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Abstract

The pantograph equation is perhaps one of the most heavily studied
class of functional differential equations owing to its numerous applica-
tions in mathematical physics, biology, and problems arising in industry.
This equation is characterized by a linear functional argument. Heard
[4] considered a generalization of this equation that included a nonlinear
functional argument. His work focussed on the asymptotic behaviour of
solutions for a real variable x as x→∞. In this paper, we revisit Heard’s
equation, but study it in the complex plane. Using results from complex
dynamics we show that any nonconstant solution that is holomorphic at
the origin must have the unit circle as a natural boundary. We consider
solutions that are holomorphic on the Julia set of the nonlinear argument.
We show that the solutions are either constant or have a singularity at the
origin. There is a special case of Heard’s equation that includes only the
derivative and the functional term. For this case we construct solutions
to the equation and illustrate the general results using classical complex
analysis.
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1 Introduction

In this paper we study initial-value problems of the form

y′(z) + ay(z) = λy(zn), (1.1)
y(z̃) = y0, (1.2)

where a, λ 6= 0 and y0 are constants, n > 1 is an integer, and z̃ is a fixed point
for g(z) = zn. Specifically, we look at global properties of solutions that are
holomorphic at z̃. The function g has one attracting fixed point at z0 = 0, and
n − 1 repelling fixed points on the circle C(0; 1) = {z : |z| = 1}. The global
nature of the solutions differs greatly depending on whether or not z̃ is attracting
or repelling. We show that solutions holomorphic at the attracting fixed point
must have C(0; 1) as a natural boundary; whereas, solutions holomorphic at
repelling fixed point can be continued throughout the complex plane except at
the attracting fixed point, which must be a branch point.

The work here is motivated by that of Heard [4], who studied the asymptotics
of real solutions to equation (1.1) as x → ∞. His work was motivated by the
close relationship to pantograph type equations

y′(z) + ay(z) = λy(αz), (1.3)

which have found numerous applications (cf. [5]).
The holomorphic continuation of solutions to initial-value problems such as

(1.1), (1.2) has been studied in [7], where the focus is primarily upon solutions
that are holomorphic at an attracting fixed point. In that work, results from
complex dynamics and complex analysis were exploited to establish the existence
of natural boundaries.

In the next section we study solutions that are holomorphic at fixed points
(attracting or repelling). We begin with repelling fixed points and show that
holomorphy places very strong global conditions on solutions. We use the tech-
niques from [7] to deduce the existence of a natural boundary for solutions
holomorphic at the attracting fixed point.

In the third section we look at the special case when a = 0. Much of
the analysis from the second section can be used in this case, but it has the
decisive merit that some of the solutions can be found explicitly and thus used
to illustrate the results. In addition, the case a = 0 has some special features,
and as Heard [4] noted for this case, the growth of solutions is different.

2 The Case a 6= 0

Equation (1.1) provides a relationship between the values of a function evaluated
at z and at zn. If y is a holomorphic solution then this equation also provides
a direct mechanism for holomorphic continuation. This, in turn, places severe
limits on the types of solutions available. Any process of holomorphic contin-
uation involves iterates of g(z) = zn, and this brings to the fore ideas from
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complex dynamics. The results in [7] apply to this equation; however, the func-
tional argument g is particularly simple and it is possible to extend this work
to deduce some properties of solutions holomorphic at repelling fixed points.

The fixed points of g in C are evidently z0 = 0 and the n − 1 solutions
z1, . . . zn−1 of the cyclotomic equation zn−1 = 1. Since g′(z) = nzn−1 it is clear
that z0 is an attracting fixed point and the other fixed points are repelling. The
basin of attraction for z0 is the disc D(0; 1) = {z : |z| < 1). The Julia set for g,
J(g), is the unit circle C(0; 1). The only critical point for g is at z0.

A crucial property of the Julia set is that iterations of g in some neighbour-
hood of a point z∗ ∈ J(g) cover the complex plane with at most one exception.
Specifically, let

g1 = g(z)
gk+1 = g(gk),

and for any set U let
gk(U) = {gk(z) : z ∈ U}.

If N(z∗) is a neighbourhood of a point z∗, then the set

G(z∗) = ∪∞k=1gk(N(z∗))

omits at most one point in C. If there exists a point p ∈ C such that G(z∗) =
C − {p}, then p is called an exceptional point. For our case, g(z) = zn, and
the nature of the exceptional point (if any) is particularly tractable. If P is any
polynomial of degree n and p is an exceptional point, then it can be shown g
can be written in the form

P (z) = p + b(z − p)n,

where b 6= 0. More detailed statements and proofs of these results can be found
in [2] and [8]. We thus see that if there is an exceptional point for g it must be
at the attracting fixed point z0.

Let Ω ⊆ C and denote the set of functions holomorphic in Ω by H(Ω).
Equation (1.1) provides a simple mechanism for continuation. In particular, we
have

dy

dg
=

ay′ + y′′

g′
.

Suppose that y ∈ H(N(ẑ)), then the above expression shows that y ∈ H(g(N(ẑ)))
provided that g′(z) 6= 0 in N(ẑ). Now, g′ vanishes only at z0, which is also a
fixed point. Thus g(N(ẑ)) contains z0 only if N(ẑ) contains z0. If z0 /∈ N(ẑ),
then above expression shows that y must also be holomorphic in a set that is
distinct from N(ẑ). If ẑ 6= 0 we can always choose a neighbourhood N(ẑ) that
does not contain z0. With such a choice of neighbourhood the process can be
repeated any number of times to show that y ∈ H(gk(N(ẑ))) for k ∈ N. In
this manner we see that if y ∈ H(N(ẑ)) is a solution to equation (1.1) then
y ∈ H(G(ẑ)), where G(ẑ) = ∪∞k=1gk(N(ẑ)).
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Suppose now that y ∈ H(N(z∗)), and z∗ ∈ J(g). The above arguments show
that y ∈ H(G(z∗)), where G(z∗) omits at most one point in C and that point
must be the origin. In summary, we have the following result.

Theorem 2.1 Suppose that y is a solution to equation (1.1) that is holomorphic
at z∗ ∈ J(g). Then y can be holomorphically continued to all points in C−{0}.

We show that the only entire solutions to equation (1.1) must be constant
functions, which are available only if a = λ. We first establish a lemma.

Lemma 2.2 Let f ∈ H(C) and

Mf (R) = sup
|z|=R

|f(z)|.

Suppose that there exist numbers µ > 0, δ > 0, and n > 1 such that

Mf (Rn) ≤ µMf (R + δ), (2.1)

for all R > 1. Then f must be constant.

Proof: The proof is similar to that given in [7]. Suppose that f is not a
constant and let

h(z) =
f(z)− f(0)

z
.

Since f ∈ H(C) and f is not constant, we have h ∈ H(C). The triangle inequal-
ity gives

Mh(R) ≤ Mf (R) + |f(0)|
R

(2.2)

Mf (R) ≤ RMh(R) + |f(0)|. (2.3)

Inequalities (2.1) and (2.2) yield

Mh(Rn) ≤ Mf (Rn) + |f(0)|
Rn

≤ µMf (R + δ) + |f(0)|
Rn

,

and inequality (2.3) shows that

Mh(Rn) ≤ µ ((R + δ)Mh(R + δ) + |f(0)|) + |f(0)|
Rn

=
1

Rn

(
R + δ +

(µ + 1)|f(0)|
Mh(R + δ)

)
Mh(R + δ),

for all R > 1. Since n > 1 and Mh(R+ δ) is increasing with R by the Maximum
Modulus Theorem, we have

lim
R→∞

1
Rn

(
R + δ +

(µ + 1)|f(0)|
Mh(R + δ)

)
= 0;
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consequently, there exists a R̂ such that for all R > R̂

1
Rn

(
R + δ +

(µ + 1)|f(0)|
Mh(R + δ)

)
< 1.

For such choices of R
Rn > R + δ,

and
Mh(Rn) < Mh(R + δ).

The last two inequalities contradict the Maximum Modulus Theorem. Therefore
f must be a constant.

�

Theorem 2.3 The only entire solutions to equation (1.1) are constant func-
tions.

Proof: Suppose y ∈ H(C) is a solution to equation (1.1). Then

|λ|My(Rn) ≤ |a|My(R) + My′(R).

For any δ > 0 the Cauchy integral formula can be used to show that

My′(R) ≤ My(R + δ)
δ

;

hence,

My(Rn) ≤ 1
|λ|

(
|a|My(R) +

My(R + δ)
δ

)
≤ 1

|λ|

(
|a|+ 1

δ

)
My(R + δ).

Choose δ > 1. Then y satisfies inequality (2.1) with

µ =
|a|+ 1
|λ|

.

Lemma 2.2 implies that y must be constant.
�

Corollary 2.4 Suppose that y is a nonconstant solution to equation (1.1) that
is holomorphic at z∗ ∈ J(g). Then z0 must be a (non removable) singularity for
y. Moreover, if a 6= 0 then z0 = 0 must be a branch point.
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Proof: That z0 must be a singularity follows immediately from Theorems 2.1
and 2.3, since y is not a constant. Suppose that a 6= 0 and that there exists an
annulus A(0; r, R) = {z : r < |z| < R} such that y ∈ H(A(0; r, R)). Laurent’s
theorem implies that y can be represented in the form

y(z) =
∞∑

k=1

ck

zk
+ H(z), (2.4)

for z ∈ A(0; r, R). Here, H denotes a function holomorphic in D(0;R). Substi-
tuting expression (2.4) into equation (1.1) and equating principal parts gives

∞∑
k=1

−kck

zk+1
+ a

∞∑
k=1

ck

zk
= λ

∞∑
k=1

ck

znk
.

The above expression implies that

ac1 = 0,

and

−(k − 1)ck−1 + ack =
{

λcm if k = nm, m ∈ N
0, otherwise.

Since a 6= 0 we have c1 = 0, and it follows immediately from the recursive
relation for the coefficients ck that the principal part must be zero and therefore
y(z) = H(z) for all z ∈ A(0; r, R). But y cannot be holomorphic at z0 =
0. We therefore conclude that there is no annulus centred at z0 wherein y is
holomorphic. This means that z0 cannot be an isolated singularity such as a
pole or essential isolated singularity. Theorem 2.1 precludes the existence of
other isolated singularities and natural boundaries. The singularity at z0 must
consequently be a branch point.

�

The case a = −2 and λ = −1 provides a simple example that illustrates the
above result. The initial-value problem

y′(z)− 2y(z) = −y(z2)
y(1) = 1.

has the solution
y(z) = 2 log z +

1
z
,

which is holomorphic at z = 1 ∈ J(g) and has a logarithmic branch point at
z0 = 0.

It is an open question whether the initial-value problem (1.1), (1.2) has
holomorphic solutions at fixed points in J(g) for general values of a and λ.
Certainly, if a solution exists then it must be unique because the differential
equation (1.1) determines the derivatives of y at a fixed point uniquely. We
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show in the next section that for the case a = 0, the initial-value problem
has solutions holomorphic at a fixed point in J(g) only for special values of λ.
This result suggests that the initial-value problem (1.1), (1.2) has holomorphic
solutions only for special values of a and λ.

We now look at solutions that are holomorphic at the origin. The analysis
for the initial-value problem in a neighbourhood of an attracting fixed point is
more complete making this case more tractable.

Theorem 2.5 For all values of a and λ there exists a unique solution to the
initial-value problem (1.1), (1.2) that is holomorphic at z0 = 0. The solution
can be continued throughout the disc D(0; 1), and the circle C(0; 1) = J(g) forms
a natural boundary for nonconstant solutions.

Proof: The existence and uniqueness of a local solution to the initial-value
problem follows immediately from Theorem 2-2 in [7]. Let y be a local solution.
Then y can be represented by a power series centred at 0 with a radius of
convergence ρ > 0. Suppose that ρ < 1. Then y ∈ H(D(0; ρ)) and y has a
singularity at some point ẑ ∈ C(0; ρ). The function eazy(z) is therefore singular
at ẑ and equation (1.1) implies that eazy(zn) must be singular at ẑ. We thus
have that y is singular at ẑ2. But |ẑ| = ρ < 1; therefore, ẑ2 < ρ and consequently
we have the contradiction y /∈ H(D(0; ρ)). Therefore ρ ≥ 1.

Suppose that y is a solution that is holomorphic at 0 and at a point z∗ ∈ J(g).
Theorem 2.1 implies that y ∈ H(C) and Theorem 2.3 implies that y must be a
constant function. If y is a nonconstant solution, then y cannot be holomorphic
at any point in J(g); hence, the Julia set must form a natural boundary.

�

3 The Case a = 0

In this section we focus on the initial-value problem

y′(z) = λy(zn), (3.1)
y(z̃) = y0 (3.2)

Most of the analysis of the previous section can be applied to this problem;
however, we can establish some of these results directly, and for this problem
we can find the power series solution explicitly thereby illustrating Theorem 2.5.

We note that Heard’s work (op. cit.) on the asymptotic behaviour of real
solutions to the initial value problem for the case a 6= 0 and the case a = 0
indicates that the solution classes are somewhat different. For example, in the
former case if say n = 2, he showed that the solutions are O((log x)κ) as x →∞,
where

κ = Re
(

log(−a)− log λ

log 2

)
.

8



For n = 2 he showed that the solutions to the latter problem are O(x−1(log x)κf(log log x))
as x →∞, where

κ = Re
(
− log λ

log 2

)
and f is a function of period log 2. Although his work concerned real solutions
and no assumptions regarding holomorphicity were imposed, it does signal that
the solutions behave asymptotically different for the two cases.

Following Heard, we note that equation (3.1) can be transformed into the
well-known pantograph equation. Specifically, let µ = (n− 1)−1, and

y(z) =
1
zµ

f(log z). (3.3)

Then, equation (3.1) transforms to the pantograph equation

f ′(w)− µf(w) = λf(nw), (3.4)

where
w = log z. (3.5)

There is a formidable body of research on pantograph equations (e.g. [1], [5],
[6]). One feature of these equations is that they admit solutions holomorphic at
w = 0 only for special values of λ, and the resulting solutions are polynomials.

Lemma 3.1 The only solutions to equation (3.4) that are holomorphic at w = 0
are polynomial solutions. Such solutions exist only if

λ = − µ

nk
, (3.6)

for some k = 0, 1, 2, . . . .

Proof: The proof is given in [6], but it is simple enough to include here for
completeness. If f is holomorphic at w = 0 then f can be represented by a
power series

f(w) =
∞∑

k=0

ckwk.

Substituting this power series into equation (3.4) gives

ck+1 =
µ + λnk

k + 1
ck.

Suppose that equation (3.6) is not satisfied for any k and that c0 6= 0. Then the
recursive relationship shows that

ck+1

ck
=

µ + λnk

k + 1
→∞,

as k →∞, since n > 1.
�
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Lemma 3.1 can be exploited to show that equation (3.1) does not have
solutions that are holomorphic at fixed points in J(g) unless λ satisfies equation
(3.6).

Theorem 3.2 Suppose that y is a solution of equation (3.1) that is holomorphic
at some point of the Julia set. Then y must be of the form

y(z) =
1
zµ

Pn,k(log z), (3.7)

where Pn,k is a polynomial of degree k in log z and k, λ and n satisfy equation
(3.6).

Proof: If y is holomorphic at a point in J(g) then we know that it must be
holomorphic at all points on J(g). Without loss of generality we can assume
that it is holomorphic at z1 = 1. Now, y is holomorphic at z1 = 1; hence,
f(w) = eµwy(ew) must be holomorphic at w = 0. Since y is a solution to (3.1),
f must be a solution to (3.4). Lemma 3.1 thus implies that there is a k such
that k, λ and n satisfy equation (3.6) and that f must be a polynomial in w.
The transformation (3.5) shows that y must be of the form (3.7). In fact, it can
be shown that

Pn,k(log z) =
k∑

j=0

∏k
m=k−j+1

(
1− 1

nm

)
(n− 1)j−1j!

(log z)j .

�

The proof of Corollary (2.4) shows that, generically, the singularity at the
origin must be a branch point. The solution form (3.7) shows that this branch
point is logarithmic in character. The proof of Corollary (2.4), however, specified
that a 6= 0. The impact of this assumption was to ensure that c1 = 0 in the
Laurent expansion. This in turn forced all the other Laurent coefficients to
vanish. For a = 0 the recursive relation is

−(k − 1)ck−1 =
{

λcm if k = nm, m ∈ N
0, otherwise.

Theorem 3.2 shows that the only possible meromorphic solution is y = 1/zµ. If
n > 2 then we have c1 = 0 and it follows readily from the above relation that
all the other coefficients must vanish. We thus see that if n > 2 then there are
no meromorphic solutions. The special case is n = 2. We have the solution
y(z) = y0/z, provided λ = −1.

We now look at solutions that are holomorphic in a neighbourhood of the
attracting fixed point z0 = 0. We know from Theorem (2.5) that there is a
holomorphic solution and that the unit circle is a natural boundary. For the
case a = 0, we can find the power series solution explicitly and use the Hadamard
Gap Theorem [9] to establish a natural boundary. We focus on the case n = 2.
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We know that y can be represented by a power series of the form

y(z) =
∞∑

k=0

akzk. (3.8)

Substituting the series (3.8) into equation (3.1)with n = 2 and equating coeffi-
cients of zk gives

y(z) =
∞∑

k=0

ckz2k−1, (3.9)

where
c0 = y0,

and, for n ≥ 0,
ck+1(2k − 1) = λck. (3.10)

If y0 = 0, then y is the trivial solution. If y0 6= 0, then ck 6= 0 for all k. The
ratio test can thus be used to show that the series converges uniformly in the
closed disc D̄(0; 1) = {z : |z| ≤ 1}. The function defined by the series (3.9) is
thus holomorphic in D(0; 1) and continuous on D̄(0; 1).

In detail, the solution is given by

y(z) = y0

{
1 +

∞∑
k=1

λkz2k−1∏k
j=1(2j − 1)

}
. (3.11)

A feature of this series is that there are large gaps between nonzero coefficients.
The Hadamard Gap Theorem can be invoked to show that the series has a
natural boundary on the circle C(0; 1). For this case, we thus have an alternative
proof of the existence of a natural boundary.

Although every point on the unit circle is a singularity for y, the series
defines a function continuous on the unit circle and, for any φ ∈ R, Abel’s
theorem shows that

lim
z→eiφ

y(z) = y0

{
1 +

∞∑
k=1

λkei(2k−1)φ∏k
j=1(2j − 1)

}
,

where z approaches eiφ along any path not tangent to the unit circle. In par-
ticular, at the repelling fixed point z1 = 1, we have

y(1) = y0F2(λ),

where

F2(λ) = 1 +
∞∑

k=1

λk∏k
j=1(2j − 1)

. (3.12)

The function F is an entire function in λ and, in fact, it is a partition function
that can be recast as an infinite product by use of the Euler identity

∞∏
k=0

(1 + βx2k+1) = 1 +
∞∑

k=1

βkxk2∏k
j=1(1− x2j)

(3.13)
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(cf. [3] pg. 278). Using x = p = 1/
√

2 and β = λp in expression (3.13) yields

F2(λ) =
∞∏

k=1

(
1 +

λ

2k

)
. (3.14)

The above expression gives and eigenvalue character to the problem. For exam-
ple, the boundary-value problem

y′(z) = λy(z2),
y(0) = 1,

y(1) = 0,

is well posed and leads to eigenvalues λm = −2m, where m is a nonnegative
integer. It is also of interest to note that for such a choice of λ it is possible
to construct a real solution that is valid over [−1,∞) such that it has compact
support and is infinitely differentiable. The power series (3.9) can be used to
define the solution in [−1, 1] and we can set y = 0 for x > 1. The differential
equation ensures that the function is infinitely differentiable at x = 1.

The above results are not specific to the case n = 2. For any integer n ≥ 2,
the same analysis gives

y(z) = y0

{
1 +

∞∑
k=1

λkzQk∏k
j=1 Qj

}
,

where

Qk =
nk − 1
n− 1

.

The Hadamard Gap Theorem shows that C(0; 1) must be a natural boundary
for the holomorphic function defined by this series. At the repelling fixed point
z1 = 1 we have

y(1) = y0Fn(λ),

where,

Fn(λ) =
∞∏

k=1

(
1 +

λ(n− 1)
nk

)
.

4 Conclusions

Solutions to the initial value problem (1.1), (1.2) have some interesting features.
In this paper we showed that nonconstant solutions that are holomorphic at the
origin, which is an attracting fixed point for zn, must have the circle |z| = 1 as
a natural boundary. This work builds on that of Marshall et al.[7], but they did
not consider the case when the condition of holomorphy at the attracting fixed
point is replaced by the condition that solution be holomorphic somewhere on
the Julia set. For the initial-value problem (1.1), (1.2) we showed that if y is
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a nonconstant solution that is holomorphic at some point of the Julia set, then
the solution must have a branch point at the origin. It is not clear, however,
whether there are such solutions for general values of a and λ.

The special case a = 0 provides a detailed example that illustrates the gen-
eral results. This equation can be transformed into the familiar pantograph
equation, and it is possible to construct nonconstant solutions that are holo-
morphic on the Julia set. A feature here is there are solutions only for certain
values of λ. The proof of this relies on finding holomorphic solution to the
pantograph equation. Although the example suggests a similar result for more
general values of a, it is an open question whether such solutions exist and if
so under what restrictions on the parameter λ. Future work includes resolving
this question and extending the results to more general polynomial functional
arguments.
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