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Abstract

The R-dual sequences of a frame {fi}i∈I , introduced by Casazza,
Kutyniok and Lammers in [1], provide a powerful tool in the analysis
of duality relations in general frame theory. In this paper we derive
conditions for a sequence {ωj}j∈I to be an R-dual of a given frame
{fi}i∈I . In particular we show that the R-duals {ωj}j∈I can be charac-
terized in terms of frame properties of an associated sequence {ni}i∈I .
We also derive the duality results obtained for tight Gabor frames in
[1] as a special case of a general statement for R-duals of frames in
Hilbert spaces. Finally we consider a relaxation of the R-dual setup
of independent interest. Several examples illustrate the results.

Math Subject Classifications: 42C15, 42C40, 42A38.
Keywords: Duality principle, Frame, Riesz basis, Gabor system, Wexler-
Raz theorem.

1 Introduction and notation

Let {fi}i∈I denote a frame for a separable Hilbert spaceH with inner product
〈·, ·〉. In [1], Casazza, Kutyniok, and Lammers introduced the Riesz-dual
sequence (R-dual sequence) of {fi}i∈I with respect to a choice of orthonormal
bases {ei}i∈I and {hi}i∈I as the sequence {ωj}j∈I given by

ωj =
∑
i∈I

〈fi, ej〉hi, j ∈ I. (1)
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The paper [1] demonstrates that there is a strong relationship between the
frame-theoretic properties of {ωj}j∈I and {fi}i∈I , see Theorem 1.3 below
for details. The purpose of this paper is to analyze the concept of R-dual
sequence from another angle than it was done in [1]. Technically this is done
by considering a dual formulation of (1), namely, for a given frame {fi}i∈I

and a (Riesz) sequence {ωj}j∈I to search for orthonormal bases {ei}i∈I and
{hi}i∈I such that

fi =
∑
j∈I

〈ωj, hi〉ej, i ∈ I. (2)

Using this approach we state a number of equivalent conditions for {ωj}j∈I

to be an R-dual of {fi}i∈I . In particular we introduce a sequence {ni}i∈I that
can be used to check whether {ωj}j∈I is an R-dual of {fi}i∈I or not; in fact,
the answer is yes if and only if {ni}i∈I is a tight frame sequence with frame
bound E = 1.

One of the key properties of the R-duals is a certain duality relation that
resembles the duality principle in Gabor analysis. The driving force in the
article [1] was the question whether the duality principle in Gabor analysis
actually can be derived from the theory of the R-duals. The question remains
unsolved, but in [1] a positive conclusion is derived in the special case of a
tight Gabor frame. The results presented here shed new light on this issue:
in fact, the partial result in [1] turns out to be a consequence of a general
result about R-duals, valid for any tight frame in any Hilbert space.

In the rest of this section we review some of the needed facts about the
R-duals, as well as tools from frame theory. We also state a few basic results
about Gabor systems and their relationship to the R-dual concept. Our main
results for the R-duals associated with general frames are stated in Section 2.
Section 3 deals with an relaxation of the above setup: we show that for the
relevant sequences {fi}i∈I and {ωj}j∈I and any orthonormal basis {ei}i∈I

we can always find an orthogonal system {hi}i∈I such that (2) holds. An
additional condition on the relationship between {fi}i∈I and {ωj}j∈I implies
that {hi}i∈I can even be chosen as an orthonormal system, i.e., compared
to the general agenda only the completeness of {hi}i∈I is missing. Finally,
Section 4 deals with a special choice of the R-dual, and Appendix A contains
a proof of a technical lemma.

Frames and Riesz bases. It will be essential to distinguish carefully
between sequences forming a basis/frame for the entire Hilbert space H or
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a subspace hereof. For that reason we begin with the following standard
definition:

Definition 1.1 Let I denote a countable index set.

(i) A sequence {fi}i∈I in H is a Bessel sequence if there exists a constant
B > 0 such that ∑

i∈I

|〈f, fi〉|2 ≤ B ||f ||2, ∀f ∈ H.

(ii) A sequence {fi}i∈I in H is a frame for H if there exist constants A, B >
0 such that

A ||f ||2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B ||f ||2, ∀f ∈ H.

The numbers A, B are called frame bounds. The frame is tight if we
can choose A = B.

(iii) A sequence {ωj}j∈I in H is a Riesz sequence if there exist constants
C, D > 0 such that

C
∑
j∈I

|cj|2 ≤

∣∣∣∣∣
∣∣∣∣∣∑

j∈I

cjωi

∣∣∣∣∣
∣∣∣∣∣
2

≤ D
∑
j∈I

|cj|2

for all finite sequences {ci}i∈I . The numbers C, D are called (Riesz)
bounds.

(iv) A Riesz sequence {ωj}j∈I is a Riesz basis for H if span{ωj}j∈I = H.

Given any sequence {ωj}j∈I in H, let

W := span{ωj}j∈I .

In case {ωj}j∈I is a Riesz sequence, it is well known that {ωj}j∈I has a
unique dual Riesz sequence belonging to W : that is, there exists a unique
Riesz sequence {ω̃k}k∈I of elements in W such that

〈ωj, ω̃k〉 = δj,k, j, k ∈ I. (3)
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If {ωj}j∈I has Riesz bounds C, D, then the dual Riesz sequence has bounds
1/D, 1/C.

Recall that the sequence {ωj}j∈I has infinite deficit if

dim(span{ωj}⊥j∈I) = ∞.

The R-duals of a sequence {fi}i∈I. We now state the definition of the
R-dual sequence, repeated from [1]:

Definition 1.2 Let {ei}i∈I and {hi}i∈I denote orthonormal bases for H, and
let {fi}i∈I be any sequence in H for which∑

i∈I

|〈fi, ej〉|2 < ∞, ∀j ∈ I. (4)

The R-dual of {fi}i∈I with respect to the orthonormal bases {ei}i∈I and
{hi}i∈I is the sequence {ωj}j∈I given by

ωj =
∑
i∈I

〈fi, ej〉hi, j ∈ I. (5)

Note that any given sequence {fi}i∈I has many associated R-dual se-
quences, namely, one for each choice of the orthonormal bases {ei}i∈I and
{hi}i∈I . We collect the main results about the relationship between {fi}i∈I

and {ωj}j∈I from [1].

Theorem 1.3 Let {ei}i∈I and {hi}i∈I denote orthonormal bases for H, and
let {fi}i∈I be any sequence in H for which

∑
i∈I |〈fi, ej〉|2 < ∞ for all j ∈ I.

Define the R-dual {ωj}j∈I as in (5). Then the following hold:

(i) For all i ∈ I,

fi =
∑
j∈I

〈ωj, hi〉ej, (6)

i.e., {fi}i∈I is the R-dual sequence of {ωj}j∈I w.r.t. the orthonormal
bases {hi}i∈I and {ei}i∈I .

(ii) {fi}i∈I is a Bessel sequence if and only {ωi}i∈I is a Bessel sequence;
the Bessel bounds coincide.
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(iii) {fi}i∈I satisfies the lower frame condition with bound A if and only if
{ωj}j∈I satisfies the lower Riesz sequence condition with bound A.

(iv) {fi}i∈I is a frame for H with bounds A, B if and only if {ωj}j∈I is a
Riesz sequence in H with bounds A, B.

(v) Two Bessel sequences {fi}i∈I and {gi}i∈I in H are dual frames if and
only if the associated R-dual sequences {ωj}j∈I and {γj}j∈I w.r.t. the
same choices of orthonormal bases {ei}i∈I and {hi}i∈I satisfy that

〈ωj, γk〉 = δj,k, j, k ∈ I. (7)

The property in Theorem 1.3(v) is a key result and the main motivation
for the interest in the R-dual. The next paragraph explains this in more
detail.

Gabor systems. For a function g ∈ L2(R), the Gabor system associated
with g and two given parameters a, b is the collection of functions given by

{e2πimbxg(x− na)}m,n∈Z.

We will use the short notation {EmbTnag}m,n∈Z to denote the Gabor system.
The duality principle is one of the most fundamental results in Gabor

analysis. It was discovered almost simultaneously by three groups of re-
searchers: Janssen [6], Daubechies, Landau, and Landau [3], and Ron and
Shen [7]. The duality principle concerns the relationship between frame prop-
erties for a function g with respect to the lattice {(na,mb)}m,n∈Z and with
respect to the so-called dual lattice {(n/b, m/a)}m,n∈Z:

Theorem 1.4 Let g ∈ L2(R) and a, b > 0 be given. Then the Gabor sys-
tem {EmbTnag}m,n∈Z is a frame for L2(R) with bounds A, B if and only if
{ 1√

ab
Em/aTn/bg}m,n∈Z is a Riesz sequence with bounds A, B.

Comparing Theorem 1.4 with Theorem 1.3(iv) makes it natural to ask
whether { 1√

ab
Em/aTn/bg}m,n∈Z can be realized as the R-dual of {EmbTnag}m,n∈Z

with respect to appropriate choices of orthonormal bases {em,n}m,n∈Z and
{hm,n}m,n∈Z. Combined with Theorem 1.3(v), the well known Wexler-Raz
theorem provides strong support for this hypothesis:

Theorem 1.5 If the Gabor systems {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z
are dual frames, then the Gabor systems { 1√

ab
Em/aTn/bg}m,n∈Z and { 1√

ab
Em/aTn/bh}m,n∈Z

are biorthogonal.
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In [1], Casazza, Kutyniok and Lammers proved the following partial re-
sult:

Theorem 1.6 Assuming that {EmbTnag}m,n∈Z is a frame for L2(R) the fol-
lowing hold:

(i) If ab = 1, then { 1√
ab

Em/aTn/bg}m,n∈Z can be realized as the R-dual of

{EmbTnag}m,n∈Z w.r.t. certain choices of orthonormal bases {em,n}m,n∈Z
and {hm,n}m,n∈Z for L2(R).

(ii) If {EmbTnag}m,n∈Z is a tight frame, then { 1√
ab

Em/aTn/bg}m,n∈Z can be

realized as the R-dual of {EmbTnag}m,n∈Z w.r.t. certain choices of or-
thonormal bases {em,n}m,n∈Z and {hm,n}m,n∈Z for L2(R).

Among other results, we will show that Theorem 1.6(ii) is a consequence
of a general result that is valid for any tight frame in any separable Hilbert
space.

2 Duality for general frames

Our first goal is to find conditions on two sequences {fi}i∈I , {ωj}j∈I such
that {ωj}j∈I is the R-dual of {fi}i∈I with respect to some choice of the
orthonormal bases {ei}i∈I and {hi}i∈I .We will always assume that {fi}i∈I

is a frame for H. By Theorem 1.3 this implies that any R-dual sequence
{ωj}j∈I is a Riesz sequence in H and that (6) holds. On the other hand,
Theorem 1.3 shows that if {ωj}j∈I is a Riesz sequence and (6) holds, then
{ωj}j∈I is a R-dual of {fi}i∈I . Thus we arrive at the following key question:

Question: Let {fi}i∈I be a frame for H and {ωj}j∈I a Riesz sequence in H.
Under what conditions can we find orthonormal bases {ei}i∈I and {hi}i∈I for
H such that (6) holds?

We first show that for any Riesz sequence {ωj}j∈I , any sequence {fi}i∈I ,
and any orthonormal basis {ei}i∈I , we can actually find and characterize the
sequences {hi}i∈I for which (6) holds; thus, the remaining question is whether
at least one of these sequences forms an orthonormal basis for H. The key
point in the analysis is the definition of a sequence {ni}i∈I , given by

ni :=
∑
k∈I

〈ek, fi〉ω̃k, i ∈ I, (8)
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where {ω̃k}k∈I is the dual Riesz sequence of {ωj}j∈I . Note that under the
above assumptions the sequences {ω̃k}k∈I and {ei}i∈I are Bessel sequences,
implying that the infinite series defining ni is convergent. We begin with a
simple lemma, relating the involved sequences:

Lemma 2.1 Let {ωj}j∈I be a Riesz basis for the subspace W of H, with dual
Riesz basis {ω̃k}k∈I . Let {ei}i∈I be an orthonormal basis for H. Given any
sequence {fi}i∈I in H, define {ni}i∈I as in (8). Then

〈ωj, ni〉 = 〈fi, ej〉, ∀i, j ∈ I.

Lemma 2.1 is a direct consequence of the definition of ni and (3). Our
starting point is now to characterize the sequences {hi}i∈I for which (6) holds:

Proposition 2.2 Let {ωj}j∈I be a Riesz basis for the subspace W of H, with
dual Riesz basis {ω̃k}k∈I . Let {ei}i∈I be an orthonormal basis for H. Given
any sequence {fi}i∈I in H, the following hold:

(i) There exists a sequence {hi}i∈I in H such that

fi =
∑
j∈I

〈ωj, hi〉ej, ∀i ∈ I. (9)

(ii) The sequences {hi}i∈I satisfying (9) are characterized as

hi = mi + ni, (10)

where ni is given by (8) and mi ∈ W⊥.

(iii) If {ωj}j∈I is a Riesz basis for H, then (9) has the unique solution

hi = ni, i ∈ I.

Proof. Expanding fi in the orthonormal basis {ej}j∈I and using Lemma
2.1,

fi =
∑
j∈I

〈fi, ej〉ej =
∑
j∈I

〈ωj, ni〉ej, i ∈ I,

i.e., the choice hi = ni satisfies (9). This proves (i). For mi ∈ W⊥ it now
follows from ωj ∈ W that the choice hi = mi + ni will satisfy (9) as well. In
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order to complete the proof of (ii) we only need to show that all solutions
{hi}i∈I of (9) are of the form in (10). Let {hi}i∈I be any sequence in H
satisfying (9). Fix any i ∈ I. We can write hi = mi + ni with mi := hi − ni.
The expansion coefficients of fi in terms of the basis {ei}i∈I are unique, so
from

fi =
∑
j∈I

〈ωj, hi〉ej =
∑
j∈I

〈ωj, ni〉ej

it follows that

〈ωj, hi〉 = 〈ωj, ni〉, ∀j ∈ I,

i.e.,

〈ωj, mi〉 = 0, ∀j ∈ I.

This implies that mi ∈ W⊥. This proves (ii). The result in (iii) is a conse-
quence of (ii). �

With Proposition 2.2 at hand our goal is now to find conditions under
which an orthonormal basis {hi}i∈I for H of the form (10) exists. We note
that Proposition 2.2 did not use any assumption on {fi}i∈I or any relation-
ship between {fi}i∈I and {ωj}j∈I . The uniqueness statement in Proposition
2.2(iii) makes it easy to find a case where no orthonormal basis of the form
(10) exists, even if we assume that {fi}i∈I is a frame:

Example 2.3 Let {ei}i∈I be an orthonormal basis for H. Let {ωi}i∈I :=
{ei}i∈I , and

{fi}i∈I := {2e1, e2, e3, · · · }.

Then

{ω̃k}k∈I = {e1, e2, e3, · · · },

and ni in (8) is given by

ni =

{
2e1, if i = 1;

ei, if i ≥ 2.
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The sequence {ni}i∈I is clearly not an orthonormal basis. The unique-
ness statement in Proposition 2.2(iii) now implies that no orthonormal basis
{hi}i∈I can satisfy (9). Thus {ωj}j∈I is not the R-dual of {fi}i∈I w.r.t. {ei}i∈I

and any choice of orthonormal basis {hi}i∈I ; this conclusion could of course
also have been derived from Theorem 1.3. �

We will now have a closer look at the properties of the sequence {ni}i∈I

in (8).

Lemma 2.4 Let {ωj}j∈I be a Riesz sequence in H with bounds C, D, and let
{ei}i∈I an orthonormal basis for H. Given a frame {fi}i∈I for H with frame
bounds A, B, the sequence {ni}i∈I in (8) is a frame for W with frame bounds
A/D,B/C.

Proof. It is clear that ni ∈ W, ∀i ∈ I. Now, for any f ∈ W,

∑
i∈I

|〈f, ni〉|2 =
∑
i∈I

∣∣∣∣∣〈f,
∑
k∈I

〈ek, fi〉ω̃k〉

∣∣∣∣∣
2

=
∑
i∈I

∣∣∣∣∣∑
k∈I

〈f, ω̃k〉〈fi, ek〉

∣∣∣∣∣
2

=
∑
i∈I

∣∣∣∣∣〈fi,
∑
k∈I

〈ω̃k, f〉ek〉

∣∣∣∣∣
2

.

Note that {ω̃k}k∈I is a Riesz basis for W with bounds 1/D, 1/C. Thus the
above calculation yields that

∑
i∈I

|〈f, ni〉|2 ≥ A

∣∣∣∣∣
∣∣∣∣∣∑

k∈I

〈ω̃k, f〉ek

∣∣∣∣∣
∣∣∣∣∣
2

= A
∑
k∈I

|〈ω̃k, f〉|2

≥ A

D
||f ||2.

The proof for the upper bound is similar. �

We will now present a solution to our key question, i.e., characterize the
existence of an orthonormal basis {hi}i∈I for H such that (9) holds. We note
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that the case where the Riesz sequence {ωj}j∈I spans the entire space H is
solved in Proposition 2.2(iii). Thus, we concentrate on the case where the
Riesz sequence {ωj}j∈I spans a proper subspace of H.

Theorem 2.5 Let {ωj}j∈I be a Riesz sequence spanning a proper subspace
W of H and {ei}i∈I an orthonormal basis for H. Given any frame {fi}i∈I

for H, the following are equivalent:

(i) {ωj}j∈I is an R-dual of {fi}i∈I w.r.t. {ei}i∈I and some orthonormal
basis {hi}i∈I .

(ii) There exists an orthonormal basis {hi}i∈I for H satisfying (9).

(iii) The sequence {ni}i∈I in (8) is a tight frame for W with frame bound
E = 1.

Proof. The equivalence (i) ⇔ (ii) follows from Proposition 2.2.
(ii) ⇒(iii). Let P denote the orthogonal projection of H onto W . The
expression in (10) for all solutions to (9) shows that a sequence {hi}i∈I in
H is a solution if and only if Phi = ni, ∀i ∈ I. Now, it is well known that
the projection of an orthonormal basis onto a subspace forms a tight frame
for that subspace with frame bound equal to one. Thus, if {hi}i∈I is an
orthonormal basis for H, then necessarily {ni}i∈I is a tight frame for W with
frame bound E = 1.
(iii) ⇒(ii). If {ni}i∈I is a tight frame for W with frame bound E = 1, then
Naimark’s theorem (see, e.g., [5]) says that there exists an orthonormal basis
for a larger Hilbert space such that Phi = ni. Since W is assumed to be a
proper subspace of H we can identify the larger Hilbert space with H, which
leads to the desired conclusion. �

Using Theorem 2.5 we can now give an example of a frame {fi}i∈I and a
Riesz sequence {ωj}j∈I that can not be an R-dual of {fi}i∈I w.r.t. a given
orthonormal basis {ei}i∈I and any choice of {hi}i∈I , despite the fact that the
bounds for {fi}i∈I and {ωj}j∈I coincide:

Example 2.6 Let {ei}i∈I be an orthonormal basis for H and

{fi}i∈I := {2e1, e1, e2, e3, . . . },

{ωj}j∈I = {5e1, e3, e5, . . . }.
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Then {fi}i∈I is a frame with bounds A = 1, B = 5, and {ωj}j∈I is a Riesz
sequence with the same bounds. The dual Riesz sequence is

{ω̃k}k∈I = {1

5
e1, e3, e5, . . . }.

Direct calculation shows that

{ni}i∈I = {2

5
e1,

1

5
e1, e3, e5, . . . }.

The frame is clearly not tight, so {ωj}j∈I is not an R-dual of {fi}i∈I with
respect to {ei}i∈I and any choice of an orthonormal basis {hi}i∈I . �

Combining Lemma 2.4 and Theorem 2.5, we obtain a partial answer to
our key question:

Corollary 2.7 Assume that {ωj}j∈I is a Riesz sequence with upper and
lower bound A, spanning a proper subspace of H, and that {fi}i∈I is a tight
frame for H with frame bound A. Then {ωi}i∈I is an R-dual of {fi}i∈I .

Proof. The assumptions imply by Lemma 2.4 that {ni}i∈I is a tight frame
for W with frame bound E = 1, for any choice of the orthonormal basis
{ei}i∈I . Now the result follows from Theorem 2.5. �

The assumptions in Corollary 2.7 correspond exactly to the known rela-
tionship between a tight Gabor frame and the corresponding Gabor system
on the dual lattice. Thus Corollary 2.7 is a generalization of the result from
[1] that we stated in Theorem 1.6(ii).

The assumption that {ωj}j∈I spans a proper subspace of H is essential in
Corollary 2.7:

Example 2.8 Let {ei}i∈N be an orthonormal basis for H, and

{ωj}j∈N := {e1, e2, · · · }.

We now construct a tight frame {fi}i∈N forH for which {ωj}j∈N := {e1, e2, · · · }
is not an R-dual w.r.t. {ei}i∈N and any choice of {hi}i∈N. Split {ei}i∈N into
a union of sequences with two elements, e.g.,

{ei}i∈N = {e1, e2} ∪ {e3, e4} ∪ · · · .

11



Associated with each pair {e2k−1, e2k}, k ∈ N, we construct a tight frame for
the space span{e2k−1, e2k} with frame bound 1 and consisting of 3 vectors,
to be denoted by {f3k−2, f3k−1, f3k} (this can be done in many ways, e.g., by
Daubechies’ Mercedes-Benz star). The union of the sequences {f3k−2, f3k−1, f3k},
k ∈ N, yields a tight frame {fi}i∈N for H with frame bound 1. Note that
{f3k−2, f3k−1, f3k} does not form an orthonormal system, so {fi}i∈N is not an
orthonormal system either. By Proposition 2.2(iii) the only sequence {hi}i∈N
satisfying that

fi =
∞∑

j=1

〈ωj, hi〉ej, ∀i ∈ N

is hi = ni, with ni defined as in (8). Now,

〈ni, nj〉 = 〈
∞∑

k=1

〈ek, fi〉ω̃k,
∞∑

k=1

〈ek, fj〉ω̃k〉 =
∞∑

k=1

〈ek, fi〉〈fj, ek〉 = 〈fj, fi〉.

We have already argued that {fi}i∈N can not be an orthonormal system, so
{nj}j∈N can not be an orthonormal system either. By Proposition 2.2(iii) we
conclude that {ωj}j∈N can not be an R-dual of {fi}i∈N w.r.t. {ei}i∈N and any
choice of the orthonormal basis {hi}i∈N. �

With Theorem 2.5 and Corollary 2.7 in mind it is natural to ask whether
an orthonormal basis {hi}i∈I for H satisfying (9) can be found if the frame
{fi}i∈I is non-tight. Intuitively this sounds unlikely - but there are cases
where the answer is yes:

Example 2.9 Let {ei}i∈I be an orthonormal basis for H, and define the
sequences {fi}i∈I and {ωj}j∈I by

{fi}i∈I = {1

2
e1, e2, e3, · · · },

respectively,

{ωj}j∈I = {1

2
e1, e2, e3, · · · }.

Then

ω̃k = {2e1, e2, e3, · · · },
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and thus

ni =
∑
k∈I

〈ek, fi〉ω̃k = ei, ∀i ∈ I.

Thus {ni}i∈I is an orthonormal basis and therefore tight, despite the fact
that {fi}i∈I is non-tight. �

Theorem 2.5 leads to a simple criterion for {ωj}j∈I to be an R-dual of
{fi}i∈I . The result can be considered as an if and only if version of Proposition
5 in [1]:

Corollary 2.10 Let {ωj}j∈I be a Riesz basis for the subspace W of H, with
dual Riesz basis {ω̃k}k∈I . Let {ei}i∈I be an orthonormal basis for H. Given
any sequence {fi}i∈I in H, define {ni}i∈I as in (8). For any {ci}i∈I ∈ `2(I),
let the vectors e and ω be related by

e =
∑
j∈I

cjej, ω =
∑
j∈I

cjωj. (11)

Then {ωj}j∈I is an R-dual of {fi}i∈I w.r.t. {ei}i∈I and some orthonormal
basis {hi}i∈I if and only if∑

i∈I

|〈fi, e〉|2 = ||ω||2

for all choices of the sequence {ci}i∈I ∈ `2(I).

Proof. By the result in Lemma 2.1 and the relation between e and ω,

〈ni, ω〉 =
∑
j∈I

cj〈ni, ωj〉 =
∑
j∈I

cj〈ej, fi〉 = 〈e, fi〉.

Thus ∑
i∈I

|〈ni, ω〉|2 =
∑
i∈I

|〈e, fi〉|2.

The result now follows from Theorem 2.5. �
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3 Orthonormal sequences {hi}i∈I

In Proposition 2.2 we have shown that a Riesz sequence {ωj}j∈I is an R-dual
of a frame {fi}i∈I if there exists orthonormal bases {hi}i∈I and {ei}i∈I such
that

fi =
∑
j∈I

〈ωj, hi〉ej, ∀i ∈ I. (12)

In order to gain further insight in the problem we will now consider a
weaker version of this condition: we will assume that {ei}i∈I is a given or-
thonormal basis, and ask for the existence of an orthogonal, resp. orthonor-
mal sequence {hi}i∈I such that (12) holds. We will show that these questions
have very general answers.

We begin with a lemma, stating an observation of independent interest.
For the proof, see Appendix A.

Lemma 3.1 Assume that {fi}i∈I is a Bessel sequence with bound B. Then
for any fi, fj,

|〈fi, fj〉|2 ≤ B
(
B − ||fi||2 − ||fj||2

)
+ ||fi||2||fj||2. (13)

Note that the result in Lemma 3.1 is trivial if B − ||fi||2 − ||fj||2 ≥ 0.
However, under the assumptions given here it can very well happen that
B − ||fi||2 − ||fj||2 < 0, and for such elements fi, fj the result is an improve-
ment of Cauchy–Schwarz’ inequality.

Theorem 3.2 Let {ωj}j∈I be a Riesz sequence in H having infinite deficit,
and let {ei}i∈I be an orthonormal basis for H. Then the following hold:

(i) For any sequence {fi}i∈I in H there exists an orthogonal sequence
{hi}i∈I in H such that

fi =
∑
j∈I

〈ωj, hi〉ej, ∀i ∈ I. (14)

(ii) Assume that {fi}i∈I is a Bessel sequence with bound B and that {ωj}j∈I

has a lower Riesz basis bound C ≥ B. Then there exists an orthonormal
sequence {hi}i∈I such that (14) holds.

14



(iii) For any Bessel sequence {fi}i∈I and regardless of the lower Riesz bound
for {ωj}j∈I , there exist an orthonormal sequence {hi}i∈I in H and a
constant α > 0 such that

fi =
∑
j∈I

〈αωj, hi〉ej, ∀i ∈ I. (15)

Proof. The proof of (i) is based on Proposition 2.2. We consider again the
vectors ni in (8) and want to find mi ∈ W⊥, i ∈ I, such that hi := mi + ni

is an orthogonal sequence. For notational convenience, assume that I = N.
Note that with such a choice of hi, we know that (14) is satisfied. Note also
that

〈hi, hj〉 = 〈ni, nj〉+ 〈mi, mj〉, ∀i, j ∈ I. (16)

We will use the following inductive procedure. Choose m1 ∈ W⊥ arbi-
trarily. Now, take m2 ∈ W⊥ such that

〈h1, h2〉 = 0,

i.e., such that

〈m1, m2〉 = −〈n1, n2〉.

In general, assuming that we have constructed m1, . . . ,mN ∈ W⊥ such that
{hi}N

i=1 is an orthogonal system, take mN+1 ∈ W⊥ such that

〈hk, hN+1〉 = 0, k = 1, . . . , N,

i.e., such that

〈mk, mN+1〉 = −〈nk, nN+1〉, k = 1, . . . , N.

This can always be done because {ωj}j∈I is assumed to have infinite deficit.
We conclude that {hi}i∈I forms an orthogonal system, as desired.

For the proof of (ii), let B denote an upper frame bound for {fi}i∈I and
C a lower bound for the Riesz sequence {ωj}j∈I . By an argument like in the
proof of Lemma 2.4, the sequence {ni}i∈I is a Bessel sequence with bound
B
C
≤ 1; in particular, the norms of the vectors ni are uniformly bounded by

||ni|| ≤ 1. We now aim at a construction of a sequence {hi}i∈I satisfying

15



(14) and ||hi|| = 1, ∀i ∈ I. We use the inductive procedure outlined in (i),
but now paying attention to the norm of the vectors hi. First we choose
m1 ∈ W⊥ such that ||h1|| = 1, i.e., such that

||m1|| =
√

1− ||n1||2.

We now want to choose m2 ∈ W⊥ such that ||h2|| = 1 and 〈h1, h2〉 = 0; this
means that we want that

||m2|| =
√

1− ||n2||2 and 〈m1, m2〉 = −〈n1, n2〉. (17)

The first condition in (17) can always be satisfied; and the second can be
satisfied for a sequence m2 with ||m2|| =

√
1− ||n2||2 if and only if√

1− ||n1||2
√

1− ||n2||2 ≥ |〈n1, n2〉|. (18)

The condition in (18) is satisfied by Lemma 3.1.
Following the inductive procedure outlined in (i), we see that it is possible

to construct an orthonormal sequence {hi}i∈I satisfying (14) if√
1− ||ni||2

√
1− ||nj||2 ≥ |〈ni, nj〉|, ∀i, j ∈ I,

which is satisfied by Lemma 3.1.
Finally, the result in (iii) is obtained by scaling of the Riesz sequence

{ωj}j∈I in such a way that we obtain a sequence {α ωj}j∈I to which we can
apply (ii). �

4 A special choice of the R-dual of a given

frame {fi}i∈I

We will now consider an operator theoretic way of constructing an R-dual
of a given frame {fi}i∈I for H. Let {ei}i∈I be an orthonormal basis. Then
there exists a bounded, surjective, and linear operator T : H → H such that

Tei = fi. (19)

We need a related operator. Define the mapping T̃ : H → H as the unique
anti-linear bounded operator for which

T̃ ei = fi.
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That is,

T̃

(∑
i∈I

ciei

)
:=
∑
i∈I

cifi, {ci}i∈I ∈ `2(I). (20)

The operator T̃ is clearly bounded and surjective. Also, for any g ∈ H the
mapping

f 7→ 〈g, T̃ f〉

is bounded and linear. The adjoint operator T̃ ∗ is introduced as the unique
mapping g 7→ T̃ ∗g for which

〈g, T̃ f〉 = 〈f, T̃ ∗g〉, ∀f, g ∈ H.

It is easy to check that T̃ ∗ is bounded and anti-linear.

Proposition 4.1 Let {fi}i∈I be a frame and {ei}i∈I an orthonormal basis.

Define the linear operator T by (19) the anti-linear operator T̃ by (20), and
let

ωj := T̃ ∗ej, j ∈ I. (21)

Then {ωj}j∈I is the R-dual of {fi}i∈I with respect to the orthonormal bases
{ei}i∈I and {hi}i∈I := {ei}i∈I .

Proof. Expanding T̃ ∗ej in the orthonormal basis {ei}i∈I and using the

definition of T̃ ∗ leads to

T̃ ∗ej =
∑
i∈I

〈T̃ ∗ej, ei〉ei

=
∑
i∈I

〈T̃ ei, ej〉ei

=
∑
i∈I

〈fi, ej〉ei.

By definition of the R-dual this shows that {ωj}j∈I is the R-dual of {fi}i∈I

with respect to the orthonormal bases {ei}i∈I and {hi}i∈I := {ei}i∈I . �

The example below is a concrete construction of an R-dual. It does not
play any role in the present paper, but it is included here because it is useful
as a nontrivial toy example.
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Example 4.2 For any orthonormal basis {ei}∞i=1, the sequence {ei+ei+1}∞i=1

is a Bessel sequence with bound 4 (see [2]). Thus, the union of the sequences
{ei}∞i=1 and { ei+ei+1√

2
}∞i=1, i.e., the sequence

{fi}∞i=1 := {e1,
e1 + e2√

2
, e2,

e2 + e3√
2

, . . . }

is a frame of unit norm vectors, with frame bounds 1, 3. Note that

f2i−1 = ei, f2i =
ei + ei+1√

2
, i ∈ N.

The R-dual {ωj}j∈N w.r.t. the orthonormal basis {ei}∞i=1 is given by

ωj =
∞∑
i=1

〈fi, ej〉ei;

direct calculation shows that

ω1 = e1 +
1√
2
e2, ωj = e2j−1 +

1√
2
e2j +

1√
2
e2j−2, j ≥ 2. �

5 Appendix A - proof of Lemma 3.1

Proof of Lemma 3.1: We give the proof for the case B = 1; the general
case follows from here by replacing {fi}i∈I by {fi/

√
B}i∈I . For notational

convenience we take i = 1, j = 2.
First, we assume 〈f1, f2〉 is real. Let f := xf1 + f2 for some x ∈ R. Then

||f ||2 = x2||f1||2 + 2x〈f1, f2〉+ ||f2||2 (22)

and

|〈f, f1〉|2 + |〈f, f2〉|2 = ||f1||4x2 + 2〈f1, f2〉||f1||2x + |〈f1, f2〉|2

+ |〈f1, f2〉|2x2 + 2〈f1, f2〉||f2||2x + ||f2||4

= (||f1||4 + |〈f1, f2〉|2)x2 + 2〈f1, f2〉(||f1||2 + ||f2||2)x
+ ||f2||4 + |〈f1, f2〉|2 (23)
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Using the upper frame condition on f ,∑
i∈I

|〈f, fi〉|2 ≤ ||f ||2;

keeping only the terms corresponding to i = 1, 2 shows that

|〈f, f1〉|2 + |〈f, f2〉|2 ≤ ||f ||2. (24)

Putting (22) and (23) into this yields

(||f1||4 + |〈f1, f2〉|2)x2 + 2〈f1, f2〉(||f1||2 + ||f2||2)x + ||f2||4 + |〈f1, f2〉|2

≤ x2||f1||2 + 2x〈f1, f2〉+ ||f2||2,

or,

(||f1||2 − ||f1||4 − |〈f1, f2〉|2)x2 + 2〈f1, f2〉(1− ||f1||2 − ||f2||2)x
+||f2||2 − ||f2||4 − |〈f1, f2〉|2 ≥ 0. (25)

We split into two cases:
(1): Assume ||f1||2 − ||f1||4 − |〈f1, f2〉|2 = 0, or,

|〈f1, f2〉|2 = ||f1||2 − ||f1||4. (26)

Note that (25) is satisfied for all real values of x. Thus,

〈f1, f2〉(1− ||f1||2 − ||f2||2) = 0.

If 〈f1, f2〉 = 0, then (13) trivially holds; if 1 − ||f1||2 − ||f2||2 = 0, then (26)
implies that

|〈f1, f2〉|2 = ||f1||2 − ||f1||4

= (1− ||f1||2)||f1||2

= (1− ||f1||2)(1− ||f2||2),

so (13) holds.

(2): Assume that ||f1||2 − ||f1||4 − |〈f1, f2〉|2 6= 0. Let

a := ||f1||2 − ||f1||4 − |〈f1, f2〉|2 (6= 0)

b := 〈f1, f2〉(1− ||f1||2 − ||f2||2) (27)

c := ||f2||2 − ||f2||4 − |〈f1, f2〉|2.
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Then (25) implies that
ax2 + 2bx + c ≥ 0.

Substitute x := −b/a into this, to obtain

−(b2 − ac)/a ≥ 0. (28)

The frame condition (24) applied to f := f1 yields that

|〈f1, f2〉|2 ≤ ||f1||2 − ||f1||4,

so a > 0. It follows that
b2 − ac ≤ 0 (29)

Using (27), a direct calculation shows that

b2 − ac =
(
|〈f1, f2〉|2 − ||f1||2||f2||2

)
×(

|〈f1, f2〉|2 − (1− ||f1||2 − ||f2||2 + ||f1||2||f2||2)
)
.

By Cauchy-Schwarz inequality,

|〈f1, f2〉|2 ≤ ||f1||2||f2||2.

This and (29) imply

|〈f1, f2〉|2 ≤ 1− ||f1||2 − ||f2||2 + ||f1||2||f2||2.

Thus (13) holds.

Now, we assume 〈f1, f2〉 is complex. Choose λ ∈ C such that |λ| = 1 and
λ〈f1, f2〉 = |〈f1, f2〉|. Let f̃ := xλf1 + f2 for x ∈ R. Then

||f̃ ||2 = x2||f1||2 + 2x|〈f1, f2〉|+ ||f2||2

and

|〈f̃ , f1〉|2 + |〈f̃ , f2〉|2 = (||f1||4 + |〈f1, f2〉|2)x2 + 2|〈f1, f2〉|(||f1||2 + ||f2||2)x
+ ||f2||4 + |〈f1, f2〉|2.

Hence we can apply the partial result just proved to f̃ .
�

Note that the correct value of the Bessel bound is essential in (13) :
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Example 5.1 Let {e1, e2} be an orthonormal basis for a 2-dimensional Hilbert
space and put f1 =

√
1 + ε e1, f2 =

√
1− ε e2 for some ε ∈]0, 1[. Then {f1, f2}

is a Bessel sequence with bound 1 + ε, and

1− ||f1||2 − ||f1||2 + ||f1||2||f2||2 = 1− (1 + ε)− (1− ε) + (1 + ε)(1− ε)

= −ε2 < 0.

By Lemma 3.1 the inequality (13) holds with B = 1+ε. The above calculation
shows that the inequality is false if B is replaced by 1. �
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