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Abstract. We study M -ideal properties of function and sequence Marcinkiewicz
spaces. In particular we calculate the duals of the space Σ = L1+L∞ equipped
with two standard norms and investigate when its subspace of order continuous
elements is an M -ideal in Σ.

A closed subspace Y of a Banach space X is called an M-ideal of X if there is
a bounded projection P : X∗ → X∗ with range Y ⊥ such that for each x∗ ∈ X∗,

‖x∗‖ = ‖Px∗‖+ ‖(I − P)x∗‖ .

A Banach space X is said to be M-embedded if X is an M -ideal of its bidual X∗∗.
It is well known and easy to verify that c0 is an M -ideal in its bidual `∞. In this
paper we investigate the Marcinkiewicz function and sequence spaces (MΨ and
mΨ respectively), called also weak Lorentz spaces. M -ideal properties of these
spaces have been studied for particular functions Ψ for instance in [2].

Here we provide several results for spaces MΨ or mΨ generated by an arbitrary
quasi-concave funcion Ψ. In sections one and three we characterize among others
when the subspace M0

Ψ (resp. m0
Ψ) of order continuous elements of MΨ (resp.

mΨ) is an M -ideal in MΨ (resp. m0
Ψ), and when it is M -embedded. In section

two we investigate the space Σ = L1 + L∞, which coincides to space MΨ where
Ψ(t) = max(1, t), t > 0. We calculate the dual norms to (Σ, ‖·‖) and (Σ, |||·|||),
where ‖·‖ and |||·||| are equivalent usual norms employed in Σ. Consequently we
obtain that (Σ0, ‖·‖) is not an M -ideal in (Σ, ‖·‖), while (Σ0, |||·|||) is an M -ideal
in (Σ, |||·|||).

Let (Ω, µ) = (Ω,B, µ) be a measure space with a complete σ-finite measure µ
on a σ-algebra B of subsets of Ω. Let L0(µ) denote the space of all µ-equivalence
classes of B-measurable F-valued functions on Ω with the topology of convergence
in measure on µ-finite sets.

A Banach space (X, ‖·‖) is said to be a Banach function space on (Ω, µ) if it is
a subspace of L0(µ) such that there is h ∈ L0(µ) with h > 0 a.e. in Ω and it has
the ideal property that is if f ∈ L0(µ), g ∈ X and |f | ≤ |g| a.e. then f ∈ X and
‖f‖ ≤ ‖g‖. If in addition the unit ball BX is closed in L0(µ), then we say that X
has the Fatou property. A Banach function space defined on (N, 2N, µ) with the
counting measure µ is called a Banach sequence space. In this case ei ∈ X for
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all i ∈ N, where ei denotes a standard unit vector, that is ei = (0, . . . , 0, 1, 0, . . . )
with 1 as the ith component.

A Banach function space X on (Ω, µ) is said to be rearrangement invariant
(r.i.,or symmetric) if for every f ∈ L0(µ) and g ∈ X with µf = µg, we have
f ∈ X and ‖f‖ = ‖g‖, where for any h ∈ L0(µ), µh is a distribution function of
h defined by

µh(t) = µ{ω ∈ Ω : |h(ω)| > t}, t ≥ 0.

If X is a Banach function space on (Ω, µ), then the associate space X ′ of X is
a Banach function space, which can be identified with the space of all functionals
possessing an integral representation, that is,

X ′ = {g ∈ L0(µ) : ‖g‖X′ = sup
‖f‖≤1

∫

Ω

|fg|dµ < ∞}.

It is well known that if X has the Fatou property, then (X ′′, ‖·‖X′′) coincides
with (X, ‖·‖) [1, 5, 6].

An element f ∈ X is said to be order continuous if ‖fn‖ ↓ 0 for every sequence
{fn} with |fn| ≤ |f | a.e. and |fn| ↓ 0 a.e. on Ω. A Banach function space X is
said to be order continuous if every element of X is order continuous. It is well
known that if X is an order continuous Banach function space, then X∗ is order
isometric to X ′, and this identification will be denoted by X∗ ' X ′.

Suppose for the moment that X is a Banach function space consisting of real
valued functions. An element φ ∈ X∗ is called an integral functional if for any
{fn} ⊂ X with 0 ≤ fn ↓ 0 a.e., φ(fn) → 0. A linear functional φs ∈ X∗ is called a
positive singular linear functional whenever φs(f) ≥ 0 holds for all non-negative
f in X and for every integral linear functional φ, 0 ≤ φ(f) ≤ φs(f) for all non-
negative f in X implies φ = 0. A singular linear functional in X∗ means the
difference of two positive singular linear functionals in X∗. It is known that the
space of integral linear functionals in X∗ is order isometric to X ′ and a dual space
X∗ is order isometric to X ′ ⊕X∗

s , where X∗
s is the space of singular functionals

on X [5, 6, 7].
Whenever X is a Banach function space, X0 (or X0) will denote the set of all

order continuous elements of X. It is easy to show that X0 is an order ideal,
which means that it is a closed subspace with the ideal property. Note that X0 is
contained in the closure of the family of all simple functions in X with support
of finite measure [1]. It is well known that if X is a Banach function space with
the Fatou property and X0 contains all simple functions with support of finite
measure, then (X0)

∗ ' X ′. In this case X∗ ' (X0)
∗ ⊕X⊥

0 , where X⊥
0 coincides

with X∗
s when X is a Banach function space consisting of real valued functions

(cf. Theorem 102.6, Theorem 102.7 in [6]).
We will use the following facts about M -ideals [2].

Theorem 0.1. Suppose Y is a closed subspace of a Banach space X.
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(i) (The 3-ball property) Y is an M-ideal of X if and only if for all y1, y2, y3 ∈
BY , all x ∈ BX and ε > 0 there is y ∈ Y satisfying

‖x + yi − y‖ ≤ 1 + ε for all i = 1, 2, 3.

(ii) A Banach space X is M-embedded if and only if every separable subspace
of X is also M-embedded.

(iii) If X is an M-embedded space, then every separable subspace of X has a
separable dual.

For any real functions F and G, we say that F is equivalent to G and we
write it as F ≈ G whenever there are constants C1, C2 > 0 such that C1|F (u)| ≤
|G(u)| ≤ C2|F (u)| for all u in the domain of the functions. Recall also that for
z ∈ C, sign z = z/|z| if z 6= 0 and sign z = 1 if z = 0.

In this paper, We examine M -ideal properties of Marcinkiewicz spaces, includ-
ing the space L1 + L∞.

1. Marcinkiewicz function spaces MΨ

Let L0 = L0(I,B, µ) be the space of all Lebesgue measurable functions on I,
where I = (0, 1) or I = (0,∞), µ is the Lebesgue measure on σ-algebra B of the
Lebesgue measurable subsets of I. For any f ∈ L0 the decreasing rearrangement
of f is the function f ∗ defined by

f ∗(t) = inf{λ > 0 : µf (λ) ≤ t},
where µf is the distribution function of f .

Definition 1.1. Let Ψ : [0,∞) → [0,∞), Ψ(0) = 0, Ψ be increasing, and Ψ(u) > 0
for u > 0. Then the Marcinkiewicz space MΨ (called also weak Lorentz space) is
the collection of all functions f ∈ L0 such that

‖f‖ = ‖f‖MΨ
= sup

t>0

∫ t

0
f ∗

Ψ(t)
< ∞.

We will assume further without loss of generality that the function Ψ(t)/t is
decreasing on (0,∞). In fact for any function Ψ from Definition 1.1 that defines

non-trivial space MΨ, there exists a function Ψ̂ such that Ψ̂(t)/t is decresing, Ψ̂
has the same properties as Ψ, and the identity operator between MΨ and MΨ̂ is
an isometry. Indeed, let

Ψ̂(t) = t inf{Ψ(s)/s : 0 < s ≤ t}, t > 0.

It is clear that Ψ̂(t)/t is decreasing for 0 < t1 < t2 we have

Ψ̂(t2) = t2 min{inf{Ψ(s)/s : 0 < s ≤ t1}, inf{Ψ(s)/s : t1 ≤ s ≤ t2}}
= min{t2 inf{Ψ(s)/s : 0 < s ≤ t1}, Ψ(t1)}
≥ t1 min{inf{Ψ(s)/s : 0 < s ≤ t1}, Ψ(t1)/t1} = Ψ̂(t1),
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which shows that Ψ̂ is increasing. It is also easy to see that MΨ is non-trivial if

and only if Ψ̂(t) > 0 for t > 0. Finally, since Ψ̂(t) ≤ Ψ(t), ‖f‖MΨ
≤ ‖f‖M

Ψ̂
. On

the other hand for any 0 < s ≤ t,

t
1

s

∫ s

0

f ∗ = t
Ψ(s)

s

∫ s

0
f ∗

Ψ(s)
≤ t

Ψ(s)

s
‖f‖MΨ

,

and so∫ t

0

f ∗ = t inf{1

s

∫ s

0

f ∗ : 0 < s ≤ t} ≤ t inf
0<s≤t

Ψ(s)

s
‖f‖MΨ

= Ψ̂(t)‖f‖MΨ
,

which yields ‖f‖M
Ψ̂
≤ ‖f‖MΨ

. Thus MΨ and MΨ̂ coincide and have equivalent
norms.

In view of the above remarks we assume further in this section that Ψ :
[0,∞) → [0,∞), Ψ(0) = 0, Ψ(t) > 0 for t > 0, Ψ is increasing and Ψ(t)/t is
decreasing on (0,∞) i.e., Ψ is quasi-concave. It is well known and easy to show
that MΨ is a r.i. space with the Fatou property (cf. [1, 5]).

Definition 1.2. M0
Ψ is a subspace of MΨ consisting of all f ∈ MΨ satisfying

lim
t→0+

∫ t

0
f ∗

Ψ(t)
= 0 in case when I = (0, 1),

and

lim
t→0+,∞

∫ t

0
f ∗

Ψ(t)
= 0 in case when I = (0,∞).

We have the following basic results on MΨ and M0
Ψ (cf. [5]).

Theorem 1.3. (i) M0
Ψ 6= {0} if and only if

(1.1) inf
t>0

t

Ψ(t)
= 0 for I = (0, 1),

and

(1.2) inf
t>0

t

Ψ(t)
= 0 and sup

t>0
Ψ(t) = ∞ for I = (0,∞).

(ii) Let M0
Ψ 6= {0}. Then the three sets: M0

Ψ, the subspace of all order contin-
uous elements of MΨ, and the closure of all simple (or bounded) functions
with support of finite measure, coincide.

Proof. Condition (i) is clear since for 0 < t < a
∫ t

0
χ(0,a)

Ψ(t)
=

t

Ψ(t)
,

and for t > a ∫ t

0
χ(0,a)

Ψ(t)
=

a

Ψ(t)
.
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We shall show (ii) only in the case when I = (0,∞). Since M0
Ψ 6= {0}, the

conditions in 1.2 are satisfied. Let 0 < fn ≤ f ∈ M0
Ψ and fn ↓ 0. Given ε > 0,

there exist 0 < t0 < t1 < ∞ such that

sup
0<t<t0

∫ t

0
f ∗

Ψ(t)
< ε and sup

t1<t<∞

∫ t

0
f ∗

Ψ(t)
< ε.

By the Dominated Lebesgue Theorem, there exists N such that for all n > N
∫ t1

0

f ∗n < εΨ(t0).

Hence for n > N ,

‖fn‖ ≤ sup
0<t<t0

∫ t

0
f ∗

Ψ(t)
+ sup

t1<t<∞

∫ t

0
f ∗

Ψ(t)
+

∫ t1
0

f ∗n
Ψ(t0)

< 3ε.

So every element in M0
Ψ is order continuous. Then M0

Ψ is contained in the closure
of all simple (or bounded) functions with support of finite measure ([1], Theorem
3.11). Finally by conditions 1.2 and by Lemma 5.4 in [5], which is also valid
under our assumptions, the closure of the set of all simple functions with support
of finite measure coincides to M0

Ψ.
¤

Now, we investigate when M0
Ψ is an M -ideal in MΨ. The next theorem extends

the already known result for some functions Ψ (cf. [2]).

Theorem 1.4. If I = (0, 1), then M0
Ψ is an M-ideal in MΨ. If I = (0,∞) and

inf
t>0

Ψ(t)/t = 0,

then M0
Ψ is an M-ideal in MΨ.

Proof. In the proof we shall use the 3-ball property (see Theorem 0.1), that is we
show that for every f ∈ BMΨ

, every fi ∈ BM0
Ψ
, i = 1, 2, 3, and ε > 0 there exists

g ∈ BM0
Ψ

such that ‖f + fi − g‖ ≤ 1 + ε, i = 1, 2, 3.

We asuume that M0
Ψ 6= {0}, otherewise there is nothing to prove. Let first

I = (0, 1). Then by Theorem 1.3, inft>0 t/Ψ(t) = 0. By density of bounded
functions in M0

Ψ we can take fi bounded. Thus there exists b > 0 such that for
all 0 < t ≤ b ∫ t

0
f ∗i

Ψ(t)
≤ Mt

Ψ(t)
≤ Mb

Ψ(b)
< ε,

where |fi(x)| ≤ M, x ∈ (0, 1), i = 1, 2, 3. We then choose 0 < c ≤ b such that∫ c

0
f ∗

Ψ(b)
≤ ε.

Setting
g = fχ{s:|f(s)|≤f∗(c)},
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it is clear that g ∈ BM0
Ψ
. Moreover, for 0 < t ≤ b, i = 1, 2, 3,

∫ t

0
(fi + f − g)∗

Ψ(t)
≤

∫ t

0
f ∗i

Ψ(t)
+

∫ t

0
(f − g)∗

Ψ(t)
≤ ε +

∫ t

0
f ∗

Ψ(t)
≤ 1 + ε.

We also have for s ∈ (0, 1),

(f − g)∗(s) ≤ f ∗χ(0,c)(s).

Hence for t ≥ b, i = 1, 2, 3,
∫ t

0
(fi + f − g)∗

Ψ(t)
≤ ‖fi‖+

∫ c

0
f ∗

Ψ(b)
≤ 1 + ε.

Combining the above inequalities we get ‖fi + f − g‖ ≤ 1 + ε.
Now let I = (0,∞). Then in view of M0

Ψ 6= {0} and Theorem 1.3, conditions
1.2 have to be satisfied. For every f ∈ MΨ

lim sup
t→∞

∫ t

0
f ∗

Ψ(t)
= lim sup

t→∞

1
t

∫ t

0
f ∗

Ψ(t)
t

≤ sup
t>0

∫ t

0
f ∗

Ψ(t)
< ∞,

and thus in view of the assumption inft>0 Ψ(t)/t = 0 we have

lim
t→∞

1

t

∫ t

0

f ∗ = lim
t→∞

f ∗(t) = 0.

Since fi ∈ M0
Ψ, there are 0 < b1 < b2 such that for all t < b1 or all t > b2,∫ t

0
f ∗i

Ψ(t)
< ε,

for i = 1, 2, 3. Choose then η > 0 so small that η b2
Ψ(b1)

< ε and take 0 < c ≤ b1

such that ∫ c

0
f ∗

Ψ(b1)
≤ ε.

Setting

g = fχ{s:η<|f(s)|≤f∗(c)},

we have g ∈ M0
Ψ. Indeed, there is T > 0 such that

f ∗(T ) = inf{s > 0 : µf (s) ≤ T} < η,

and so there exists 0 < s < η such that µf (s) ≤ T . Hence µf (η) = µ{|f | > η} ≤
T and

lim
t→∞

∫ t

0
g∗

Ψ(t)
≤ lim

t→∞

∫ T

0
f ∗

Ψ(t)
= 0.

Moreover,

lim
t→0+

∫ t

0
g∗

Ψ(t)
≤ lim

t→0+

tf ∗(c)
Ψ(t)

= 0.
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For i = 1, 2, 3 and 0 < t ≤ b1 or t ≥ b2,∫ t

0
(fi + f − g)∗

Ψ(t)
≤

∫ t

0
f ∗i

Ψ(t)
+

∫ t

0
f ∗

Ψ(t)
≤ 1 + ε.

Finally for i = 1, 2, 3 and b1 ≤ t ≤ b2,∫ t

0
(fi + f − g)∗

Ψ(t)
≤

∫ t

0
(fi + fχ{|f |≤η}∪{|f |>f∗(c)})∗

Ψ(t)

≤
∫ t

0
f ∗i +

∫ t

0
(fχ{|f |≤η})∗ +

∫ t

0
(fχ{|f |>f∗(c)})∗

Ψ(t)

≤
∫ b1
0

f ∗i +
∫ t

b1
f ∗i +

∫ c

0
f ∗ + tη

Ψ(t)

≤
∫ b1
0

f ∗i + b1η

Ψ(t)
+

∫ t

b1
f ∗i + (t− b1)η

Ψ(t)
+

∫ c

0
f ∗

Ψ(b1)

≤
∫ b1
0

f ∗i + b1η

Ψ(b1)
+

∫ t

b1
f ∗i + η(b2 − b1)

Ψ(t)
+ ε

≤ ε + η
b1

Ψ(b1)
+ 1 + η

(b2 − b1)

Ψ(b1)
+ ε

< 1 + 4ε.

Combining the above inequalities we complete the proof. ¤
We will see in the next section (Remark 2.3) that the assumption inft>0 Ψ(t)/t =

0 for I = (0,∞) in the above theorem cannot be removed.
It is well known that if Ψ is quasi-concave, then there exists an increasing

concave function Ψ̃ on I such that Ψ(t) ≤ Ψ̃(t) ≤ 2Ψ(t) on I (cf. Proposition
5.10 in [1]). It is easy to show that ‖ ‖M

Ψ̃
≈ ‖ · ‖MΨ

. So we can obtain an
equivalent norm on MΨ, which is induced by an increasing concave function on
I.

Theorem 1.5. Let M0
Ψ 6= {0} that is the conditions 1.1 or 1.2 are satisfied.

(i) If I = (0, 1) then MΨ is the bidual of M0
Ψ.

(ii) If I = (0,∞) and
inf
t>0

Ψ(t) = 0

then MΨ is the bidual of M0
Ψ.

Proof. Assume first that Ψ is concave. By Theorem 1.3 (ii), (M0
Ψ)∗ = (MΨ)′.

Let ‖f‖MΨ
≤ 1 and g be a simple function such that g∗ =

∑n
i=1 aiχ(0,ti], where

0 < t1 < · · · < tn, and ai ≥ 0. Then for all t > 0,
∫ t

0
f ∗ ≤ Ψ(t) and so

∫

I

g∗f ∗ ≤
n∑

i=1

aiΨ(ti) =

∫

I

g∗dΨ,
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where the Lebesgue-Stieltjes integral is well-defined since Ψ is continuous on
[0,∞). By the Fatou property of MΨ we have (cf. Proposition 4.2 in [1])

‖g‖(MΨ)′ = sup
{ ∫

I

f ∗g∗ : ‖f‖Mψ
≤ 1

}
.

Thus for all g in L0,

‖g‖(MΨ)′ ≤
∫

I

g∗dΨ.

Since Ψ is continuous and concave, there exists h ∈ L0 such that for t ∈ I,

Ψ(t) =

∫ t

0

h∗(s)ds.

Then ‖h‖MΨ
≤ 1, and for any g ∈ L0,

∫
I
h∗g∗ =

∫
I
g∗dΨ. So we get the reverse

inequality

‖g‖(MΨ)′ ≥
∫

I

g∗dΨ,

which yields that ‖g‖(MΨ)′ =
∫

I
g∗dΨ. Therefore the associate space

(MΨ)′ =
{

g ∈ L0 :

∫

I

g∗dΨ < ∞
}

is a Lorentz space, and thus is order continuous [5]. In general, if Ψ is not
concave then ‖ · ‖MΨ

≈ ‖ ‖M
Ψ̃
, and hence ‖ · ‖(MΨ)′ ≈ ‖ · ‖(M

Ψ̃
)′ . Since (MΨ̃)′ is

order continuous, (MΨ)′ is order continuous too. Then order continuity of (MΨ)′

implies (M0
Ψ)∗∗ ' (MΨ)′∗ ' (MΨ)′′ = MΨ by the Fatou property of ‖ · ‖MΨ

. This
completes the proof.

¤

Notice that the assumption inft>0 Ψ(t) = 0 cannot be skipped in the above
theorem (cf. Remark 2.5).

2. The spaces L1 + L∞ and L1 ∩ L∞

In this section we will investigate M -ideal properties of Σ = L1 + L∞ and
∆ = L1 ∩ L∞ on I = (0,∞) equipped with the following norms.

(2.1) ‖f‖Σ = inf{‖g‖1 + ‖h‖∞ : f = g + h, g ∈ L1, h ∈ L∞} =

∫ 1

0

f ∗,

|||f |||Σ = inf{max{‖g‖1 , ‖h‖∞} : f = g + h, g ∈ L1, h ∈ L∞},
‖f‖∆ = max{‖f‖1 , ‖f‖∞},
|||f |||∆ = ‖f‖1 + ‖f‖∞ .
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It is clear that ‖·‖ and |||·||| are equivalent. The equality in (2.1) is well known
and can be found e.g. in [1]. It is also well known [3] that (Σ, ‖·‖Σ)′ = (∆, ‖·‖∆)
and (Σ, |||·|||Σ)′ = (∆, |||·|||∆). Moreover,

Σ0 = {f ∈ Σ : lim
t→∞

f ∗(t) = 0},
where Σ0 is a subspace of all order continuous elements of Σ (cf. [1, 5]).

It appears that for certain choice of Ψ, the Marcinkiewicz space MΨ coincides
with Σ, and M0

Ψ with Σ0. In fact we have the following result.

Proposition 2.1. The norms ‖·‖MΨ
and ‖·‖Σ are equal if and only if for all t > 0

Ψ(0) = 0 and Ψ(t) = max{t, 1},
and they are equivalent if and only if for all t > 0

Ψ(0) = 0 and Ψ(t) ≈ max{t, 1}.
Consequently if I = (0,∞) and limt→0+ Ψ(t) > 0 and limt→∞ Ψ(t)/t > 0 then the
spaces M0

Ψ and Σ0 coincide as sets with equivalent norms.

Proof. If ‖ · ‖MΨ
and ‖ · ‖Σ are equal, then for t > 0,

‖χ(0,t)‖MΨ
=

t

Ψ(t)
= ‖χ(0,t)‖Σ = min{t, 1}.

Hence Ψ(t) = max{t, 1}, for t > 0. Conversely suppose that Ψ(t) = max{t, 1}
for t > 0. Then

‖f‖MΨ
= sup

t>0

∫ t

0
f ∗

max{t, 1} = max

{
sup

0<t≤1

∫ t

0

f ∗, sup
t>1

1

t

∫ t

0

f ∗
}

=

∫ 1

0

f ∗ = ‖f‖Σ.

Analogously we show the conditions for the equivalence of the norms. ¤
Let ‖ · ‖ be an equivalent norm to ‖ · ‖Σ or to |||·|||Σ. Then it is not difficult to

see that `1 is isomorphically embedded in (Σ0, ‖ ·‖). Therefore (see Theorem 0.1)
(Σ0, ‖ · ‖) is not an M -embedded space.

In the next two theorems we calculate the exact norms of the duals (Σ, ‖·‖Σ)∗

and (Σ, ||| |||Σ)∗. In consequence we answer the question when Σ0 is an M -ideal in
Σ. In the sequel ‖ · ‖1 and ‖ · ‖∞ will denote as usual the norms in L1 and L∞,
respectively.

Theorem 2.2. The following equalities hold true.

(Σ, ‖·‖Σ)∗ = Σ∗
0 ⊕ Σ⊥

0 ' (∆, ‖·‖∆)⊕ Σ⊥
0 .

Moreover for any F ∈ Σ∗,
F = F1 + F2

with F2 ∈ Σ⊥
0 and

F1(g) =

∫
gf1
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for some f1 ∈ (∆, ‖·‖∆), and

‖F‖ = max{‖f1‖∞ , ‖f1‖1 + ‖F2‖}.
Consequently, Σ0 is not an M-ideal of (Σ, ‖ ‖Σ).

Proof. The equalities (Σ, ‖·‖Σ)∗ = Σ∗
0 ⊕ Σ⊥

0 ' (∆, ‖·‖∆) ⊕ Σ⊥
0 up to equivalence

in norms is a consequence of the well known results on duals in Banach function
spaces (cf. Theorem 102.6, Theorem 102.7 in [6]).

Now let F ∈ Σ∗ and let F̃1 = F |Σ0 . There exists f1 ∈ Σ′ such that F̃1(g) =
∫

f1g

for all g ∈ Σ0 and ‖F̃1‖ = ‖f1‖Σ′ = ‖f1‖∆. Define F1(g) =
∫

f1g for all g ∈ Σ,

and let F2 = F − F1. Then F2|Σ0 = 0 and ‖F̃1‖ = ‖F1‖.
For each f = g + h with g ∈ L1 and h ∈ L∞, we have F2(g) = 0, and so

|F (g + h)| ≤
∣∣∣
∫

f1g
∣∣∣ +

∣∣∣
∫

f1h
∣∣∣ + |F2(h)|

≤ ‖f1‖∞‖g‖1 + ‖f1‖1‖h‖∞ + ‖F2‖‖h‖Σ

≤ ‖f1‖∞‖g‖1 + (‖f1‖1 + ‖F2‖)‖h‖∞
≤ (‖g‖1 + ‖h‖∞) max{‖f1‖∞, ‖f1‖1 + ‖F2‖}

Therefore, ‖F‖ ≤ max{‖f1‖∞, ‖f1‖1 + ‖F2‖}.
Conversely, given ε > 0 there exist g ∈ L1, h ∈ L∞ such that ‖g‖1+‖h‖∞ ≤ 1+ε

and ‖F2‖ ≤ Re F2(h)+ε. For each N ≥ 1, Let f = sign(f1)χ[0,N)+hχ[N,∞). Then

|f | = χ[0,N) + |h|χ[N,∞), and so ‖f‖Σ =
∫ 1

0
f ∗ ≤ 1 + ε. Thus

Re F (f) =

∫ N

0

|f1|+ Re
( ∫ ∞

N

f1h
)

+ Re F2(sign(f1)χ[0,N) + hχ[N,∞))

=

∫ N

0

|f1|+ Re
( ∫ ∞

N

f1h
)

+ Re F2(h)

≥
∫ N

0

|f1|+ Re
(∫ ∞

N

f1h
)

+ ‖F2‖ − ε.

Therefore

‖F‖ ≥ 1

1 + ε

(
‖F2‖ − ε + Re

( ∫ ∞

N

f1h
)

+

∫ N

0

|f1|
)

for all ε > 0 and all N ≥ 1. Since
∫∞

N
f1h → 0 as N →∞, so ‖F‖ ≥ ‖F2‖+‖f1‖1.

Clearly, ‖F‖ ≥ ‖F̃1‖ = ‖f1‖∆ ≥ ‖f1‖∞. Hence ‖F‖ = max{‖f‖∞, ‖f1‖1 +‖F2‖}.
Now suppose that Σ0 is an M -ideal of Σ. Then there is a projection P : Σ∗ →

Σ∗ such that the range of P is Σ⊥
0 and for each F ∈ Σ∗, ‖F‖ = ‖PF‖+‖(I−P )F‖.

Note that PF = F2 and (I − P )F = F1 so that we can choose f1 = χ[0,1/2) and
F2 with ‖F2‖ = 1. Then by the above calculations ‖F‖ = 3/2. But on the other
hand we must have ‖F‖ = ‖PF‖+ ‖(I − P )F‖ = ‖F2‖+ ‖f1‖∆ = 2, which is a
contradiction. ¤
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Remark 2.3. By Proposition 2.1, (Σ, ‖·‖Σ) = MΨ, where Ψ(t) = max{t, 1}, t > 0.
Thus inft>0 Ψ(t)/t = 1, and so the assumption in Theorem 1.4 is not satisfied.
Since Σ0 is not an M -ideal in (Σ, ‖ ‖Σ), we see that the assumption inft>0 Ψ(t)/t =
0 cannot be omitted in Theorem 1.4.

The next theorem shows that if we use another equivalent norm |||·|||Σ in Σ, the
M -ideal properties are remarkably changed.

Theorem 2.4. The following equalities are satisfied

(Σ, |||·|||Σ)∗ = Σ∗
0 ⊕ Σ⊥

0 = (∆, |||·|||∆)⊕1 Σ⊥
0 .

Moreover for F ∈ Σ∗,

F = F1 + F2

where F2 ∈ Σ⊥
0 and

F1(g) =

∫
gf1

for some f1 ∈ (∆, |||·|||∆), and

‖F‖ = ‖F1‖+ ‖F2‖ = ‖f1‖∞ + ‖f1‖1 + ‖F2‖ .

Therefore Σ0 is an M-ideal of (Σ, ||| |||Σ).

Proof. By the same method as in the proof of the previous theorem, we get a
decomposition F = F1 + F2 with F2|Σ0 = 0, F1(g) =

∫
f1g for all g ∈ Σ, and

‖F1‖ = |||f1|||∆.
Now for each f = g + h ∈ Σ with g ∈ L1 and h ∈ L∞ we have

|F (g + h)| ≤
∣∣∣∣
∫

f1(g + h)

∣∣∣∣ + |F2(h)|
≤ (‖f‖1 + ‖f1‖∞) max{‖g‖1, ‖h‖∞}+ ‖F2‖ |||h|||Σ
≤ (‖f‖1 + ‖f1‖∞) max{‖g‖1, ‖h‖∞}+ ‖F2‖‖h‖∞
≤ max{‖g‖1, ‖h‖∞}(‖f1‖∞ + ‖f1‖1 + ‖F2‖).

Hence ‖F‖ ≤ ‖f1‖∞ + ‖f1‖1 + ‖F2‖.
Conversely, suppose that ‖f1‖∞ 6= 0. For large enough n ∈ N, choose En ⊂

{|f1| > ‖f1‖∞ − 1/n} with 0 < µEn < ∞. Let

gn = sign(f1)
χEn

µEn

.

Given ε > 0, choose g ∈ L1 and h ∈ L∞ so that max{‖g‖1, ‖h‖∞} ≤ 1 + ε and
‖F2‖ ≤ Re F2(h) + ε. Let

hn = hχ[n,∞) + sign(f1)χ[0,n).
11



Then ‖hn‖∞ ≤ 1+ε and ‖gn‖1 ≤ 1. Hence for fn = gn+hn, we have |||fn|||Σ ≤ 1+ε.
Consequently

Re F (fn) = Re

∫
f1gn + Re

∫
f1hn + Re F2(hn)

=

∫

En

|f1|
µEn

+

∫ n

0

|f1|+ Re

∫ ∞

n

f1h + Re F2(hn − sign(f1)χ[0,n) + hχ[0,n))

≥ ‖f‖∞ − 1

n
+

∫ n

0

|f1|+ Re

∫ ∞

n

f1h + Re F2(h)

≥ ‖f‖∞ − 1

n
+

∫ n

0

|f1|+ Re

∫ ∞

n

f1h + ‖F2‖ − ε.

Therefore ‖F‖ ≥ 1
1+ε

(‖f‖∞ − 1
n

+
∫ n

0
|f1| + Re

∫∞
n

f1h + ‖F2‖ − ε). Note that

h is independent of n. Since limn→∞
∫∞

n
f1h = 0 and ε is arbitrary we obtain

‖F‖ ≥ ‖f1‖∞ + ‖f1‖1 + ‖F2‖, and this completes the proof. ¤
Remark 2.5. (1) Note that we have the following equalities (with equivalence of
norms)

Σ∗∗
0 ' (Σ′)∗ = ∆∗ ' ∆′ ⊕∆∗

s = Σ⊕∆∗
s,

where ∆∗
s 6= {0} since ∆ is not order continuous. Thus the bidual of Σ0 = M0

Ψ

with Ψ(t) = max{t, 1}, t > 0, is not equal to Σ = MΨ. It shows that the
assumption inft>0 Ψ(t) = 0 in Theorem 1.5 cannot be omitted.

(2) We observe also that since (∆, ‖·‖∆) is not order continuous, it contains an
isomorphic copy of `∞ (cf. [6]), and so it contains an isomorphic copy of `1 which
has a non-separable dual. Therefore ∆ with any equivalent norm to ‖ · ‖∆ is not
M -embedded.

3. Marcinkiewicz sequence spaces

In this section we will consider Marcinkiewicz sequence spaces. Assume further
that Ψ = {Ψ(n)} = {Ψ(n)}∞n=0 is a sequence such that Ψ(0) = 0, {Ψ(n)} is
increasing, Ψ(n) > 0 for n > 0 and {Ψ(n)/n} is decreasing. Given a sequence
x = {x(n)} = {x(n)}∞n=1 define its decreasing rearrangement x∗ = {x∗(n)} as

x∗(n) = f ∗(n− 1), n ∈ N,

where f(t) =
∑∞

k=1 x(k)χ[k−1,k)(t), t ≥ 0.

Definition 3.1. The Marcinkiewicz sequence space mΨ consists of all sequences
x = {x(n)} = {x(n)}∞n=1 such that

‖x‖ = ‖x‖mΨ
= sup

n≥1

∑n
k=1 x∗(k)

Ψ(n)
< ∞.

Let m0
Ψ be a subspace of mΨ consisting of all x ∈ mΨ satisfying

lim
n→∞

∑n
k=1 x∗(k)

Ψ(n)
= 0.
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We have the following basic facts about mΨ and m0
Ψ.

Theorem 3.2. (1) mΨ is a r.i. Banach sequence space with the Fatou prop-
erty.

(2) m0
Ψ 6= {0} if and only if limn→∞ Ψ(n) = ∞.

(3) If limn→∞ Ψ(n) = ∞, then m0
Ψ is a non-trivial subspace of all order con-

tinuous elements of mΨ.
(4) The following conditions are equivalent.

(a) ‖x‖mΨ
= ‖x‖∞ for all x ∈ `∞ (resp. ‖x‖mΨ

≈ ‖x‖∞ for all x ∈ `∞).
(b) ‖x‖mΨ

= ‖x‖∞ for all x ∈ c0 (resp. ‖x‖mΨ
≈ ‖x‖∞ for all x ∈ c0).

(c) Ψ(n) = n for all n ∈ N (resp. Ψ(n) ≈ n for all n ∈ N).

Proof. Condition (1) is immediate and (2) is clear if we note that e1 ∈ m0
Ψ is

equivalent to limn→∞ 1/Ψ(n) = 0. For (3), note that m0
Ψ contains all charac-

teristic functions with support of finite measure by (2), so it contains all order
continuous elements [1]. The proof that any x ∈ m0

Ψ is order continuous is very
similar to the function case, so we omit it. Finally we shall prove that 4(a) is
equivalent to 4(c). Let’s assume first that two norms are equal. Then for n ∈ N,

‖e1 + · · ·+ en‖mΨ
=

n

Ψ(n)
= 1.

For the converse, if we assume Ψ(n) = n for n ∈ N, then for any x ∈ `∞,

‖x‖∞ = x∗(1) = sup
n≥1

1

n

n∑

k=1

x∗(k) = ‖x‖mΨ
.

The remaining equivalences can be proved in a similar way. ¤
Before we state the main results of this section we need to prove the fol-

lowing simple lemma. Given the sequence {Ψ(n)} define the function Ψ(t) =∑∞
i=0 Ψ(i)χ[i,i+1)(t) on [0,∞). Obviously Ψ|N∪{0} coincides with {Ψ(n)}.

Lemma 3.3. There is a concave continuous function Ψ̃ on [0,∞) such that

Ψ ≤ Ψ̃ ≤ 3Ψ on [1,∞) and Ψ̃(0) = 0.

Proof. Fix s ≥ 1. For 0 < t ≤ s,

Ψ(t)

t
≤ Ψ(s)

t
,

and for [s] ≤ [t],

Ψ(t)

t
≤ Ψ([t])

[t]
≤ Ψ([s])

[s]
=

s

[s]

Ψ(s)

s
≤ 2

Ψ(s)

s
,

where for real r ∈ R, [r] is the greatest integer less than or equal to r. Hence for
every t ≥ 0 and s ≥ 1,

Ψ(t) ≤ (1 +
2t

s
)Ψ(s) and Ψ(t) ≤ tΨ(1).
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Therefore there is a minimal concave function Ψ̃ such that for each t ≥ 0, s ≥ 1,

Ψ(t) ≤ Ψ̃(t) ≤ min{(1 +
2t

s
)Ψ(s), tΨ(1)}.

Then for every s ≥ 1 and t > 0,

Ψ̃(s) ≤ (1 +
2s

s
)Ψ(s) = 3Ψ(s) and Ψ̃(t) ≤ tΨ(1).

So limt→0+ Ψ̃(t) = 0. Therefore Ψ̃ is a continuous concave function on [0,∞). ¤
Now, we are ready to investigate when mΨ is the bidual of m0

Ψ and when m0
Ψ

is an M -ideal of mΨ. The following theorems show that the situation in sequence
case is simpler than in the non-atomic case.

Theorem 3.4. The space mΨ is a bidual of m0
Ψ if and only if limn→∞ Ψ(n) = ∞.

Proof. If limn→∞ Ψ(n) < ∞, then by Theorem 3.2 (2), m0
Ψ = {0}. So mΨ cannot

be bidual of m0
Ψ since mΨ 6= {0}.

For the converse, suppose that limn→∞ Ψ(n) = ∞. Then by Theorem 3.2 (2)
and (3), m0

Ψ is the order continuous subspace of mΨ and it contains all simple
functions with support of finite measure. Hence (m0

Ψ)∗ ' (mΨ)′. So if we show
that (mΨ)′ is order continuous, then (m0

Ψ)∗∗ ' ((mΨ)′)∗ ' (mΨ)′′ = mΨ, and the
proof is done.

Note that by Lemma 3.3, there is an equivalent norm in mΨ induced by the

concave function Ψ̃, that is

‖x‖m
Ψ̃

= sup
n≥1

∑n
k=1 x∗(k)

Ψ̃(n)
.

If ‖x‖m
Ψ̃
≤ 1, then

n∑

k=1

x∗(k) ≤ Ψ̃(n),

for all n ≥ 1. For any decreasing sequence y∗ = (y∗(1), · · · , y∗(n), 0, · · · ), the
summation by parts shows that

n∑

k=1

x∗(k)y∗(k) ≤
n∑

k=1

y∗(k)(Ψ̃(k)− Ψ̃(k − 1)).

Then by the Fatou property, for any y = {y(k)},

‖y‖(m
Ψ̃

)′ ≤
∞∑

k=1

y∗(k)(Ψ̃(k)− Ψ̃(k − 1)).

Note that there is an integral representation Ψ̃(t) =
∫ t

0
h∗(s)ds for some h ∈ L0.

This shows that, if we take x(k) = Ψ̃(k) − Ψ̃(k − 1) for all k ∈ N, then the
sequence {x(k)} is decreasing and for each n ∈ N,
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∑n
k=1 x∗(k)

Ψ̃(n)
=

Ψ̃(n)

Ψ̃(n)
= 1.

This means that ‖x‖ = 1 and for all y,
∞∑

k=1

x∗(k)y∗(k) =
∞∑

k=1

y∗(k)(Ψ̃(k)− Ψ̃(k − 1)).

Hence

‖y‖(m
Ψ̃

)′ ≥
∞∑

k=1

y∗(k)(Ψ̃(k)− Ψ̃(k − 1)),

for all y. Therefore we obtain the following formula

‖y‖(m
Ψ̃

)′ =
∞∑

k=1

y∗(k)(Ψ̃(k)− Ψ̃(k − 1))

and this implies that (mΨ̃)′ and hence (mΨ)′ is order continuous [5]. ¤
In view of Theorem 3.2 (4), if Ψ(n) = n, then m0

Ψ = c0 and mψ = `∞ with
equality of norms, and thus m0

Ψ is an M -ideal of mΨ. The next theorem extends
this result to a broader class of functions Ψ and improves already existing results
in certain class of mΨ (cf. [2]).

Theorem 3.5. Assume that limn→∞
Ψ(n)

n
= 0 and limn→∞ Ψ(n) = ∞. Then m0

Ψ

is an M-ideal in its bidual mΨ.

Proof. First observe that if x ∈ mΨ, then

lim sup
n→∞

∑n
k=1 x∗(k)

Ψ(n)
= lim sup

n→∞

1
n

∑n
k=1 x∗(k)

1
n
Ψ(n)

≤ sup
n

∑n
k=1 x∗(k)

Ψ(n)
< ∞,

and in view of the assumption limn→∞
Ψ(n)

n
= 0,

lim
n→∞

x∗(n) = lim
n→∞

1

n

n∑

k=1

x∗(k) = 0.

In the proof we shall use the 3-ball property (cf. Theorem 0.1) and the same
technique as in [2], that is we show that for every x = {a(n)} ∈ BmΨ

, every
xi = {xi(n)} ∈ Bm0

Ψ
with finite support, i = 1, 2, 3, and ε > 0 there is y ∈ m0

Ψ

such that ‖x + xi − y‖ ≤ 1 + ε, i = 1, 2, 3. First assume that for all i = 1, 2, 3,

max{j : x∗i (j) 6= 0} =: ki = k,

and
k∑

j=1

x∗i (j) ≤
k∑

j=1

a∗(j).
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Next pick up N such that for all n ≥ N , xi(n) = 0 and

|a(n)| ≤ min{δ, a∗(k)},
where δ = mini x

∗
i (k). Then define the sequence y = {y(n)} by y(n) = a(n) if

n ≤ N and y(n) = 0 otherwise. If zi(n) = a(n)+xi(n)−y(n), then z∗i (j) = x∗i (j)
for j ≤ k and z∗i (j) ≤ a∗(j) for j > k. Hence for n ≤ k,

∑n
j=1 z∗i (j)

Ψ(n)
≤ 1,

and for n > k, ∑n
j=1 z∗i (j)

Ψ(n)
≤

∑n
j=1 a∗(j)

Ψ(n)
≤ 1.

Therefore ‖x + xi − y‖ ≤ 1.
In general case, we may assume that x is not an element of m0

Ψ. In this case,
we cannot have x ∈ `1. Hence we can find l ≥ ki for all i = 1, 2, 3, such that

ki∑
j=1

x∗i (j) <

l∑
j=1

a∗(j).

Define ξ as follows: If xi(n) 6= 0 then let ξi(n) = xi(n). At l − ki indices where
xi(n) = 0, let ξi(n) = α (α > 0 is chosen later), otherwise let ξi(n) = 0. The
number α should be chosen so small that for all i = 1, 2, 3, ‖xi − ξi‖ ≤ ε and

n∑
j=1

ξ∗i (j) ≤
l∑

j=1

a∗(j).

By the first part of the proof, there exists y ∈ m0
Ψ such that

‖x +
ξi

1 + ε
− y‖ ≤ 1.

Hence ‖x + xi − y‖ ≤ 1 + 2ε, which completes the proof. ¤

Remark 3.6. Theorem 3.2 (4) shows that limn→∞
Ψ(n)

n
> 0 if and only if m0

Ψ = c0

up to equivalent norms. Therefore if limn→∞
Ψ(n)

n
> 0, then mΨ can be renormed

so that m0
Ψ is an M -ideal of its bidual mΨ, since c0 is an M -ideal of `∞. But

m0
Ψ with its original norm does not need to be an M -ideal of mΨ if we drop the

assumption limn→∞ Ψ(n)/n = 0, as we can see in the following example.
Let Ψ(0) = 0, Ψ(n) = max{2n

3
, 1} for n ∈ N. Then mΨ = `∞ with norm

‖x‖Ψ = sup

{
x∗(1),

3(x∗(1) + x∗(2))

4
, · · · ,

3
∑n

k=1 x∗(k)

2n
, · · ·

}

that is equivalent to ‖·‖∞-norm. Then (c0, ‖·‖Ψ) is not an M -ideal of (`∞, ‖·‖Ψ).
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Indeed, let x1 = e1 + 1
3
e2, x2 = e1 − 1

3
e2, x3 = −e1 + 1

3
e2, and let x ≡ 2/3.

Note that ‖xi‖ = ‖x‖ = 1. Then there is no y ∈ c0 such that ‖xi + x− y‖Ψ < 5
4
.

Observe the following formulas for any y ∈ c0,

|x1 + x− y| = (|5/3− y(1)|, |1− y(2)|, |2/3− y(3)|, . . .),
|x2 + x− y| = (|5/3− y(1)|, |0− y(2)|, |2/3− y(3)|, . . .),
|x3 + x− y| = (|1/3 + y(1)|, |1− y(2)|, |2/3− y(3)|, . . .).

Then max{|5/3− y(1)|, |1/3 + y(1)|} ≥ 1 for all scalars y(1). Therefore for each
y ∈ c0 there is i such that (xi+x−y)∗(1) ≥ 1 and note that limn→∞ |2/3−y(n)| =
2/3, so that (xi + x − y)∗(2) ≥ 2/3 for all i = 1, 2, 3. This means that for every
y ∈ c0 there is some i such that ‖xi + x− y‖Ψ ≥ 3/4(1 + 2/3) = 5/4.

This example shows that we cannot omit the additional conditions in Theo-
rem 3.5.
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