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Abstract

The R-dual sequences of a frame {f;};cs, introduced by Casazza,
Kutyniok and Lammers in [1], provide a powerful tool in the analysis
of duality relations in general frame theory. In this paper we derive
conditions for a sequence {w;};er to be an R-dual of a given frame
{fi}ier- In particular we show that the R-duals {w;};cs can be charac-
terized in terms of frame properties of an associated sequence {n;};c;.
We also derive the duality results obtained for tight Gabor frames in
[1] as a special case of a general statement for R-duals of frames in
Hilbert spaces. Finally we consider a relaxation of the R-dual setup
of independent interest. Several examples illustrate the results.

Math Subject Classifications: 42C15, 42C40, 42A38.
Keywords: Duality principle, Frame, Riesz basis, Gabor system, Wexler-
Raz theorem.

1 Introduction and notation

Let { f; }icr denote a frame for a separable Hilbert space H with inner product
(-,+). In [1], Casazza, Kutyniok, and Lammers introduced the Riesz-dual
sequence (R-dual sequence) of { f; }icr with respect to a choice of orthonormal
bases {e;}icr and {h;};cr as the sequence {w;};e; given by

wi =Y (fise;phi, j €L (1)

i€l



The paper [1] demonstrates that there is a strong relationship between the
frame-theoretic properties of {w;};er and {f;}icr, see Theorem 1.3 below
for details. The purpose of this paper is to analyze the concept of R-dual
sequence from another angle than it was done in [1]. Technically this is done
by considering a dual formulation of (1), namely, for a given frame {f;}ic;

and a (Riesz) sequence {w;},er to search for orthonormal bases {e;};c; and
{hi}icr such that

fi:Z(wj,hi>ej, Ze[ (2)

Jjel

Using this approach we state a number of equivalent conditions for {w;}er
to be an R-dual of { f;}ic;. In particular we introduce a sequence {n;};cr that
can be used to check whether {w;},cs is an R-dual of {f;};c; or not; in fact,
the answer is yes if and only if {n;};c; is a tight frame sequence with frame
bound F = 1.

One of the key properties of the R-duals is a certain duality relation that
resembles the duality principle in Gabor analysis. The driving force in the
article [1] was the question whether the duality principle in Gabor analysis
actually can be derived from the theory of the R-duals. The question remains
unsolved, but in [1] a positive conclusion is derived in the special case of a
tight Gabor frame. The results presented here shed new light on this issue:
in fact, the partial result in [1] turns out to be a consequence of a general
result about R-duals, valid for any tight frame in any Hilbert space.

In the rest of this section we review some of the needed facts about the
R-duals, as well as tools from frame theory. We also state a few basic results
about Gabor systems and their relationship to the R-dual concept. Our main
results for the R-duals associated with general frames are stated in Section 2.
Section 3 deals with an relaxation of the above setup: we show that for the
relevant sequences {f;}ie; and {w;}je; and any orthonormal basis {e;}ier
we can always find an orthogonal system {h;};c; such that (2) holds. An
additional condition on the relationship between { f;}ic; and {w;};e; implies
that {h;}ie; can even be chosen as an orthonormal system, i.e., compared
to the general agenda only the completeness of {h;};c; is missing. Finally,
Section 4 deals with a special choice of the R-dual, and Appendix A contains
a proof of a technical lemma.

Frames and Riesz bases. It will be essential to distinguish carefully
between sequences forming a basis/frame for the entire Hilbert space H or
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a subspace hereof. For that reason we begin with the following standard

definition:
Definition 1.1 Let I denote a countable index set.

(i) A sequence {f;}icr in H is a Bessel sequence if there exists a constant
B > 0 such that

STUL P < BISIP, Vf € .

el

(i1) A sequence {f;}icr in H is a frame for H if there exist constants A, B >
0 such that

ANAP <D KE P < BIIP, Vf €H.
iel
The numbers A, B are called frame bounds. The frame is tight if we

can choose A = B.

(111) A sequence {w;};er in ‘H is a Riesz sequence if there exist constants
C., D > 0 such that

CY el <

jel

2
<D gl

jel

E CjW;

jel

for all finite sequences {c¢;}icr. The numbers C, D are called (Riesz)

bounds.
(iv) A Riesz sequence {w;}jer is a Riesz basis for H if span{w;}jer = H.
Given any sequence {wj}jer in H, let
W = span{w; } jes.

In case {w;};er is a Riesz sequence, it is well known that {w;};e; has a
unique dual Riesz sequence belonging to W: that is, there exists a unique
Riesz sequence {wy }res of elements in W such that

<w]7a-l;>:(sj,k7 j,kEI (3)



If {w;}jer has Riesz bounds C, D, then the dual Riesz sequence has bounds
1/D,1/C.
Recall that the sequence {w;};e; has infinite deficit if

dim(span{w; };¢;) = oo.

The R-duals of a sequence {f;},c;. We now state the definition of the
R-dual sequence, repeated from [1]:

Definition 1.2 Let {e;};c; and {h;}ic; denote orthonormal bases for H, and
let { fi}ier be any sequence in H for which

ST I{fies)? < o0, Vj € 1. (4)

el

The R-dual of {fi}icr with respect to the orthonormal bases {e;}ic; and
{hi}ier is the sequence {w;};er given by

wi = {fies)hi, j €I (5)

il

Note that any given sequence {f;}ie; has many associated R-dual se-
quences, namely, one for each choice of the orthonormal bases {e;}ic; and
{hi}icr. We collect the main results about the relationship between {f;}ics
and {w;};er from [1].

Theorem 1.3 Let {e;}icr and {h;}icr denote orthonormal bases for H, and
let { fi}icr be any sequence in H for which Y, |(fi,e;)|* < oo forall j € I.
Define the R-dual {w;};er as in (5). Then the following hold:

(i) Forallie€ I,

fi= Z(C% hi>€j7 (6)
jel
i.e., {fitier is the R-dual sequence of {w;}jer w.r.t. the orthonormal

bases {h;}icr and {e;}icr.

(11) {fi}ier is a Bessel sequence if and only {w;}icr is a Bessel sequence;
the Bessel bounds coincide.



(11i) {fi}icr satisfies the lower frame condition with bound A if and only if
{w;}jer satisfies the lower Riesz sequence condition with bound A.

() {fi}ier is a frame for H with bounds A, B if and only if {w;};er is a
Riesz sequence in 'H with bounds A, B.

(v) Two Bessel sequences {f;}icr and {g;}icr in H are dual frames if and
only if the associated R-dual sequences {w;};jer and {;};er w.r.t. the
same choices of orthonormal bases {e;}icr and {h;}ic; satisfy that

<W]a’)’k>: 7,k ],kEI (7)

The property in Theorem 1.3(v) is a key result and the main motivation
for the interest in the R-dual. The next paragraph explains this in more
detail.

Gabor systems. For a function g € L*(R), the Gabor system associated
with g and two given parameters a, b is the collection of functions given by

{€2mmbxg($ . na) }m,neZ-

We will use the short notation {47009 }mnez to denote the Gabor system.

The duality principle is one of the most fundamental results in Gabor
analysis. It was discovered almost simultaneously by three groups of re-
searchers: Janssen [6], Daubechies, Landau, and Landau [3], and Ron and
Shen [7]. The duality principle concerns the relationship between frame prop-
erties for a function g with respect to the lattice {(na, mb)},nez and with
respect to the so-called dual lattice {(n/b,m/a)}m nez:

Theorem 1.4 Let g € L*(R) and a,b > 0 be given. Then the Gabor sys-
tem {EmpyThag}tmnez is a frame for L*(R) with bounds A, B if and only if
{\/L(Tb EraThpG}mnez is a Riesz sequence with bounds A, B.

Comparing Theorem 1.4 with Theorem 1.3(iv) makes it natural to ask
whether {\/%Tb Er a1 b9} mnez can be realized as the R-dual of { £, 109 }mnez
with respect to appropriate choices of orthonormal bases {e;n}mnez and
{hmn}mmnez. Combined with Theorem 1.3(v), the well known Wezler-Raz
theorem provides strong support for this hypothesis:

Theorem 1.5 If the Gabor systems {EnpTnag}tmnez and {EmpyThahtmnez
are dual frames, then the Gabor systems {\/% ErjaTong}mmnez and {\/% ErjaTnph}mmez
are biorthogonal.



In [1], Casazza, Kutyniok and Lammers proved the following partial re-
sult:

Theorem 1.6 Assuming that { E;pThag tmnez is a frame for L*(R) the fol-
lowing hold:

(i) If ab = 1, then {\/%Tb ErjaTopgtmmner can be realized as the R-dual of
{EmbThag}mnez w.r.t. certain choices of orthonormal bases {€m n }mnez
and {hm.n}tmnez for L2(R).

(11) If {EvpTnag}tmmnez is a tight frame, then {\/%Tb ErnaTh b9} mmnez can be
realized as the R-dual of {EnpThag}mnez w.r.t. certain choices of or-
thonormal bases {emn}mnez and {hpmpntmnez for L*(R).

Among other results, we will show that Theorem 1.6(ii) is a consequence
of a general result that is valid for any tight frame in any separable Hilbert
space.

2 Duality for general frames

Our first goal is to find conditions on two sequences {f;}ier, {w;};er such
that {w;};er is the R-dual of {f;}ic; with respect to some choice of the
orthonormal bases {e;}icr and {h;}ier.We will always assume that {f;}icr
is a frame for H. By Theorem 1.3 this implies that any R-dual sequence
{w;}jer is a Riesz sequence in H and that (6) holds. On the other hand,
Theorem 1.3 shows that if {w;},e; is a Riesz sequence and (6) holds, then
{w;}jer is a R-dual of {f;}ie;. Thus we arrive at the following key question:

Question: Let {f;};c; be a frame for H and {w;};e; a Riesz sequence in H.
Under what conditions can we find orthonormal bases {e; }ic; and {h;};er for
H such that (6) holds?

We first show that for any Riesz sequence {w;}jecr, any sequence {f;}ier,
and any orthonormal basis {e; };c;, we can actually find and characterize the
sequences {h; };es for which (6) holds; thus, the remaining question is whether
at least one of these sequences forms an orthonormal basis for H. The key
point in the analysis is the definition of a sequence {n; };cs, given by

n; = Z<€k7fi>a;7 1€ [7 (8)

kel



where {wy }rer is the dual Riesz sequence of {w;},c;. Note that under the
above assumptions the sequences {wy }rer and {e;};cr are Bessel sequences,
implying that the infinite series defining n; is convergent. We begin with a
simple lemma, relating the involved sequences:

Lemma 2.1 Let {w;},er be a Riesz basis for the subspace W of H, with dual
Riesz basis {wg }rer. Let {e;}icr be an orthonormal basis for H. Given any
sequence { fiticr in H, define {n;}icr as in (8). Then

(wj,ni> = <fi,€j>, VZ,j € ]

Lemma 2.1 is a direct consequence of the definition of n; and (3). Our
starting point is now to characterize the sequences {h; };c; for which (6) holds:

Proposition 2.2 Let {w;};cr be a Riesz basis for the subspace W of H, with
dual Riesz basis {wy}rer. Let {e;}icr be an orthonormal basis for H. Given
any sequence { fi}icr in H, the following hold:

(i) There exists a sequence {h;}ier in H such that

fi = Z<wj7h’i>€j7 Vi el (9)

jel
(i) The sequences {h;}icr satisfying (9) are characterized as
hi = m; + n,, (10)
where n; is given by (8) and m; € W+.
(111) If {w;}jer is a Riesz basis for H, then (9) has the unique solution

hi:ni, 1€ 1.

Proof. Expanding f; in the orthonormal basis {e;};c; and using Lemma
2.1,

fi= Z(fi7€j>€j = Z<wjani>€j7 iel,

jel jeI

i.e., the choice h; = n; satisfies (9). This proves (i). For m; € W+ it now
follows from w; € W that the choice h; = m; + n; will satisfy (9) as well. In

7



order to complete the proof of (ii) we only need to show that all solutions
{hi}ier of (9) are of the form in (10). Let {h;}ic; be any sequence in H
satisfying (9). Fix any i € I. We can write h; = m; + n; with m; := h; — n,.
The expansion coefficients of f; in terms of the basis {e;};c; are unique, so
from

fi =D (wj hide; = > (wjnie;

jer jer
it follows that
(wjs hi) = (wj, i), Vj €1,
ie.,
(wj,m;) =0, Vj € 1.

This implies that m; € W=, This proves (ii). The result in (iii) is a conse-
quence of (ii). O

With Proposition 2.2 at hand our goal is now to find conditions under
which an orthonormal basis {h;}ic; for H of the form (10) exists. We note
that Proposition 2.2 did not use any assumption on {f;};c; or any relation-
ship between {f;}icr and {w;},c;. The uniqueness statement in Proposition
2.2(iii) makes it easy to find a case where no orthonormal basis of the form
(10) exists, even if we assume that {f;};cs is a frame:

Example 2.3 Let {e;}ic; be an orthonormal basis for H. Let {w;}ies =
{ez‘}z‘el , and

{fi}ier = {2e1,¢e9,63,--- }.
Then
{Wrtker = {e1, 62,63, },

and n; in (8) is given by



The sequence {n;};c; is clearly not an orthonormal basis. The unique-
ness statement in Proposition 2.2(iii) now implies that no orthonormal basis
{h;}ier can satisty (9). Thus {w;};es is not the R-dual of { f; }icr w.r.t. {e;}ier
and any choice of orthonormal basis {h;}cr; this conclusion could of course
also have been derived from Theorem 1.3. 0

We will now have a closer look at the properties of the sequence {n;}ics

in (8).

Lemma 2.4 Let {w;};cr be a Riesz sequence in H with bounds C, D, and let
{e;}icr an orthonormal basis for H. Given a frame { f;}icr for H with frame

bounds A, B, the sequence {n;}icr in (8) is a frame for W with frame bounds
A/D,B/C.

Proof. It is clear that n; € W, Vi € I. Now, for any f € W,

D OKEml = D[ (e, £i)@r)

el el kel

= D Do (fnen

i€l | kel

= > [ D> (@ fex)

el kel

2

Note that {wy}rer is a Riesz basis for W with bounds 1/D,1/C. Thus the
above calculation yields that

2

ST = A

i€l

> (@ fex

kel

\Y
ol
=

The proof for the upper bound is similar. O

We will now present a solution to our key question, i.e., characterize the
existence of an orthonormal basis {h; };c; for H such that (9) holds. We note



that the case where the Riesz sequence {w;};er spans the entire space H is
solved in Proposition 2.2(iii). Thus, we concentrate on the case where the
Riesz sequence {w;};ecr spans a proper subspace of H.

Theorem 2.5 Let {w;},e; be a Riesz sequence spanning a proper subspace
W of H and {e;}ic; an orthonormal basis for H. Given any frame {f;}icr
for H, the following are equivalent:

(1) {w;}tjer is an R-dual of {fi}ier w.r.t. {e;}icr and some orthonormal
basis {h;}icr.

(1) There exists an orthonormal basis {h;}ier for H satisfying (9).

(11i) The sequence {n;}icr in (8) is a tight frame for W with frame bound
E =1

Proof. The equivalence (i) < (ii) follows from Proposition 2.2.

(ii) =(iii). Let P denote the orthogonal projection of H onto W. The
expression in (10) for all solutions to (9) shows that a sequence {h;};cr in
‘H is a solution if and only if Ph; = n;, Vi € I. Now, it is well known that
the projection of an orthonormal basis onto a subspace forms a tight frame
for that subspace with frame bound equal to one. Thus, if {h;}ic; is an
orthonormal basis for H, then necessarily {n; }ics is a tight frame for W with
frame bound £ = 1.

(iii) =(ii). If {n;}ier is a tight frame for W with frame bound E = 1, then
Naimark’s theorem (see, e.g., [5]) says that there exists an orthonormal basis
for a larger Hilbert space such that Ph; = n;. Since W is assumed to be a
proper subspace of H we can identify the larger Hilbert space with H, which
leads to the desired conclusion. OJ

Using Theorem 2.5 we can now give an example of a frame {f;};,c; and a
Riesz sequence {w;};er that can not be an R-dual of {fi}icr w.r.t. a given
orthonormal basis {e; };c; and any choice of {h; };es, despite the fact that the
bounds for {f;}ic; and {w;};e; coincide:

Example 2.6 Let {¢;};c; be an orthonormal basis for H and
{fi}ie] = {2617 €1,€2,€3,... }a
{wj}jEI = {5617 €3,€5,... }

10



Then {f;}ier is a frame with bounds A = 1, B = 5, and {w,};es is a Riesz
sequence with the same bounds. The dual Riesz sequence is

— 1
{wk}kef = {3617 €3,€5,... }

Direct calculation shows that

2 1
{ni}iel = {56’17 ~€1,€3,€5, ... }

5
The frame is clearly not tight, so {w;};es is not an R-dual of {f;},c; with
respect to {e; }ie; and any choice of an orthonormal basis {h;}ie;. O

Combining Lemma 2.4 and Theorem 2.5, we obtain a partial answer to
our key question:

Corollary 2.7 Assume that {w;};er is a Riesz sequence with upper and
lower bound A, spanning a proper subspace of H, and that {f;}icr is a tight
frame for H with frame bound A. Then {w;}icr is an R-dual of {f;}icr.

Proof. The assumptions imply by Lemma 2.4 that {n;};c; is a tight frame
for W with frame bound F = 1, for any choice of the orthonormal basis
{e;}ier. Now the result follows from Theorem 2.5. O

The assumptions in Corollary 2.7 correspond exactly to the known rela-
tionship between a tight Gabor frame and the corresponding Gabor system
on the dual lattice. Thus Corollary 2.7 is a generalization of the result from
[1] that we stated in Theorem 1.6(ii).

The assumption that {w;};e; spans a proper subspace of H is essential in
Corollary 2.7:

Example 2.8 Let {¢;};en be an orthonormal basis for H, and

{wj}jEN = {617 €2, " }
We now construct a tight frame { f; };en for H for which {w; }jen := {e1,€2,--- }
is not an R-dual w.r.t. {e;};en and any choice of {h;}ien. Split {e;}ien into
a union of sequences with two elements, e.g.,

{€;}ien = {e1, €2} U{es, et U--- .

11



Associated with each pair {ea_1, o}, £ € N, we construct a tight frame for
the space span{eg;_1, e} with frame bound 1 and consisting of 3 vectors,

to be denoted by { fsx_2, fsx—1, fax} (this can be done in many ways, e.g., by
Daubechies’ Mercedes-Benz star). The union of the sequences { f3x_2, fax_1, far },
k € N, yields a tight frame {f;};en for H with frame bound 1. Note that
{fsk—2, fak—1, fax} does not form an orthonormal system, so { f;};en is not an
orthonormal system either. By Proposition 2.2(iii) the only sequence {h;};en
satisfying that

fi = Z(wj,hi>ej, \V/Z € N

J=1

is h; = n;, with n; defined as in (8). Now,

00 0 oo
nwnj Z ekafz Wkaz ekaf] wk Z 6k:7fl fj?ek <f]afz>
k=1 k=1 k=1

We have already argued that {f;};en can not be an orthonormal system, so
{n;}jen can not be an orthonormal system either. By Proposition 2.2(iii) we
conclude that {w;};jen can not be an R-dual of { f; }ieny w.r.t. {e;}ieny and any
choice of the orthonormal basis {h;}ien- d

With Theorem 2.5 and Corollary 2.7 in mind it is natural to ask whether
an orthonormal basis {h;};cr for H satisfying (9) can be found if the frame
{fi}ier is non-tight. Intuitively this sounds unlikely - but there are cases
where the answer is yes:

Example 2.9 Let {e;}ic; be an orthonormal basis for H, and define the
sequences {f;}ier and {w;}jer by

1
{fitier = {561, es, €3, -},
respectively,
1
{wj}jel = {561762763, T }
Then
Z’—JE - {2617 €2,€3," " }7

12



and thus

n; = Z<€k,fz‘>@1; =e;, Vi€l

kel

Thus {n;}icsr is an orthonormal basis and therefore tight, despite the fact
that {f;}icr is non-tight. O

Theorem 2.5 leads to a simple criterion for {w;};c; to be an R-dual of
{fi}icr- The result can be considered as an if and only if version of Proposition
5 in [1]:

Corollary 2.10 Let {w;}cr be a Riesz basis for the subspace W of 'H, with
dual Riesz basis {wg trer. Let {e;}icr be an orthonormal basis for H. Given
any sequence { fiYicr in H, define {n;}icr as in (8). For any {c;}icr € 02(1),
let the vectors e and w be related by

e:Zc_jej, w:chwj. (11)
jel jel

Then {w;}ier is an R-dual of {f;}ier w.r.t. {ei}icr and some orthonormal

basis {h;}icr if and only if

> Kol =l

icl
for all choices of the sequence {c;}icr € *(I).

Proof. By the result in Lemma 2.1 and the relation between e and w,

(ni,w) = > Tlni,wy) =Y Tles, fi) = (e, fi).

jel jelI
Thus
D s w) =Y e i)l
iel icl
The result now follows from Theorem 2.5. O
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3 Orthonormal sequences {h;}c;

In Proposition 2.2 we have shown that a Riesz sequence {w;};es is an R-dual
of a frame { f;}ics if there exists orthonormal bases {h;};c; and {e;}ic; such
that

fi = Z(wj, hi>€ja Viel. (12)

jeI

In order to gain further insight in the problem we will now consider a
weaker version of this condition: we will assume that {e;};c; is a given or-
thonormal basis, and ask for the existence of an orthogonal, resp. orthonor-
mal sequence {h; };c; such that (12) holds. We will show that these questions
have very general answers.

We begin with a lemma, stating an observation of independent interest.
For the proof, see Appendix A.

Lemma 3.1 Assume that {f;}icr is a Bessel sequence with bound B. Then

for any fi, f;,
[{fis f)* < BB = IIAIIF = 1If117) + AP (13)

Note that the result in Lemma 3.1 is trivial if B — ||f;||* — || f;]]* > 0.
However, under the assumptions given here it can very well happen that
B —||filI> = 11/;||> < 0, and for such elements f;, f; the result is an improve-
ment of Cauchy—Schwarz’ inequality.

Theorem 3.2 Let {w;}jer be a Riesz sequence in H having infinite deficit,
and let {e;}ier be an orthonormal basis for H. Then the following hold:

(i) For any sequence {fi}icr in H there exists an orthogonal sequence
{hi}ier in H such that

fi = Z<wj7hi>€j7 \V/'l c I. (14)

Jjel
(11) Assume that {f;}icr is a Bessel sequence with bound B and that {w;};er

has a lower Riesz basis bound C > B. Then there exists an orthonormal
sequence {h;}icr such that (14) holds.

14



(i1i) For any Bessel sequence { f;}icr and regardless of the lower Riesz bound
for {w;}jer, there exist an orthonormal sequence {h;}icr in H and a
constant o > 0 such that

fi = Z(O&Qj, hi>€ja VZ < ] (15)

jel

Proof. The proof of (i) is based on Proposition 2.2. We consider again the
vectors n; in (8) and want to find m; € W+, i € I, such that h; := m; +n;
is an orthogonal sequence. For notational convenience, assume that I = N.
Note that with such a choice of h;, we know that (14) is satisfied. Note also
that

(hi, hy) = (ng,ny) + (mg,my), Vi, j € 1. (16)

We will use the following inductive procedure. Choose m; € W+ arbi-
trarily. Now, take my € W+ such that

(h1, he) =0,
i.e., such that
(my1, ma) = —(ny,no).
In general, assuming that we have constructed m,...,my € W+ such that

{h;}Y | is an orthogonal system, take my,; € W+ such that
(s hsr) =0, k=1,..., N,
i.e., such that
(mg,mys1) = —(ng,nns1), k=1,..., N.

This can always be done because {w;};es is assumed to have infinite deficit.
We conclude that {h;};ec; forms an orthogonal system, as desired.

For the proof of (ii), let B denote an upper frame bound for {f;};c; and
C' a lower bound for the Riesz sequence {w;};e;. By an argument like in the
proof of Lemma 2.4, the sequence {n;};c; is a Bessel sequence with bound
g < 1; in particular, the norms of the vectors n; are uniformly bounded by
l|ni|] < 1. We now aim at a construction of a sequence {h;};c; satisfying

15



(14) and ||h;|| = 1, Vi € I. We use the inductive procedure outlined in (i),
but now paying attention to the norm of the vectors h;. First we choose
my € W+ such that ||h|| = 1, i.e., such that

[Imall = V1 = [[ma] .

We now want to choose my € W+ such that ||hy|| = 1 and (hy, he) = 0; this
means that we want that

[Imal| = V1 = [naf|* and (ma, ma) = —(n1,na). (17)

The first condition in (17) can always be satisfied; and the second can be

satisfied for a sequence my with ||ms|| = /1 — ||ns||? if and only if
V1=[mlPyV1—[lne|? > [(n1,n). (18)

The condition in (18) is satisfied by Lemma 3.1.
Following the inductive procedure outlined in (i), we see that it is possible
to construct an orthonormal sequence {h;};cr satisfying (14) if

V=l 2T = lng[* = [(na; )], Vi, 5 € 1,

which is satisfied by Lemma 3.1.
Finally, the result in (iii) is obtained by scaling of the Riesz sequence
{w;}jer in such a way that we obtain a sequence {aw;};e; to which we can

apply (ii). O

4 A special choice of the R-dual of a given
frame {fi}ie]

We will now consider an operator theoretic way of constructing an R-dual
of a given frame {f;};c; for H. Let {e;}ic; be an orthonormal basis. Then
there exists a bounded, surjective, and linear operator 1" : H — H such that

We need a related operator. Define the mapping T :H — H as the unique
anti-linear bounded operator for which

fei = fz
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That is,
T (Z Ci6i> = Zc_zfz, {Ci}iel c 62(1) (20)
iel icl
The operator T is clearly bounded and surjective. Also, for any g € H the
mapping
f = (g.TS)

is bounded and linear. The adjoint operator T* is introduced as the unique
mapping g — T*g for which

(9.Tf) = (f.T"g), Vf, g € H.
It is easy to check that T* is bounded and anti-linear.

Proposition 4.1 Let {f;}icr be a frame and {e;}ic; an orthonormal basis.

Define the linear operator T' by (19) the anti-linear operator T' by (20), and
let

wj = T*ej, jel (21)
Then {w;}jer is the R-dual of {f;}ier with respect to the orthonormal bases
{eitier and {hi}icr == {ei}ier

Proof. Expanding T *e; in the orthonormal basis {e;}ic; and using the
definition of 7™ leads to

T*ej = Z<f*€j, €i>€i
icl
= Z(f@i,ej>ei
el
= Z<fia€j>ei-
icl
By definition of the R-dual this shows that {w,};es is the R-dual of {f;}ier
with respect to the orthonormal bases {e;};cr and {h;}ier := {€i}ier- O

The example below is a concrete construction of an R-dual. It does not
play any role in the present paper, but it is included here because it is useful
as a nontrivial toy example.
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Example 4.2 For any orthonormal basis {e; }$°,, the sequence {e;+e; 41},
is a Bessel sequence with bound 4 (see [2]). Thus, the union of the sequences
{e;}2, and {“*%};21, i.e., the sequence

€1+ es €2 + €3

, €2, e
V2 TR

is a frame of unit norm vectors, with frame bounds 1, 3. Note that

{fl ;.il = {617

}

€ + €11
V2

The R-dual {wj}jeny w.r.t. the orthonormal basis {e;}$2, is given by

foic1 =€y fo= 1 € N.

Wi = Z(fi, ej)ei;
i=1
direct calculation shows that
1 1 1 .
wy =e; + EQQ’ Wwj = €251+ EGZJ‘ + EGQJ'—Q, Jj=2 O

5 Appendix A - proof of Lemma 3.1

Proof of Lemma 3.1: We give the proof for the case B = 1; the general
case follows from here by replacing {f;}ic; by {fi/ \/E}Ze ;. For notational
convenience we take i = 1,7 = 2.

First, we assume (fi, fo) is real. Let f := xf; + f2 for some z € R. Then

1112 = 2?1 Al + 22 fr, fo) + || 2l I* (22)

and

(L P+ KL 2P = A+ 200, AP + [ f2)

+ [ o) P2+ 2(f )l fol P + |1 fel
= (A" + [ ) )2® + 20h, f) (LA + (1 ]2
+ IR+ 1A £ (23)

18



Using the upper frame condition on f,

SO < AP

iel
keeping only the terms corresponding to ¢ = 1,2 shows that
[(F, P+ )PP < AP (24)
Putting (22) and (23) into this yields

(LA + 1 £ + 200, P ULANE + 1Pz + R0+ [ f2))?
< || AP+ 22(f1, f2) + 1 P

or,

(AT = AN = 1 £ + 20, f) (L= LA = (£ )2
HILA = 1Ll = [{fr, f2)* > 0. (25)

We split into two cases:

(1): Assume ||f1|* = [[All* = [{f1, f2)* = 0, or,

[{fs f) P = LA = (LA (26)
Note that (25) is satisfied for all real values of x. Thus,

(fi, ) (L= (LA = []f2l*) = 0.

If (f1, f2) = 0, then (13) trivially holds; if 1 — || f1]|* — || f2||*> = 0, then (26)
implies that

[{fi 210 = A=A
(L= LAIDIAI
= (1= lIAIPA =1L,

so (13) holds.
(2): Assume that [|f1||* = [[fol[* = [(fy, f2)|* # 0. Let

a:= [[fllP = 1AlI* = [{fi, f2)|* (F0)
b= (fi, ) L= (| fill* = [ ol ") (27)
€= ||fz||2 - ||J£2||4 - |<f1,f2>|2-
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Then (25) implies that
ax® + 2bz + ¢ > 0.

Substitute x := —b/a into this, to obtain
—(b* — ac)/a > 0. (28)
The frame condition (24) applied to f := f; yields that

[{fis 22 < AP = AL,

so a > 0. It follows that
b> —ac <0 (29)

Using (27), a direct calculation shows that

b —ac = (|{(fi. f)I* = [1AIPIIfII7) x
(1¢fis 217 = @ = LA = L7+ 1AIPIAI) -

By Cauchy-Schwarz inequality,
[{fr, f212 < AP
This and (29) imply
[(frs f2)* < L= ILAIE = (1l + AP
Thus (13) holds.

Now, we assume (f1, fp) is complex. Choose A € C such that [A\| = 1 and
M f1, f2) = |{f1, f2)|- Let f:=z\f1 + f5 for € R. Then

A1 = 2® LAl + 22 (f, fo) + 11 ol

and

[ ORI R = (A [ 1) + 210, LA + [l
+ IR+ [ )

Hence we can apply the partial result just proved to f .

Note that the correct value of the Bessel bound is essential in (13) :

20



Example 5.1 Let {ej1, ea} be an orthonormal basis for a 2-dimensional Hilbert

space and put f; = /1 +€eyq, fo = /1 — €ey for some € €]0, 1. Then {fi, fo}

is a Bessel sequence with bound 1 + ¢, and

L=[IAIP=AIP+HIAIPIAIP = 1-(0+e =1 -+ (1 +e)(1—¢)
= —e2<0.

By Lemma 3.1 the inequality (13) holds with B = 1+¢. The above calculation
shows that the inequality is false if B is replaced by 1. OJ
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