM with a bet-
ter ROC performance. The true positive rate of activated voxels of simulated
data without smoothing showed validity of the proposed method and it is
more apparent as far as the real data are concerned. The ROC curves and
the p-values of activated voxels show that the NH method is superior than
the SPM method whether they are based on the simulated data or the real
data.

5. CONCLUSION

In this paper, we proposed a method in an effort to cope with the het-
erogeneity of the parameters, in particular the variance-covariance structure
of the noise in the fMRI data. Under the assumption that the parameter
estimates do not change abruptly between neighboring voxels, we employed
an estimate-transfusion approach between neighboring voxels by using the
estimates from neighboring voxels as initial values of the estimates for their
new neighboring voxels. Since the intial values may affect the final result
of the estimate [Wu, 1983 and Kim, 2002], it is desirable that we apply the
estimate-transfusion approach to obtain the estimates that are affected by
the estimates from neighboring voxels.

In both of the experiments, one with semi-artificial data and the other
with real data, we showed superiority of the proposed NH method over the
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traditional SPM method in the context of the ROC curve. In the traditional
SPM, we assume a variance-covariance structure contains hyperparameters
which do not vary over voxels. This may possibly deteriorate the detection
accuracy of the activated voxels where the noises are relatively small. This
kind of undesirable phenomenon can be avoided by applying the NH method.

The activation indexes of voxels that are obtained by the NH can be used
for Bayesian inferences on the voxel activity by imposing a prior distribution
on the voxel activity for a set of voxels [Everitt et al. 1999; Hartving et al.
2000; Woolrich et al. 2005].
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