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Abstract

With each Lipschitz domain and material parameter, an infinite number of tensors,
called the Generalized Polarization Tensors (GPTs), is associated. The GPTs contain
significant information on the shape of the domain and its material parameter. They
generalize the concept of Polarization Tensor (PT), which can be seen as the first-order
GPT. It is known that given an arbitrary shape, one can find an equivalent ellipse
or ellipsoid with the same PT. In this paper we consider the problem of recovering
finer details of the shape of a given domain using higher-order polarization tensors.
We design an optimization approach which solves the problem by simply minimizing a
weighted discrepancy functional. In order to compute the shape derivative of this func-
tional, we rigorously derive an asymptotic expansion of the perturbations of the GPTs
that are due to a small deformation of the boundary of the domain. Our derivations
are based on the theory of layer potentials. We perform some numerical experiments
to demonstrate the validity and the limitations of the proposed method. The results
clearly show that our approach is very promising in recovering fine shape details.

Mathematics Subject Classification (MSC2000): 35R30, 35B30

Keywords: generalized polarization tensor, asymptotic expansions, shape recovery

1 Introduction

With each shape of a domain, physical and geometric quantities, such as eigenvalues and ca-
pacity, are intrinsically associated. The notion of (generalized) polarization tensors (GPTs)
is one of them [6]. The GPTs generalize the concepts of classic polarization tensors [23].
The GPTs associated with a domain and a material parameter can be used to describe the
perturbations of electric fields due to the presence of a conductivity inclusion. An electrical
field present in the free space (homogeneous plane without an inclusion) is perturbed by the
presence of inclusions. Then the far-field perturbations can be represented by multipolar
expansions which are expressed in terms of the GPTs.
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In order to be more precise, let us consider the following conductivity transmission
problem: { ∇ · (χ(R2 \D) + kχ(D)

)∇u = 0 in R2,

u(x)−H(x) = O(|x|−1) as |x| → ∞,
(1.1)

where χ(D) denotes the characteristic function of the domain D and H is a given harmonic
function in R2.

The coefficient χ(R2\D)+kχ(D) represents the conductivity distribution. The inclusion
D has conductivity k 6= 1 while the background R2\D has conductivity 1. The function ∇H
is the background electric field and ∇u is the electric field in the presence of the inclusion
D. Then the perturbation, u−H, is given by the multipolar expansion:

(u−H)(x) =
+∞∑

|α|,|β|=1

(−1)|α|

α!β!
∂αΓ(x)Mαβ∂βH(x0) as |x| → +∞, (1.2)

where x0 is the center of mass of D and Γ is the fundamental solution to the Laplacian, i.e.,

Γ(x) =
1
2π

ln |x|. (1.3)

Here α = (α1, α2) and β = (β1, β2) are multi-indices and |α| = α1 + α2.
The quantity Mαβ is called the generalized polarization tensor (GPT). Formula (1.2)

shows that through the GPTs we have complete information about the far-field expansion
of the perturbation u−H.

When |α| = |β| = 1, we denote Mαβ = mij and call the matrix M = (mij)2i,j=1 the
polarization tensor (PT).

The concepts of PT and GPTs occur in several interesting contexts, in particular in
asymptotic models of dilute composites (see [20] and [9]) and in potential theory related to
certain questions arising in hydrodynamics [23].

Another important use of these concepts is for imaging diametrically small inclusions
from boundary measurements. In fact, the GPTs are the basic building blocks for the
asymptotic expansions of the boundary voltage perturbations due to the presence of small
conductivity inclusions inside a conductor [18, 3]. Based on this expansion, efficient algo-
rithms to determine the location and some geometric features of the inclusions were pro-
posed. We refer to [5, 6] and the references therein for recent developments of this theory.

According to [12] and [7], the PT associated with an unknown inclusion can be detected
from boundary measurements. The detected PT in turn yields the “equivalent ellipse” of
a single inclusion. In other words, in terms of the PT associated with an inclusion and a
conductivity parameter (or a cluster of inclusions and a set of conductivity parameters) we
are able to recover an equivalent ellipse with the same PT. On the other hand, it is proved
in [4] that the full set of GPTs uniquely determines the inclusion (and its conductivity).
Therefore it is natural to ask the question whether we can recover more shape details than
the equivalent ellipse using a finite number of GPTs. The aim of this paper is to investigate
this challenging question.

Recall that there is a canonical one-to-one correspondence between the class of PTs and
the class of ellipses [12]. That is why one can find easily the equivalent ellipse if one knows
the PT. However, there is no (and it is unlikely to have one) known class of geometric shapes
which has such a property for higher-order polarization tensors. In this paper, we propose
an optimization approach to recover finer shape details using GPTs.
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Let B be an unknown domain. Let Mαβ(k, B) denote the GPT associated with B and
the conductivity k. It is worth emphasizing that the GPT also depends on the conductivity
contrast k. Suppose that Mαβ(k, B) are known for all |α| + |β| ≤ K for some number K.
Suppose also that the conductivity is known. Our recursive optimization procedure would
be to minimize over D

J (n)[D] :=
1
2

∑

|α|+|β|≤K

w
(n)
|α|+|β|

∣∣∣∣∣∣
∑

α,β

aαbβMαβ(k, D)−
∑

α,β

aαbβMαβ(k, B)

∣∣∣∣∣∣

2

. (1.4)

Here the coefficients aα and bβ are such that H =
∑

aαxα and F =
∑

bβxβ are homogeneous
harmonic polynomials and w

(n)
|α|+|β| are binary weights, that is, they take two values: 0 and

1 and they determine which GPTs we keep at step n.
In step n we use as an initial guess the result of step n − 1. In the first step we get an

equivalent ellipse with the same PT as well as the location of the inclusion. If there are
multiple inclusions, we choose in the second step

w
(2)
|α|+|β| = 1 for 3 ≤ |α|+ |β| ≤ K

in order to have a better initial guess than an ellipse.
Our method is in the same spirit as the continuation method in frequency [13, 14, 10]

which was designed to solve inverse scattering problems for the Helmholtz equation.
In order to minimize the weighted discrepancy functional given in (1.4), we need a shape

derivative for the GPTs. It turns out the shape derivative of
∑

α,β aαbβMαβ(k, D) has a
simple form. This is the main reason of choosing as a discrepancy functional the difference
between calculated and given harmonic sums of GPTs rather than the difference between
individual GPTs. In order to calculate the shape derivative of our discrepancy functional,
we derive an asymptotic expansion of the GPTs under small perturbations of the boundary
of the inclusion D.

The derivation is rigorous and based on layer potential techniques in the same spirit as
in [5, 6]. We mention that related asymptotic formulas for boundary measurements, far-field
data, and modal measurements have been obtained in a series of recent papers [8, 1, 2, 22]

We implement the proposed optimization procedure to recover both convex or non-convex
shapes. The method of this paper is quite promising in the sense that the numerical results
clearly exhibit that the shape moves toward the actual shape. They show not only the
validity of the method but also that the equivalent ellipse is a good initial guess.

This paper is organized as follows. In Section 2, we review some basic facts on layer
potentials which will be used to define the GPTs and to derive their shape derivatives. In
Section 3 we review asymptotic formulas for perturbations in boundary integral operators
due to small changes of the boundary. Section 4 is to derive a new asymptotic formula for
the perturbations of the GPTs. In Section 5 we set up the optimization problem to recover
shape details using a set of GPTs. In Section 6 we present results of numerical experiments
and discuss the validity and the limitations of our method.

We emphasize that even though we only investigate the problem in two dimensions, the
method of this paper works equally well in three dimensions.
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2 Layer potentials and GPTs

Throughout this paper we assume that the domains under consideration have C2-smooth
boundaries. For a given bounded domain D in R2, the single and double layer potentials of
the density function φ ∈ L2(∂D) are defined by

SD[φ](x) :=
∫

∂D

Γ(x− y)φ(y)dσ(y), x ∈ R2,

DD[φ](x) :=
∫

∂D

∂

∂νy
Γ(x− y)φ(y)dσ(y), x ∈ R2 \ ∂D,

where νy is the outward unit normal to ∂D at y ∈ ∂D and Γ is given by (1.3).
For a function u defined on R2 \ ∂D, we denote

∂u

∂ν

∣∣∣
±

(x) := lim
t→0+

〈∇u(x± tνx), νx〉, x ∈ ∂D,

if the limits exist. The notation u|± is understood likewise. The following are the well-known
properties of the single and double layer potentials:

• Trace formula [19]:

∂SD[φ]
∂ν

∣∣∣
±

(x) =
(
±1

2
I +K∗D

)
[φ](x), x ∈ ∂D, (2.1)

DD[φ]|± =
(
∓1

2
I +KD

)
[φ](x), x ∈ ∂D, (2.2)

where

KD[φ](x) =
1
2π

∫

∂D

〈y − x, ν(y)〉
|x− y|2 φ(y) dσ(y),

and K∗D is the L2-adjoint of KD, i.e.,

K∗D[φ](x) =
1
2π

∫

∂D

〈x− y, ν(x)〉
|x− y|2 φ(y) dσ(y).

• For any real number λ with |λ| > 1/2 or λ = −1/2, (λI−K∗D) is invertible on L2(∂D).
If |λ| ≥ 1/2, then (λI −K∗D) is invertible on L2

0(∂D) := {f ∈ L2(∂D) :
∫

∂D
fdσ = 0}.

See [19] and [24] (when D has a Lipschitz boundary).

• If φ ∈ C1,α(∂D) for some α > 0, then DDφ is C1,α on D and R2 \D, and we have, see
[15] for example,

∂(DDφ)
∂ν

∣∣∣
−

=
∂(DDφ)

∂ν

∣∣∣
+

on ∂D.

Let D be a bounded domain in R2 and suppose that the conductivity of D is k, 0 < k 6=
1 < +∞. Let λ = (k + 1)/(2(k − 1)). For a multi-index α = (α1, α2) ∈ N2, define φα by

φα(y) := (λI −K∗D)−1
[
νx · ∇xα

]
(y), y ∈ ∂D. (2.3)
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Here and throughout this paper, we use the conventional notation: xα = xα1
1 xα2

2 . Then, the
generalized polarization tensors Mαβ for α, β ∈ N2 are defined, equivalently to (1.2), by

Mαβ(k, D) :=
∫

∂D

yβφα(y)dσ(y). (2.4)

Key properties of positivity and symmetry of the GPTs are studied in [6, Chapter 4]. We
shall emphasize that what is important is not the individual terms Mαβ but their harmonic
combinations. A harmonic combination of GPTs is

∑
α,β aαbβMαβ where

∑
α aαxα and∑

β bβxα are harmonic polynomials. We will call such (aα) and (bβ) harmonic coefficients.
For example, the following symmetry property holds:

∑

α,β

aαbβMαβ(k, D) =
∑

α,β

aαbβMβα(k, D) (2.5)

for any pair (aα), (bβ) of harmonic coefficients.
Let us record the following uniqueness theorem.

Theorem 2.1 If the GPTs of two domains are the same, i.e.,
∑

α,β

aαbβMαβ(k1, D1) =
∑

α,β

aαbβMαβ(k2, D2)

for all pairs (aα), (bβ) of harmonic coefficients, then D1 = D2 and k1 = k2.

In [4], the uniqueness theorem was stated under the assumption that Mαβ(k1, D1) =
Mαβ(k2, D2) for all α and β. But a quick glance of the proof there reveals that Theorem
2.1 is what was actually proved.

3 Asymptotic expansions of boundary integral opera-
tors

Let D be a bounded domain with C2-boundary and let, for ε small, Dε be an ε-perturbation
of D, i.e., there is a function h ∈ C1(∂D) such that

∂Dε := {x̃ = x + εh(x)ν(x) | x ∈ ∂D}, (3.1)

where ν is the outward unit normal vector field on ∂D. Let Ψε be the diffeomorphism from
∂D to ∂Dε given by

Ψε(x) = x + εh(x)ν(x). (3.2)

In view of (2.3) and (2.4), we need to get an asymptotic expansion of the operator K∗Dε
in

order to get that of Mαβ(k, Dε). A complete asymptotic expansion of the boundary integral
operator K∗Dε

on L2(∂Dε) is derived in terms of ε in [8, Theorem 2.1]. Especially, the first
order approximation is as follows.

Lemma 3.1 For φ̃ ∈ L2(∂Dε) let φ := φ̃ ◦ Ψε. There exists a constant C depending only
on the C2-norm of ∂D and ‖h‖C1 such that

∥∥∥
(
K∗Dε

[φ̃]
)
◦Ψε −K∗D[φ]− εK(1)

D [φ]
∥∥∥

L2(∂D)
≤ Cε2||φ||L2(∂D), (3.3)
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with the operator K(1)
D defined for any φ ∈ L2(∂D) by

K(1)
D [φ](x) = p.v.

∫

∂D

k1(x, y)φ(y)dσ(y) x ∈ ∂D,

where

k1(x, y) = −2
〈x− y, ν(x)〉〈x− y, h(x)ν(x)− h(y)ν(y)〉

|x− y|4

+
〈h(x)ν(x)− h(y)ν(y), ν(x)〉

|x− y|2

−〈x− y, τ(x)h(x)ν(x) + h′(x)T (x)〉
|x− y|2

+
〈x− y, ν(x)〉
|x− y|2

(
h(x)τ(x)− h(y)τ(y)

)
.

(3.4)

Here, τ(x) denotes the curvature of ∂D at x, T the unit tangential vector field on ∂D, p.v.
the Cauchy principal value, and h′ the derivative of h on ∂D, i.e., h′ = ∂h

∂T .

We shall emphasize that K(1)
D is bounded on L2(∂D). In fact, the 1st, 2nd, and 4th

kernels on the right-hand side of (3.4) are bounded since ∂D is of class C2, while the 3rd
kernel defines a singular integral operator which is bounded on L2(∂D) by the theorem of
Coifman-McIntosh-Meyer [16].

Moreover, the following expansions of ν̃ and σ̃ hold:

ν̃(x̃) = ν(x)− εh′(x)T (x) + O(ε2), (3.5)

and
dσ̃(x̃) = dσ(x)− ετ(x)h(x)dσ(x) + O(ε2). (3.6)

Here, the remainder O(ε2) is bounded by Cε2 for some C which depends only on the C2-norm
of ∂D and ‖h‖C1(∂D).

The following lemma was also obtained in [8, Lemma 3.1].

Lemma 3.2 Let φ̃ε =
(
λI −K∗Dε

)−1(ν̃ ·∇H), φε = φ̃ε ◦Ψε, and φ =
(
λI −K∗D

)−1(ν ·∇H).
Then we have

‖φε − φ− εφ1‖L2(∂D) ≤ Cε2‖φ‖L2(∂D),

where C is a constant depending only on the C2-norm of ∂D and ‖h‖C1 and

φ1 = (λI −K∗D)−1

[
K(1)

D [φ] + h〈(∇2H)ν, ν〉 − h′
∂H

∂T

]
. (3.7)

We now rewrite the operator K(1)
D in terms of more familiar operators. For x, y ∈ ∂D

(x 6= y), we have
∂

∂T (x)
Γ(x− y) =

1
2π

〈x− y, T (x)〉
|x− y|2 ,

∂2

∂T (x)2
Γ(x− y) =

1
2π

[
1

|x− y|2 +
〈x− y, ν(x)〉τ(x)

|x− y|2 − 2 |〈x− y, T (x)〉|2
|x− y|4

]

=
1
2π

[
− 1
|x− y|2 +

〈x− y, ν(x)〉τ(x)
|x− y|2 +

2 |〈x− y, ν(x)〉|2
|x− y|4

]
,
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and
∂2

∂ν(x)ν(y)
Γ(x− y) =

1
2π

[
−〈ν(x), ν(y)〉

|x− y|2 +
2〈x− y, ν(x)〉〈x− y, ν(y)〉

|x− y|4
]

.

It then follows that

− ∂

∂T (x)

(
h(x)

∂

∂T (x)

)
Γ(x− y) + h(y)

∂2

∂ν(x)ν(y)
Γ(x− y)

= −2
〈x− y, ν(x)〉〈x− y, h(x)ν(x)− h(y)ν(y)〉

|x− y|4 +
〈h(x)ν(x)− h(y)ν(y), ν(x)〉

|x− y|2

− 〈x− y, τ(x)h(x)ν(x) + h′(t)T (x)〉
|x− y|2

= k1(x, y)− 〈x− y, ν(x)〉
|x− y|2

(
h(x)τ(x)− h(y)τ(y)

)
.

Define Hs(∂D), s = 1, 2, to be the usual Sobolev spaces on ∂D. If φ ∈ H1(∂D), then
SD[φ] ∈ H2(∂D) and ∂

∂νDD[hφ] ∈ L2(∂D). Note that the left-hand side of the first identity
is the integral kernel of the operator

φ 7→ − ∂

∂T
(h

∂

∂T
)SD[φ] +

∂

∂ν
DD[hφ].

Thus the second identity shows that

K(1)
D [φ] = − ∂

∂T

(
h

∂SD[φ]
∂T

)
+

∂DD[hφ]
∂ν

+ hτK∗D[φ]−K∗D[hτφ] (3.8)

for all φ ∈ H1(∂D). It is interesting to observe that the above identity tells us that the
operator

φ 7→ − ∂

∂T
(h

∂

∂T
)SD[φ] +

∂

∂ν
DD[hφ]

may be extended as a bounded operator on L2(∂D).

4 Asymptotic expansions of the GPTs

We now derive asymptotic expansions of the GPTs.

Proposition 4.1 For multi-indices α and β, let F (x) = xβ and H(x) = xα. Let

φ = (λI −K∗D)−1

[
∂H

∂ν

∣∣∣
∂D

]
, (4.1)

ψ = (λI −KD)−1[F |∂D]. (4.2)

The following asymptotic expansion holds:

Mαβ(k, Dε)−Mαβ(k, D) = ε
〈
h, pαβ(k, D)

〉
L2(∂D)

+ O(ε2), (4.3)

where

pαβ(k,D) =
∂ψ

∂T

∂(H + SD[φ])
∂T

+ φ
∂(F +DD[ψ])

∂ν
+ ψ

(〈(∇2H)ν, ν〉+ 〈(∇2H)T, T 〉) . (4.4)

7



Proof. Since

F (x + εh(x)ν(x)) = F (x) + εh(x)
∂F

∂ν
(x) + O(ε2), x ∈ ∂D,

it follows from (3.6) and Lemma 3.2 that

Mαβ(k,Dε) =
∫

∂Dε

F (x̃)φ̃ε(x̃) dσε(x̃)

=
∫

∂D

(
F (x) + εh(x)

∂F

∂ν
(x)

)(
φ(x) + εφ1(x)

)(
1− ετ(x)h(x)

)
dσ(x) + O(ε2)

= Mαβ(k, D) + ε

∫

∂D

Fφ1 dσ + ε

∫

∂D

(∂F

∂ν
− τF

)
φh dσ + O(ε2).

Hence the definition (4.2) yields

Mαβ(k,Dε) = Mαβ(k,D)+ ε

∫

∂D

(λI−KD)[ψ]φ1 dσ+ ε

∫

∂D

(∂F

∂ν
−τF

)
φh dσ+O(ε2). (4.5)

Let us now calculate the term
∫

∂D
(λI −KD)[ψ]φ1 dσ. From (3.7) we get

∫

∂D

(λI −KD)[ψ]φ1 dσ =
∫

∂D

ψ(λI −K∗D)[φ1] dσ

=
∫

∂D

ψ

[
K(1)

D [φ] + h〈(∇2H)ν, ν〉 − h′
∂H

∂T

]
dσ.

Next, because of (3.8), we have
∫

∂D

ψK(1)
D [φ] dσ =

∫

∂D

ψ

[
− ∂

∂T

(
h

∂SD[φ]
∂T

)
+

∂DD[hφ]
∂ν

+ hτK∗D[φ]−K∗D[hτφ]
]

dσ.

We claim that ∫

∂D

ψ
∂DD[hφ]

∂ν
dσ =

∫

∂D

∂DD[ψ]
∂ν

hφ dσ. (4.6)

In fact, let ΛD denote the Dirichlet-to-Neuman map on D, that is, ΛD[ψ] = ∂u/∂ν, where
∆u = 0 in D and u = ψ on ∂D. Then Green’s theorem yields

∫

∂D

ψ
∂DD[hφ]

∂ν
dσ =

∫

∂D

ΛD[ψ]DD[hφ]
∣∣
− dσ

=
∫

∂D

ΛD[ψ](
1
2
I +KD)[hφ] dσ

=
∫

∂D

(
1
2
I +K∗D)ΛD[ψ]hφ dσ.

In view of (2.2), the solution to the Dirichlet problem ∆u = 0 in D and u = ψ on ∂D is
given by

u(x) = DD

(1
2
I +KD

)−1[ψ](x), x ∈ D.

Therefore, we have

ΛD[ψ] =
∂

∂ν
DD

(1
2
I +KD

)−1[ψ] on ∂D.
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It then follows from (2.1) that

(
1
2
I +K∗D)ΛD[ψ] =

∂

∂ν
SD

[
∂

∂ν
DD

(1
2
I +KD

)−1[ψ]
] ∣∣∣

+
.

One can easily see, using again Green’s theorem and (2.2), that for x ∈ R2 \D

SD

[
∂

∂ν
DD

(1
2
I +KD

)−1[ψ]
]

(x) = DD

[
DD

(1
2
I +KD

)−1[ψ]
∣∣∣
−

]
(x) = D[ψ](x).

Thus we get

(
1
2
I +K∗D)ΛD[ψ] =

∂DD[ψ]
∂ν

,

and hence (4.6) holds.
With this result in hand, we now obtain

∫

∂D

ψK(1)
D [φ] dσ =

∫

∂D

h

[
∂ψ

∂T

∂SD[φ]
∂T

+
∂D[ψ]

∂ν
φ + τψK∗D[φ]− τKD[ψ]φ

]
dσ,

and hence
∫

∂D

(λI −KD)[ψ]φ1 dσ =
∫

∂D

h

[
∂ψ

∂T

∂SD[φ]
∂T

+
∂D[ψ]

∂ν
φ

+ τψK∗D[φ]− τKD[ψ]φ + ψ〈(∇2H)ν, ν〉+
∂

∂T

(
ψ

∂H

∂T

)
]

dσ.

It then follows from (4.5) that

Mαβ(k,Dε)−Mαβ(k,D) = ε

∫

∂D

h(x)pαβ(k, D)(x) dσ + O(ε2), (4.7)

where

pαβ(k, D) =
∂ψ

∂T

∂SD[φ]
∂T

+
∂D[ψ]

∂ν
φ + τψK∗D[φ]− τKD[ψ]φ

+ ψ〈(∇2H)ν, ν〉+
∂

∂T

(
ψ

∂H

∂T

)
+

(∂F

∂ν
− τF

)
φ.

But,
∂

∂T

(
ψ

∂H

∂T

)
=

∂ψ

∂T

∂H

∂T
+ ψ〈(∇2H)T, T 〉+ ψτ

∂H

∂ν
.

Note also that because of (4.1) and (4.2),

K∗D[φ] +
∂H

∂ν
= λφ and KD[ψ] + F = λψ.

Thus we arrive at

pαβ(k, D) =
∂ψ

∂T

∂(H + SD[φ])
∂T

+ φ
∂(F +DD[ψ])

∂ν
+ ψ

(〈(∇2H)ν, ν〉+ 〈(∇2H)T, T 〉) ,

9



as desired. This completes the proof. ¥
Let us now suppose that aα and bβ are constants such that H =

∑
α aαxα and F =∑

β bβxβ are harmonic polynomials. Then it can be easily seen that

∑

α,β

aαbβMαβ(k, Dε)−
∑

α,β

aαbβMαβ(k, D) = ε
〈
h,

∑

α,β

aαbβpαβ(k, D)
〉

L2(∂D)
+ O(ε2), (4.8)

and
∑

α,β

aαbβpαβ(k, D)

=
∂ψ

∂T

∂(H + SD[φ])
∂T

+ φ
∂(F +DD[ψ])

∂ν
+ ψ

(〈(∇2H)ν, ν〉+ 〈(∇2H)T, T 〉) ,

where φ and ψ satisfy (4.1) and (4.2) with new (harmonic functions) H and F . Since H is
harmonic,

〈(∇2H)ν, ν〉+ 〈(∇2H)T, T 〉 = ∆H = 0,

and hence ∑
aαbβpαβ(k,D) =

∂ψ

∂T

∂(H + SD[φ])
∂T

+ φ
∂(F +DD[ψ])

∂ν
. (4.9)

Let

u(x) := H(x) + SD[φ](x) and v(x) := F (x) +DD[ψ](x), x ∈ R2. (4.10)

Then one can see using the jump relations (2.1) and (2.2) that u and v are respectively
solutions to the following transmission problems:





∆u = 0, in D ∪ (R2\D),

u|+ − u|− = 0, on ∂D,

∂u

∂ν

∣∣∣
+
− k

∂u

∂ν

∣∣∣
−

= 0, on ∂D,

(u−H)(x) = O(|x|−1) as |x| → ∞,

(4.11)

and 



∆v = 0, in D ∪ (R2\D),

kv|+ − v|− = 0, on ∂D,

∂v

∂ν

∣∣∣
+
− ∂v

∂ν

∣∣∣
−

= 0, on ∂D,

(v − F )(x) = O(|x|−1) as |x| → ∞.

(4.12)

Moreover, according to [21], we have

φ = (k − 1)
∂u

∂ν

∣∣∣
−

on ∂D.

Similarly,

ψ =
k − 1

k
v|− on ∂D,
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and hence
∂ψ

∂T
=

k − 1
k

∂v

∂T

∣∣∣
−

.

In fact, from (4.2) we obtain that

v|− = F + (
1
2
I +KD)[ψ] = (λ +

1
2
)ψ =

k

k − 1
ψ.

So far we proved the following theorem which is the main theoretical result of this paper.

Theorem 4.2 Suppose that aα and bβ are constants such that H =
∑

α aαxα and F =∑
β bβxβ are harmonic polynomials. Then

∑

α,β

aαbβMαβ(k, Dε)−
∑

α,β

aαbβMαβ(k,D)

= ε(k − 1)
∫

∂D

h(x)
[

∂v

∂ν

∣∣∣
−

∂u

∂ν

∣∣∣
−

+
1
k

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
(x) dσ(x) + O(ε2),

(4.13)

where u and v satisfy (4.11) and (4.12), respectively.

A few remarks are in order regarding the dependency of the remainder O(ε2) term. It is
bounded by Cε2 for some C depending only on the C2-norm of ∂D and ‖h‖C1(∂D). It also
depends on the degrees of the harmonic polynomials H and F . As the degree gets larger,
the remainder gets larger. However, the remainder does not depend on the conductivity
contrast k. Then formula (4.13) holds for also the extreme cases k = 0 and k = +∞. This
important fact is because of the estimate

∥∥∥∥
( k + 1

2(k − 1)
I −K∗D

)−1

[f ]
∥∥∥∥

L2(∂D)

≤ C‖f‖L2(∂D)

with a constant C independent of k, which was first proved in [6].
Note also that formula (4.13) gives the shape derivative of

∑
α,β aαbβMαβ(k, D).

Finally, it is quite interesting to observe the similarity between the asymptotic formula
(4.13) and the one for eigenvalue perturbations obtained in [1] (see [2] for the elasticity case).

5 Reconstruction of shape details using GPTs

5.1 Recursive scheme

According to Theorem 2.1, one can (approximately) reconstruct the shape of B by recursively
minimizing at each step n the functional J (n)[D] given in (1.4) over D. For doing so, we
need to compute the shape derivative of J (n)[D].

Let H =
∑

aαxα and F =
∑

bβxβ be homogeneous harmonic polynomials and let

φHF (x) = (k − 1)
[
∂v

∂ν

∣∣∣
−

∂u

∂ν

∣∣∣
−

+
1
k

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
,

where u and v satisfy (4.11) and (4.12), respectively. Theorem 4.2 shows that the shape
derivative of J (n)[D] is given by

〈dSJ (n)[D], h〉L2(∂D) =
∑

|α|+|β|≤K

w
(n)
|α|+|β|δHF 〈φHF , h〉L2(∂D), (5.1)
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where
δHF =

∑

α,β

aαbβMαβ(k,D)−
∑

α,β

aαbβMαβ(k, B).

Given the PT of the inclusion B we can find an ellipse with the same PT but not its
location since the PT is invariant under translation. We can locate the inclusion provided
that its GPTs with |α| + |β| = 3 are known. This can be used as an (initial) guess, and
more shape details for B can be reconstructed by minimizing (1.4) for n = 2. The result of
step n− 1 is used as an initial guess for step n.

The weights w|α|+|β| determine the GPTs we keep at each step. We choose

w
(1)
|α|+|β| = 1 for 2 ≤ |α|+ |β| ≤ 3 and 0 elsewhere,

w
(2)
|α|+|β| = 1 for 2 ≤ |α|+ |β| ≤ 4 and 0 elsewhere,

and, more generally, in step K − 2 ≥ n ≥ 3,

w
(n)
|α|+|β| = 1 for 2 ≤ |α|+ |β| ≤ n + 2 and 0 elsewhere.

If there are multiple inclusions, we choose in the second step

w
(2)
|α|+|β| = 1 for 3 ≤ |α|+ |β| ≤ K

in order to have a better initial guess than an ellipse and, in step K ≥ n ≥ 3,

w
(n)
|α|+|β| = 1 for 2 ≤ |α|+ |β| ≤ n.

Our algorithm is in the same spirit as the continuation method in frequency for solving
inverse scattering problems [13, 14, 10]. Since the high-frequency oscillations of the boundary
of an inclusion are only contained in its high-order GPTs, our recursive optimization scheme
yields a stable way to reconstruct such information.

5.2 Deformations undetectable from the GPTs

It follows from the expression of the shape derivative of J (n) that if a shape deformation is
orthogonal to the functions φHF , then it is undetectable.

As we can see from [8], if D is a disk, then using Mαβ , |α|+ |β| ≤ K, one can only detect
the Fourier coefficients of the deformation up to K.

Figure 1 and Figure 2 are the (orthogonalized) φHF for K = 3.

6 Numerical Results

In the following examples, we use the GPTs up to |α|+|β| ≤ 6, i.e., K = 6. The conductivity
inside the inclusion is given to be 3. To reconstruct multiple inclusions as well as a single
inclusion, we use in the second step w

(2)
|α|+|β| = 1 for 3 ≤ |α|+|β| ≤ 6 and, in step 3 ≤ n ≤ 6,

w
(n)
|α|+|β| = 1 for 2 ≤ |α|+ |β| ≤ n. The gray curve is the target domain (B) and the black

curve (D) is the reconstructed one.
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Figure 1: φHF corresponding to
∑

aαbβMαβ , |α| + |β| ≤ 3 for the disk D, which is the
dotted curve. The solid curves are ∂D + a linear combination of φHF ν.

Example 1. The example in Figure 3 shows that the equivalent ellipse is gradually modified
toward the target domain. The first image is the equivalent ellipse and the others are the
reconstructed images for n = 2, . . . , 6.
Example 2. This example in Figure 4 reveals the limit of the shape we can reconstruct when
we use the GPTs up to |α|+ |β| = K. When the target function is a sinusoidal perturbation
of a disk, we can reconstruct the shape perturbation when the angular frequency is smaller
than or equal to K. High-frequency information is undetectable.
Example 3. Using higher-order GPTs we can better detect multiple inclusions; see Figure
5.

7 Conclusion

In this paper we have proposed a new recursive optimization scheme to recover fine shape
details from the GPTs. We have presented some numerical experiments to demonstrate the
validity and the limitations of the proposed approach which is in the same spirit as the
continuation method in frequency. Since the high-frequency oscillations of the boundary of
an inclusion are only contained in its high-order GPTs, the recursive method yields a stable
way to reconstruct such information.

Other schemes can be designed by choosing different weights in the discrepancy functional
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Figure 2: φHF corresponding to
∑

aαbβMαβ , |α| + |β| ≤ 3 for a domain D, which is the
dotted curve. The solid curves are ∂D + a linear combination of φHF ν.

(1.4). For example, choosing

w
(1)
|α|+|β| = 1 for 2 ≤ |α|+ |β| ≤ l1 and 0 elsewhere,

w
(2)
|α|+|β| = 1 for l1 + 1 ≤ |α|+ |β| ≤ l2 and 0 elsewhere,

w
(3)
|α|+|β| = 1 for l2 + 1 ≤ |α|+ |β| ≤ l3 and 0 elsewhere,

and so on, where 2 < l1 < l2 < l3 < . . . , yields a scheme that is closely related to the one
developed in [11]. It could have better resolution than the one implemented in this paper
but clearly is less stable. It requires a very good initial guess. A detailed resolution and
stability analysis for both schemes will be reported elsewhere.
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Figure 3: Gray curve is the target domain (B) and the black curve (D) is the reconstructed
shape. The first image is the equivalent ellipse and the others are the reconstructed images
for n = 2, . . . , 6.
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Figure 4: Gray curve is the target domain (B) and the black curve (D) is the reconstructed
shape for n = 6 starting from the equivalent ellipse.
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