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Abstract. We study the uniqueness of norm-preserving extension of n-homogeneous
polynomials in Banach spaces. We show that norm-preserving extensions of n-homogeneous
polynomials do not need to be unique for n ≥ 2 in real Banach spaces, and for n ≥ 3 in
a large class of complex Banach function spaces. We find further a geometric condition,
which in particular yields that a unit ball in X does not possess any complex extreme
point, under which for every norm-attaining 2-homogeneous polynomial on a complex
symmetric sequence space X there exists a unique norm-preserving extension from X to
its bidual X∗∗. In particular, if mΨ is a Marcinkiewicz sequence space and m0

Ψ is its sub-
space of order continuous elements, we show that every norm-attaining 2-homogeneous
polynomial on m0

Ψ has a unique norm-preserving extension to its bidual mΨ if and only if
no element of a unit ball of mΨ is a complex extreme point. We then apply these results
to obtain some necessary conditions for the uniqueness of extension of 2-homogeneous
polynomials from a complex symmetric space X to its bidual X∗∗.

1. Introduction and Preliminaries

In the late seventies, Aron and Berner [3] showed that a continuous extension of a
bounded homogeneous polynomial from a subspace of a Banach space to the entire space
may not always exist. However they also showed that such extension always exists from
a Banach space X to its bidual X∗∗. More than ten years later, Davie and Gamelin
[8] proved that this canonical extension constructed in [3] is norm preserving, i.e. it is a
Hahn-Banach extension. Very recently, Aron, Boyd and Choi [4] have studied the question
when the extension of n-homogeneous polynomials from c0 to its bidual `∞ is unique. In
the case of 1-homogeneous polynomials, which in fact are linear functionals, it is clear that
a Hahn-Banach extension from c0 to `∞ is unique, since c0 is an M -ideal in `∞. They
showed however that it is no longer true for n ≥ 2 in real spaces as well as for n ≥ 3 in
complex spaces. They also showed that any norm-attaining 2-homogeneous polynomial
on a complex c0 has a unique Hahn-Banach extension to `∞. Later on similar results were
obtained by Choi, Han and Song in [6] for some Marcinkiewicz spaces.

In this article we study analogous problems in more general spaces. We employ and
develop some ideas from papers [4, 6], particularly in sections 2 and 3. We start in section
2, by showing that lack of uniqueness of norm-preserving extensions of n-homogeneous
polynomial is a very common feature. In fact the uniqueness does not occur for n ≥ 2
for n-homogeneous polynomials in real Banach spaces, neither for n ≥ 3 in a large class
of complex Banach spaces, including symmetric spaces. The remaining part of the paper
is devoted to investigation of the uniqueness of the extension of 2-homogeneous norm-
attaining polynomials from complex symmetric sequence spaces X to their biduals X∗∗.
We observe among other things that the lack of complex extreme points in a unit ball of X
is a crucial property in order to obtain a unique extension of a 2-homogeneous polynomial
to X∗∗. In fact we prove in section 3, that if the unit ball of X satisfies a certain geometric
condition ((3.1) in Theorem 3.2), which yields in particular that the ball does not contain
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any complex extreme point, then a 2-homogeneous norm-attaining polynomial depends
only on finite coordinates, and thus has a unique Hahn-Banach extension to X∗∗. In the
case of Marcinkiewicz spaces m0

Ψ and its bidual mΨ, called also weak Lorentz spaces, we
can say more. The main result of section 4, Theorem 4.4, states that a 2-homogeneous
norm-attaining polynomial on m0

Ψ has a unique extension to mΨ if and only if the unit
ball of mΨ (or m0

Ψ) has no complex extreme points, which in turn is equivalent to a
simple condition that the sequence {Ψ(n)} is strictly increasing. In the proof we apply
a strong version of the Maximum Modulus Theorem [17]. Finally, in section 5, we apply
these results to r.i. complex symmetric sequence spaces X and we obtain some necessary
conditions for uniqueness of extension of 2-homogeneous polynomials from X to X∗∗.
This application is based on the well known fact that a symmetric sequence space X is
embedded into a Marcinkiewicz space mΨ, where Ψ(n) = n/Φ(n) and Φ is a fundamental
function of X.

Marcinkiewicz sequence spaces have appeared earlier in a similar context. In [10],
Gowers showed that the space of all norm-attaining bounded operators NA(m0

Ψ, `p) from
m0

Ψ to `p, 1 < p < ∞, is not dense in the space of all bounded operators L(m0
Ψ, `p), where

Ψ(n) =
∑n

i=1 i−1. Later on in [1], the same Marcinkiewicz space was used for showing
that the Bishop-Phelps theorem does not hold for multilinear mappings. This result was
recently improved in [7].

Let further X be a Banach space over a scalar field F, where F is either the set of real
numbers R or the set of complex numbers C. By BX and SX we will denote a unit ball
and a unit sphere of X, respectively. A bounded multi-linear form is an n-linear mapping
L : Xn → F for n ∈ N, with a finite norm ‖L‖, which is defined as

‖L‖ = sup{|L(x1, · · · , xn)| : xi ∈ BX , i = 1, · · · , n}.
Then a map P (x) = L(x, · · · , x) : X → F is called an n-homogeneous polynomial [2, 9] on
X and its norm is defined by

‖P‖ = sup{|P (x)| : x ∈ BX}.
Given a Banach space X, if x ∈ X and x∗ ∈ X∗ then 〈x∗, x〉 denotes x∗(x). We

also denote by [x1, . . . , xn] a linear span of vectors {xi}n
i=1 ⊂ X. For each subset M

of X, let M⊥ be the set of all bounded linear functionals which vanish on M . A point
x of BX in a complex Banach space X is said to be a complex extreme point whenever
{x + ζy : |ζ| ≤ 1, ζ ∈ C} ⊂ BX for y in X yields y = 0. It is easy to check that every
extreme point of BX is also its complex extreme point. The converse however is not true,
since every point of S`1 is a complex extreme point of B`1 ([17]).

Let (Ω, µ) = (Ω,B, µ) be a measure space with a complete σ-finite measure µ on a
σ-algebra B of subsets of Ω. Let L0(µ) denote the space of all µ-equivalence classes of
B-measurable F-valued functions on Ω with the topology of convergence in measure on
µ-finite sets.

A Banach space (X, ‖·‖) is said to be a Banach function space on (Ω, µ) if it is a
subspace of L0(µ) such that there is h ∈ L0(µ) with h > 0 a.e. in Ω and it has the ideal
property; that is if f ∈ L0(µ), g ∈ X and |f | ≤ |g| a.e. then f ∈ X and ‖f‖ ≤ ‖g‖. If in
addition the unit ball BX is closed in L0(µ), then we say that X has the Fatou property.
A Banach function space defined on (N, 2N, µ) with the counting measure µ is called a
Banach sequence space. In this case ei ∈ X for all i ∈ N, where ei denotes a standard unit
vector, that is ei = (0, . . . , 0, 1, 0, . . . ) with 1 as the ith component.

An element f ∈ X is said to be order continuous if ‖fn‖ ↓ 0 for every sequence {fn}
with |fn| ≤ |f | a.e. and |fn| ↓ 0 a.e. on Ω. A Banach function space X is said to be order
continuous if every element of X is order continuous.
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If X is a Banach function space on (Ω, µ), then the associate space X ′ of X is a Banach
function space, which can be identified with the space of all functionals possessing an
integral representation, that is,

X ′ = {g ∈ L0(µ) : ‖g‖X′ = sup
‖f‖≤1

∫

Ω
|fg|dµ < ∞}.

It is well known that if X has the Fatou property, then (X ′′, ‖·‖X′′) coincides with (X, ‖·‖).
Moreover, if X is an order continuous Banach function space, then X∗ is order isometric
to X ′ ([5, 13, 15]).

A Banach function space X on (Ω, µ) is said to be rearrangement invariant (r.i. or
symmetric) [5, 13, 14] if for every f ∈ L0(µ) and g ∈ X with µf = µg, we have f ∈ X and
‖f‖ = ‖g‖, where for any h ∈ L0(µ), µh is a distribution function of h defined by

µh(t) = µ{ω ∈ Ω : |h(ω)| > t}, t ≥ 0.

A decreasing rearrangement f∗ of f ∈ L0(µ) is then defined as

f∗(t) = inf{θ > 0 : µf (θ) ≤ t}, t ∈ [0, µ(Ω)).

If x = {x(n)} = {x(n)}∞n=1 is an F-valued sequence, then considering the function f(t) =∑∞
k=1 x(k)χ[k−1,k)(t) on [0,∞) equipped with Lebesgue measure, we define a decreasing

rearrangement x∗ = {x∗(n)} of x as follows

x∗(n) = f∗(n− 1), n ∈ N.

A closed subspace Y of a Banach space X is called an M -ideal in X if there is a bounded
projection P : X∗ → X∗ with range Y ⊥ such that for each x∗ ∈ X∗,

‖x∗‖ = ‖Px∗‖+ ‖(I −P)x∗‖ .

We can write this decomposition as X∗ = Y ⊥ ⊕1 Y ∗.

2. Extensions of n-homogeneous polynomials

If X is a Banach space and Y is a closed M -ideal in X, then it is well known that
a bounded linear functional on Y has a unique norm preserving extension to X [11].
With polynomials the situation is different. It depends on whether the space is real or
complex. In [4] (see also [6] for some Marcinkiewicz sequence spaces), it has been shown
that extension of n-homogeneous polynomials from c0 to `∞ is not unique for n ≥ 2 for
real spaces and for n ≥ 3 for complex spaces. It was also shown that in complex spaces
and n = 2 some polynomials have unique extensions. Here we start by showing that the
uniqueness of the extension of n-homogeneous polynomials, n ≥ 2, never occurs in any
real Banach spaces.

Theorem 2.1. Let X be a real Banach space and Y a nontrivial proper closed subspace of
X. Then for n ≥ 2 there exists a norm-attaining n-homogeneous polynomial on Y which
has infinitely many norm-preserving extensions to X.

Proof. Let ϕ be a norm-one linear functional on X which vanishes on Y . Choose a norm-
attaining linear functional ψ on Y with norm one and denote by ψ̃ a Hahn-Banach ex-
tension of ψ to X. Then P = ψn is a norm-attaining n-homogeneous polynomial on Y

with norm one. Take P1 = ψ̃n. Then, for every 0 < t < 1, Pt = ψ̃n − t2ψ̃n−2ϕ2 are
different norm preserving extensions of P on X since the completeness of X implies that
ker ψ̃ ∪ kerϕ  X. ¤

In the next theorem we prove the lack of uniqueness of the extension of n-homogeneous
polynomials for n ≥ 3 in a large class of complex function spaces.
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Theorem 2.2. Let X be a complex Banach function space such that there exist two disjoint
sets Ei, i = 1, 2, such that the projection

Φf =
( 1

µE1

∫

E1

f
)
χE1 +

( 1
µE2

∫

E2

f
)
χE2 , f ∈ X,

is a contractive operator on X. Moreover, assume that Y is a proper closed subspace of
X with χEi ∈ Y , i = 1, 2.

Then for n ≥ 3 there exists a norm-attaining n-homogeneous polynomial P on Y which
has at least two norm-preserving extensions to X.

Proof. Letting

ϕi(f) =
1

µEi

∫

Ei

f, f ∈ X, i = 1, 2,

the operator
Φf = ϕ1(f)χE1 + ϕ2(f)χE2

is a norm-one projection on X. Consider now the set

S = {(z1, z2) ∈ C2 : ‖z1χE1 + z2χE2‖ ≤ 1},
and the function

ψ(z1, z2) = |z1|2 + |z2|2, (z1, z2) ∈ S.

It is clear that ψ is continuous on the compact set S. Thus there exists (u1, u2) ∈ S such
that

ψ(u1, u2) = max
(z1,z2)∈S

ψ(z1, z2) = |u1|2 + |u2|2 = a2 + b2,

where a = |u1|, b = |u2|, a2 + b2 6= 0, and (a, b) ∈ S.
In order to finish the proof we need the following lemma.

Lemma 2.3. There exists (a, b) ∈ S such that for n ≥ 2 and for all (z1, z2) ∈ S,

|az1 + bz2|n + |bz1 − az2|n ≤ (a2 + b2)n.

In particular for n ≥ 2 and f ∈ BX ,

|aϕ1(f) + bϕ2(f)|n + |bϕ1(f)− aϕ2(f)|n ≤ (a2 + b2)n,

and so
|aϕ1(f) + bϕ2(f)| ≤ a2 + b2 and |bϕ1(f)− aϕ2(f)| ≤ a2 + b2.

Proof of lemma. For n = 2 and any (z1, z2) ∈ S we have

|az1 + bz2|2 + |bz1 − az2|2 = (az1 + bz2)(az1 + bz2) + (bz1 − az2)(bz1 − az2)

= (a2 + b2)(|z1|2 + |z2|2) ≤ (a2 + b2)2.

Hence |az1 + bz2| ≤ a2 + b2 and |bz1 − az2| ≤ a2 + b2 on S.
For n > 2 we apply induction. Assuming that the inequality is true for n − 1 ≥ 2, we

get for any (z1, z2) ∈ S,

|az1 + bz2|n + |bz1 − az2|n ≤ (a2 + b2){|az1 + bz2|n−1 + |bz1 − az2|n−1} ≤ (a2 + b2)n.

Now, since Φ is a contraction, ‖ϕ1(f)χE1 + ϕ2(f)χE2‖ = ‖Φf‖ ≤ 1 for any f ∈ BX . Thus
(ϕ1(f), ϕ2(f)) ∈ S and this completes the proof of the lemma. ¤
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Given n ≥ 3, define a polynomial P on Y as

P (f) = (aϕ1(f) + bϕ2(f))n.

It is clear that P is an n-homogeneous polynomial on Y with ‖P‖ = (a2 + b2)n. In
fact, it follows from Lemma 2.3, since we have |P (f)| ≤ (a2 + b2)n for f ∈ BX , and also
P (aχE1 + bχE2) = (a2 + b2)n. Then the following polynomials

P1(f) = (aϕ1(f) + bϕ2(f))n,

P2(f) = (aϕ1(f) + bϕ2(f))n + (a2 + b2)(bϕ1(f)− aϕ2(f))n−1ϕ(f),

are two distinct norm preserving extensions of P from Y to X, where ϕ ∈ BX∗ is chosen in
such a way that it vanishes on Y and (bϕ1(f)− aϕ2(f))ϕ(f) 6= 0 for some f ∈ X. In view
of Lemma 2.3, it is clear that ‖P1‖ = (a2 + b2)n. Moreover, again applying Lemma 2.3,
we get for every f ∈ BX ,

|P2(f)| ≤ |aϕ1(f) + bϕ2(f)|n + |a2 + b2||bϕ1(f)− aϕ2(f)|n−1

≤ (|aϕ1(f) + bϕ2(f)|n−1 + |bϕ1(f)− aϕ2(f)|n−1)(a2 + b2) ≤ (a2 + b2)n,

since n ≥ 3. Since we also have P2(aχE1 + bχE2) = (a2 + b2)n, it follows that ‖P2‖ =
(a2 + b2)n and the proof is completed. ¤

If X is a r.i. space with the Fatou property over non-atomic or counting measure space
then for any disjoint sets Ei, i = 1, 2, the projection Φ on X has norm one [5]. It is
also clear by the lattice properties, that for a Banach sequence space X, for any distinct
i, j ∈ N, the projection Φ(x) = x(i)ei +x(j)ej on X also has norm one. Thus the following
corollaries are immediate consequences of the previous result.

Corollary 2.4. If X is a r.i. space with the Fatou property over non-atomic or counting
measure space, then the conclusion of Theorem 2.2 is valid in X for any proper closed
subspace Y in X with χEi ∈ Y , i = 1, 2.

Corollary 2.5. For any Banach sequence space X the conclusion of Theorem 2.2 is valid
in X for any proper closed subspace Y with ei, ej ∈ Y .

Example 2.6. In this example we show that there is a non-symmetric function space with
a norm one projection Φ as in Theorem 2.2. Suppose that p : Ω → [1,∞) is a measur-
able function on a non-atomic σ-finite measure space (Ω,B, µ) and define the following
functional for each f ∈ L0,

I(f) =
∫

Ω

|f(t)|p(t)

p(t)
dµ.

Then the Nakano space Lp(t) is defined as the set of all f ∈ L0(µ) such that I(λf) < ∞
for some λ > 0. It is well known [16] that Lp(t) is a Banach space equipped with the norm

‖f‖ = inf {λ > 0 : I(f/λ) ≤ 1} .

Suppose now that p(t) assumes constant values ai ≥ 1 on disjoint measurable sets Ei,
i = 1, 2, respectively, with 0 < µE1 = µE2 < ∞. Then the projection

Φf =
(

1
µE1

∫

E1

f

)
χE1 +

(
1

µE2

∫

E2

f

)
χE2 , f ∈ Lp(t),
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is a contraction. Indeed, note that for any λ > 0,

I(λΦf) =
∫

Ω

|λΦf |p(t)

p(t)
dµ

≤
∫

Ω

{(
1

µE1

∫
|λf |

)a1 χE1

a1
+

(
1

µE2

∫
|λf |

)a2 χE2

a2

}
dµ

≤
∫

E1

|λf |a1

a1
dµ +

∫

E2

|λf |a2

a2
dµ

≤
∫

Ω

|λf(t)|p(t)

p(t)
dµ = I(λf).

This inequality yields that ‖Φf‖ ≤ ‖f‖ for all f ∈ Lp(t). Moreover, ‖χEi‖ =
(

µEi

ai

) 1
ai , i =

1, 2. So if we further assume that
(

µE1

a1

) 1
a1 6=

(
µE2

a2

) 1
a2 , then the norms of χEi , i = 1, 2, are

different although they have the same distribution. Therefore we obtain a non-symmetric
space Lp(t) with a norm one projection Φ.

3. 2-homogeneous polynomials in r.i. sequence spaces

In view of the results of the previous section, our attention turns to 2-homogeneous
polynomials on complex spaces. Let in this section X be a r.i. Banach sequence space.
We will prove that under certain geometric assumption on the unit ball in r.i. Banach
sequence space X, any 2-homogeneous norm-attaining polynomial on X has its unique
extension to its bidual X∗∗. Before we state the main theorem we need some preliminary
work.

An n-homogeneous polynomial P on X∗∗ is said to be finite if there exists m ∈ N such
that

P (x∗∗) = P
( m∑

i=1

〈x∗∗, e∗i 〉 ei

)

for all x∗∗ ∈ X∗∗, where e∗k are bounded linear functionals on X with 〈e∗k, x〉 = x(k). By
symmetry of X, each permutation σ of N induces an isometric isomorphism Tσ : X → X
such that Tσx = (x(σ(1)), · · · , x(σ(n)), · · · ) for every x ∈ X. Then T ∗∗σ : X∗∗ → X∗∗ is
also an isometric isomorphism. Notice that the above definition of a finite polynomial is
more general than the one used before (e.g. [4, 6]), since X∗∗ itself does not need to be a
sequence space.

Proposition 3.1. Let P be an n-homogeneous polynomial on X∗∗. Then the following
statements are equivalent:

(1) P is finite
(2) P ◦ T ∗∗σ is finite for every permutation σ.
(3) P ◦ T ∗∗σ is finite for some permutation σ.

Proof. Suppose that P is a finite n-homogeneous polynomial and σ any fixed permutation
of N. Then clearly PRx∗∗ = Px∗∗, where

Rx∗∗ =
m∑

j=1

〈
x∗∗, e∗j

〉
ej .

Let Q = P ◦ T ∗∗σ . Note that for every k ∈ N, 〈T ∗σe∗k, x〉 = 〈e∗k, Tσx〉 = x(σ(k)), and so
T ∗σe∗k = e∗σ(k). Therefore
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Q(x∗∗) = P (T ∗∗σ x∗∗) = P (RT ∗∗σ x∗∗) = P
( m∑

i=1

〈T ∗∗σ x∗∗, e∗i 〉 ei

)

= P
( m∑

i=1

〈x∗∗, T ∗σe∗i 〉 ei

)
= P

( m∑

i=1

〈
x∗∗, e∗σ(i)

〉
ei

)
.

Letting s = max{σ(i) : i = 1, · · · ,m}, define

Rsx
∗∗ =

s∑

j=1

〈
x∗∗, e∗j

〉
ej .

Clearly s ≥ m and in view of the above equations

Q(Rsx
∗∗) = P

( m∑

i=1

〈
Rsx

∗∗, e∗σ(i)

〉
ei

)
= P

( m∑

i=1

s∑

j=1

〈
x∗∗, e∗j

〉 〈
ej , e

∗
σ(i)

〉
ei

)

= P
( m∑

i=1

〈
x∗∗, e∗σ(i)

〉
ei

)
= Q(x∗∗).

Hence Q = P ◦ T ∗∗σ is finite for any permutation σ. Thus we showed that (1) implies (2).
The implication (2) ⇒ (3) is clear. Since P = P ◦T ∗∗σ ◦T ∗∗σ−1 , it is also clear that (3) ⇒ (1)
holds in view of (1) ⇒ (2). ¤

Now we are ready to state the main result of this section.

Theorem 3.2. Let X be a complex r.i. Banach sequence space. Suppose that for each
x ∈ BX there exist n ∈ N and ε > 0 such that X∗∗ = [e1, · · · , en]⊕G and

(3.1) x + εBG ⊂ BX∗∗ .

Then a 2-homogeneous polynomial P on X∗∗ is norm-attaining on X, that is P (x0) = ‖P‖
for some x0 ∈ BX , if and only if P is finite.

Proof. Suppose P is finite. Then the values of P are completely determined by the elements
of a finite dimensional subspace of X spanned by {e1, · · · , en} for some n ∈ N. But it
clearly shows that P is norm-attaining on X.

Conversely, suppose that P (x0) = ‖P‖ = 1 for some x0 ∈ BX . Let now n ∈ N and
ε > 0 be such that

x0 + εBG ⊂ BX∗∗ .

Then define on X∗∗

Rnx∗∗ =
n∑

i=1

〈x∗∗, e∗i 〉 ei and Sn = I −Rn.

Hence
(Rn|X)∗∗ = Rn, (Sn|X)∗∗ = Sn,

and since both Rn|X and Sn|X are contractions by the monotonicity of the norm in X, so
‖Rn‖ = ‖Sn‖ = 1. Thus

|P (x0 + λSnx∗∗)| = |1 + 2λP̆ (x0,Snx∗∗) + λ2P (Snx∗∗)| ≤ |P (x0)| = 1,

for all x∗∗ ∈ BX∗∗ , and for all |λ| < ε, where P̆ is the unique symmetric bilinear form
associated to P ([2, 9]). By the Maximum Modulus Theorem,

P̆ (x0,Snx∗∗) = P (Snx∗∗) = 0 for x∗∗ ∈ BX∗∗ .
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Taking y0 = (0, · · · , 0, x0(n + 1), x0(n + 2), · · · ) we have y0 ∈ BX and Sn(y0) = y0. Hence
P (y0) = P̆ (x0, y0) = 0, and so

P (x0(1), · · · , x0(n), 0, · · · ) = P (x0 − y0) = P (x0) + P (y0)− 2P̆ (x0, y0) = 1.

Letting J(x) = {i : x(i) 6= 0}, x ∈ X, denote

N = min{|J(x)| : P (x) = 1, x ∈ BX},
where |J(x)| denotes cardinality of J(x). It is clear that N ≤ n. Suppose now that N is
attained at some x1 ∈ BX satisfying P (x1) = 1. Then

|J(x1)| = |{i : x1(i) 6= 0}|.
Choose then a permutation σ : N→ N such that

σ({1, · · · , N}) = J(x1), σ({N + 1, · · · }) = N \ J(x1).

Let further
v = Tσ(x1) = (x1(σ(1)), · · · , x1(σ(N)), 0, · · · )

and let
Q = P ◦ T ∗∗σ−1 .

In view of Proposition 3.1 we need only to show that Q is finite.
It is clear that Q(v) = 1, v ∈ BX and v(k) 6= 0 for all 1 ≤ k ≤ N . Thus by the

assumption (3.1), there exist m ∈ N and ε > 0 such that

|Q(v + λSmx∗∗)| = |Q(v) + 2λQ̆(v,Smx∗∗) + λ2Q(Smx∗∗)|(3.2)

≤ |Q(v)| = 1,

for all x∗∗ ∈ BX∗∗ and for all |λ| < ε. Again by the Maximum Modulus Theorem we
have Q̆(v,Smx∗∗) = Q(Smx∗∗) = 0 for all x∗∗ ∈ BX∗∗ . If m < N , then applying a similar
argument as above we could show that Q(v0) = 1 where v0 = (v(1), . . . , v(m), 0, . . . ). The
latter however is a contradiction to the choice of N since

1 = Q(v0) = P ◦ T ∗∗σ−1(v0) = P
( ∑

i∈M0

x1(i)ei

)

for some M0 ⊂ N with |M0| < N . So m ≥ N . If m > N , then for every x ∈ BX , |λ| < ε,

‖v + λSmx‖ ≤ 1.

Since X is a r.i. Banach sequence space, for all x ∈ BX ,

‖v + λSNx‖ ≤ 1.

Note that SN is weak*-to-weak* continuous. So weak*-lower semi-continuity of norm and
density of BX in BX∗∗ in the weak* topology imply for all x∗∗ ∈ BX∗∗ ,

(3.3) ‖v + λSNx∗∗‖ ≤ 1.

So (3.2) holds for m = N . Therefore we may assume that m = N .
Now let z1 = (v(1), · · · , v(m)), z2 = (v(1), v(2)−mv(2), · · · , v(m)), · · · , zm = (v(1), · · · , v(m)−

mv(m)) be vectors in Cm. Letting z̃j = (zj , 0, · · · ) for 1 ≤ j ≤ m we have z̃1 = v.
For any vectors x = (x(1), . . . , x(m)) ∈ Cm we have the identity

(x(1), · · · , x(m)) =
1
m

x(1)
v(1)

(z1 + · · ·+ zm) +
m∑

j=2

1
m

x(j)
v(j)

(z1 − zj)

=
1
m

(x(1)
v(1)

+ · · ·+ x(m)
v(m)

)
z1 +

1
m

m∑

j=2

(x(1)
v(1)

− x(j)
v(j)

)
zj .
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Therefore for x = (x(1), · · · , x(m), 0 · · · ) and each x∗∗ ∈ BX∗∗ ,

Q(x + Smx∗∗) = Q(x) +
2
m

m∑

j=2

(x(1)
v(1)

− x(j)
v(j)

)
Q̆(z̃j ,Smx∗∗)

= Q(x) +
m∑

j=2

(x(1)
v(1)

− x(j)
v(j)

)
ψj(Smx∗∗),

where ψj(·) = 2
mQ̆(z̃j , ·) ∈ X∗∗∗.

For each x∗∗ ∈ BX∗∗ we will show that ψj(Smx∗∗) = 0. Let

vθ = (v(1), eiθv(2), · · · , v(m), 0, · · · ), θ > 0.

Then for every ‖x∗∗‖ ≤ 1, |λ| < ε and any α > 0, a similar argument as before (compare
with (3.3)) shows ∥∥vθ + λeiαSmx∗∗

∥∥ ≤ 1.

Thus, for each θ > 0 there is a θ1 > 0 such that

|Q(vθ + λeiθ1Smx∗∗)| = |Q(vθ) + (1− eiθ)ψ2(λeiθ1Smx∗∗)|
= |Q(vθ)|+ |1− eiθ||ψ2(λSmx∗∗)|
≤ 1,

Let now f(θ) = |Q(vθ)| and let g(θ) = |1 − eiθ| = 2 sin(θ/2) for small θ > 0. Then
|ψ2(λSmx∗∗)| ≤ 1−f(θ)

g(θ) for any λ < ε. Therefore

sup{|ψ2(Smx∗∗)| : x∗∗ ∈ εBX∗∗} ≤ lim
θ↓0

1− f(θ)
g(θ)

= lim
θ↓0

−f ′(θ)
g′(θ)

= 0.

This implies that for x∗∗ ∈ BX∗∗ , ψ2(Smx∗∗) = 0. Similar calculations show that ψi(Smx∗∗) =
0 for i = 3, . . . , m. Thus for every x = (x(1), . . . , x(m), 0, . . . ) and every ‖x∗∗‖ ≤ 1 we get

Q(x + Smx∗∗) = Q(x).

Taking now x = Rmx∗∗,

Q(x∗∗) = Q(Rmx∗∗ + Smx∗∗) = Q(Rmx∗∗),

which shows that Q is finite and completes the proof. ¤
Remark 3.3. Observe that the geometric assumption (3.1) on X∗∗ in the above theorem
yields that no point of SX is a complex extreme point of BX . We will see later that in
Marcinkiewicz sequence spaces the converse is also satisfied.

Notice that Theorem 3.2 does not hold for n ≥ 3 as we can see in the following example.

Example 3.4. Let n ≥ 3 and `∞ be a complex space. Consider the n-homogeneous poly-
nomial P on `∞ given by the formula

P (x) = (x1 + x2)n + 2(x1 − x2)n−1

( ∞∑

k=3

xk

2k

)
.

Then P (e1 + e2) = 2n = ‖P‖. It follows from Lemma 2.3 applied to `∞ and Ei =
ei, i = 1, 2. In this case a = b = 1. In fact P is of a similar form as P2 in the proof of
Theorem 2.2.

Corollary 3.5. Suppose that X is a complex r.i. sequence space that satisfies the hypothe-
ses of Theorem 3.2. Then a 2-homogeneous polynomial P on X attains its norm if and
only if it is finite.
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Proof. Recall that every n-homogeneous polynomial on a Banach space X has a norm-
preserving extension to its bidual X∗∗ [8]. Let P attain its norm and Q be a norm-
preserving extension of P to X∗∗. Then Q also attains its norm, and by Theorem 3.2, Q
is finite. So there is m ∈ N such that for every x ∈ X,

P (x) = Q(x) = Q

(
m∑

i=1

x(i)ei

)
= P

(
m∑

i=1

x(i)ei

)
,

which completes the proof. ¤

Corollary 3.6. Suppose that X is a complex r.i. sequence space that satisfies the hypothe-
ses of Theorem 3.2. Then every 2-homogeneous norm-attaining polynomial P on X has a
unique norm-preserving extension to its bidual X∗∗.

Proof. Let Q1 and Q2 be norm-preserving extensions of P from X to X∗∗. Then, by
Theorem 3.2, Q1 and Q2 are finite. So there are m1,m2 ∈ N such that for each x∗∗ ∈ X∗∗,

Q1(x∗∗) = Q1

(
m1∑

i=1

〈x∗∗, e∗i 〉 ei

)
=

m1∑

i=1

i∑

j=1

aij 〈x∗∗, e∗i 〉
〈
x∗∗, e∗j

〉
,

Q2(x∗∗) = Q2

(
m2∑

s=1

〈x∗∗, e∗s〉 es

)
=

m2∑

s=1

s∑

t=1

bst 〈x∗∗, e∗s〉 〈x∗∗, e∗t 〉 ,

for some complex numbers aij , bst. They are equal on X so that there is l ≤ min{m1,m2}
such that aij = bij for all 1 ≤ j ≤ i ≤ l and aij = 0 = bst otherwise. So Q1(x∗∗) = Q2(x∗∗)
for every x∗∗ ∈ X∗∗, and the extension is unique. ¤

It is easy to show that c0 satisfies the assumptions of Theorem 3.2, and thus we get
immediately by Corollaries 3.5 and 3.6, the following result proved in [4].

Corollary 3.7. [4] Every norm-attaining 2-homogeneous polynomial on a complex c0 is
finite and has a unique norm-preserving extension to `∞.

We will see later (cf. Corollary 4.6) that we can obtain a stronger result for some
renormings of c0 and `∞.

The following simple example shows that the assumption of symmetry of X in Theo-
rem 3.2 is essential.

Example 3.8. Consider the space `∞ with the equivalent norm

‖x‖ = |x(1)|+ |x(2)|+ sup{|x(n)| : n ≥ 3}.
Clearly (c0, ‖·‖)∗∗ = (`∞, ‖·‖). Define on `∞ the following 2-homogeneous polynomials

P (x) = x(1)2, Q(x) = x(1)2 + x(2)
∞∑

k=3

x(k)
2k−2

.

It is obvious that P is norm-attaining on c0 and ‖P‖ = 1. Note also that for each x ∈ `∞
with ‖x‖ ≤ 1 we have

Q(e1) = 1 and |Q(x)| ≤ 1.

It shows that Q is norm-attaining on c0 but it is not finite. Choose now a norm one linear
functional ϕ on `∞ which vanishes on c0. Letting

P1(x) = x(1)2 and P2(x) = x(1)2 + x(2)ϕ(x),

we get two distinct norm-preserving extensions of P to `∞. Thus the conclusions of
Theorem 3.2 and Corollary 3.6 are not valid for (c0, ‖·‖) and its bidual (`∞, ‖·‖).
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For norm-attaining linear functionals, we obtain analogous results as for 2-homogeneous
polynomials.

Proposition 3.9. Suppose X is a complex r.i. sequence space and X satisfies (3.1).
Then a bounded linear functional ϕ on X attains its norm if and only if it is finite. More-
over, every norm-attaining bounded linear functional on X has a unique norm-preserving
extension to X∗∗.

Proof. If ϕ is finite, then it is clearly norm-attaining since its values depend only on a
finite dimensional subspace of X.

Conversely, suppose that ϕ(x0) = ‖ϕ‖ = 1 for some x0 ∈ BX . Then by the assumption
(3.1) there are n ∈ N and ε > 0 so that for every |λ| < ε and for every y = (0, · · · , 0, y(n+
1), · · · ) ∈ BX ,

|ϕ(x0 + λy)| = |ϕ(x0) + λϕ(y)| ≤ 1.

By the Maximum Modulus Theorem ϕ(y) = 0 for such a y. So for every x ∈ X, ϕ(Snx) = 0
and thus

ϕ(x) = ϕ(Rnx) =
n∑

i=1

xiϕ(ei) =
n∑

i=1

〈e∗i , x〉ϕ(ei),

which shows that ϕ is finite. Moreover, it has a natural extension ϕ̃ to X∗∗, defined by

ϕ̃(x∗∗) =
n∑

i=1

〈x∗∗, e∗i 〉ϕ(ei).

Now, if ϕ has a norm-preserving extension φ to X∗∗, then similar arguments as above
applied to φ show that φ is also finite. Since ϕ̃ and φ are equal on X, so they must be
equal on X∗∗ too and the proof is completed. ¤

4. 2-homogeneous polynomials in Marcinkiewicz sequence spaces

In this section we will investigate uniqueness of norm-preserving extensions of 2-homogeneous
polynomials in Marcinkiewicz sequence spaces.

Assume Ψ = {Ψ(n)} = {Ψ(n)}∞n=0 is an increasing sequence such that Ψ(0) = 0 and
Ψ(n) > 0 for n ∈ N.

Definition 4.1. The Marcinkiewicz sequence space mΨ consists of all sequences x = {x(n)} =
{x(n)}∞n=1 such that

‖x‖ = ‖x‖mΨ = sup
n≥1

∑n
k=1 x∗(k)
Ψ(n)

< ∞,

where x∗ = {x∗(n)} is a decreasing rearrangement of {x(n)}. Let m0
Ψ be the subspace of

mΨ, equipped with the same norm ‖ · ‖mΨ consisting of all x ∈ mΨ satisfying

lim
n→∞

∑n
k=1 x∗(k)
Ψ(n)

= 0.

Without loss of generality we can add (and we will) in the above definition the assump-
tion that the sequence {Ψ(n)/n} is decreasing [12]. Notice that for a concave Ψ, m0

Ψ is a
predual of a Lorentz space [12, 13].

Recall the following results on m0
Ψ and mΨ.

Theorem 4.2. [12]
The following hold true.
(1) If limn→∞Ψ(n) = ∞ then m0

Ψ is the non-trivial proper subspace of mΨ consisting
of all order continuous elements in mΨ.
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(2) mΨ is the bidual of m0
Ψ if and only if limn→∞Ψ(n) = ∞.

(3) Assume that limn→∞Ψ(n) = ∞. Then m0
Ψ is an M -ideal in mΨ if

Ψ(n) = n or lim
n→∞

Ψ(n)
n

= 0.

If m0
Ψ is an M -ideal in mΨ, in particular when Ψ satisfies the conditions in the above the-

orem, then for any bounded linear functionals on m0
Ψ there exists a unique Hahn-Banach

extension to mΨ. We will see below, Theorem 4.4, that in the case of 2-homogeneous
polynomials the crucial role in the extension problem is played by the geometric property
(3.1), which is equivalent to the fact that no element of the unit sphere of m0

Ψ is a complex
extreme point of the unit ball of mΨ.

We first state the following lemma.

Lemma 4.3. Assume that limn→∞Ψ(n) = ∞ and Ψ is strictly increasing. Then for each
x ∈ Bm0

Ψ
, there exist n ∈ N and ε > 0 such that for each y ∈ BmΨ, y = (0, · · · , 0, y(n +

1), y(n + 2), · · · ), and for each |λ| ≤ ε, ‖x + λy‖ ≤ 1 holds.

Proof. We may assume that ‖x‖ = 1. Since limk→∞
∑k

i=1 x∗(i)
Ψ(k) = 0, we can find the

maximum integer n1 ∈ N such that

‖x‖ = 1 =
∑n1

i=1 x∗(i)
Ψ(n1)

.

Thus for every k ≥ n1 + 1,
n1∑

i=1

x∗(i) = Ψ(n1) and
k∑

i=1

x∗(i) < Ψ(k).

Take

a = 1−max

{∑k
i=1 x∗(i)
Ψ(k)

: k ≥ n1 + 1

}
> 0.

We note that x∗(n1) 6= 0. Indeed, if we suppose that x∗(n1) = 0, then
n1∑

i=1

x∗(i) =
n1−1∑

i=1

x∗(i) = Ψ(n1) ≤ Ψ(n1 − 1),

which is a contradiction to the fact that Ψ is strictly increasing.
Note that for x ∈ m0

Ψ,

lim
n→∞

∑n
k=1 x∗(k)
Ψ(n)

= lim
n→∞

1
n

∑n
k=1 x∗(k)
1
nΨ(n)

= 0,

which yields

lim
n→∞

1
n

n∑

k=1

x∗(k) = lim
n→∞x∗(n) = lim

i→∞
|x(i)| = 0.

Thus we can choose n > n1 so that for all i ≥ n + 1,

|x(i)| < 1
2
x∗(n1).

Take ε = min{x∗(n1)‖e1‖
2 , a} > 0 and let y = (0, · · · , 0, y(n + 1), y(n + 2), · · · ) be in BmΨ .

Fix λ with |λ| < ε. Then for i ≥ n + 1, ‖ei‖ |y(i)| ≤ 1, and so

|x(i) + λy(i)| < x∗(n1)
2

+
x∗(n1)|y(i)| ‖e1‖

2
≤ x∗(n1).



ON UNIQUENESS OF EXTENSION OF HOMOGENEOUS POLYNOMIALS 13

Thus for each k ≤ n1,
k∑

i=1

(x + λy)∗(i) =
k∑

i=1

x∗(i) ≤ Ψ(k),

and for each k > n1,
k∑

i=1

(x + λy)∗(i) ≤
k∑

i=1

x∗(i) + a
k∑

i=1

y∗(i) ≤ (1− a)Ψ(k) + aΨ(k) = Ψ(k).

Therefore ‖x + λy‖ ≤ 1 and the proof is complete. ¤

Theorem 4.4. Let limn→∞Ψ(n) = ∞ and mΨ, m0
Ψ be complex spaces. The following

conditions are equivalent.
(1) Ψ is strictly increasing.
(2) For each x ∈ Bm0

Ψ
, there are n ∈ N and ε > 0 such that for every y = (0, · · · , 0, y(n+

1), · · · ) ∈ BmΨ and for every |λ| < ε, ‖x + λy‖ ≤ 1.
(3) No element in Sm0

Ψ
is a complex extreme point of Bm0

Ψ
.

(4) No element in Sm0
Ψ

is a complex extreme point of BmΨ.
(5) Every norm-attaining 2-homogeneous polynomial on m0

Ψ is finite.
(6) Every norm-attaining 2-homogeneous polynomial on m0

Ψ has a unique norm-preserving
extension to mΨ.

(7) Every norm-attaining bounded linear functional on m0
Ψ is finite.

Proof. In view of Theorem 4.2 and the assumption that limn→∞Ψ(n) = ∞, m0
Ψ is a non-

trivial and proper subspace of mΨ. Moreover, mΨ is the bidual of m0
Ψ. The implications

(2) ⇒ (3) ⇒ (4) are clear by definition. In view of Lemma 4.3, (1) implies (2), and by
Corollaries 3.5 and 3.6 we have that (2) implies (5) and (6). We also have that (2) yields
(7) by Proposition 3.9. We will complete the proof if we show that each condition (4)-(7)
is not satisfied whenever (1) is not satisfied.

Suppose for the rest of the proof that (1) is not satisfied, that is Ψ is not strictly
increasing. Then there is n ∈ N such that Ψ(n) = Ψ(n + 1). Set

x0 =
n∑

i=1

Ψ(n)
n

ei.

Since Ψ(n)
n ≤ Ψ(k)

k for each k, 1 ≤ k ≤ n, so

sup
k≥1

∑k
i=1 x∗0(i)
Ψ(k)

= max
1≤k≤n

kΨ(n)
nΨ(k)

= 1.

Thus x0 ∈ Sm0
Ψ
. We shall show that x0 is a complex extreme point of BmΨ . Take y ∈ mΨ

such that ‖x0 + ζy‖ ≤ 1 for all |ζ| ≤ 1. Then

1
Ψ(n)

n∑

i=1

∣∣∣∣
Ψ(n)

n
+ ζy(i)

∣∣∣∣ ≤
n∑

i=1

(x0 + ζy)∗(i)
Ψ(n)

≤ 1, for all |ζ| ≤ 1.

Consider the analytic function f : BC → `1, defined by

f(ζ) =
1

Ψ(n)

n∑

i=1

(
Ψ(n)

n
+ ζy(i)

)
ei.

Then ‖f(ζ)‖1 has maximum 1 at ζ = 0. Since S`1 consists entirely of complex extreme
points, the strong form of the Maximum Modulus Theorem holds true (cf. Theorem 3.1
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in [17]), and thus f is constant. Therefore y(i) = 0 for 1 ≤ i ≤ n. For each y(k), k > n
and for all |ζ| ≤ 1,

1
Ψ(n + 1)

n∑

i=1

∣∣∣∣
Ψ(n)

n
+ ζy(i)

∣∣∣∣ +
|ζy(k)|

Ψ(n + 1)
≤

n+1∑

i=1

(x0 + ζy)∗(i)
Ψ(n + 1)

≤ 1.

This implies for all |ζ| ≤ 1,

1
Ψ(n + 1)

n∑

i=1

∣∣∣∣
Ψ(n)

n
+ ζy(i)

∣∣∣∣ +
|ζy(k)|

Ψ(n + 1)

=
1

Ψ(n)

n∑

i=1

∣∣∣∣
Ψ(n)

n
+ ζy(i)

∣∣∣∣ +
|ζy(k)|
Ψ(n)

= 1 +
|ζy(k)|
Ψ(n)

≤ 1.

So we have that y(k) = 0 for any k > n. Therefore y = 0 and x0 is a complex extreme point
of Bm0

Ψ
, that is (4) is not satisfied. Now take the following 2-homogeneous polynomials

on m0
Ψ

P (x) =
(x(1) + · · ·+ x(n))2

Ψ(n)2
,

Q(x) =
(x(1) + · · ·+ x(n))2

Ψ(n)2
+

x(n + 1)
Ψ(n)

∞∑

k=1

x(k + n + 1)
Ψ(1)2k

.

Observe that P (x0) = Q(x0) = 1. So P is a norm-attaining 2-homogeneous polynomial.
We can see that Q is also norm-attaining. Indeed, for each ‖x‖ ≤ 1,

|Q(x)| ≤
( |x(1)|+ · · ·+ |x(n)|

Ψ(n)

)2

+
|x(n + 1)|

Ψ(n)

∞∑

k=1

x∗(1)
2kΨ(1)

≤ |x(1)|+ · · ·+ |x(n)|
Ψ(n)

+
|x(n + 1)|

Ψ(n)

≤ x∗(1) + · · ·+ x∗(n + 1)
Ψ(n + 1)

≤ 1,

in view of the assumption that Ψ(n) = Ψ(n + 1). Hence, we get a norm-attaining 2-
homogeneous polynomial on m0

Ψ which is not finite. So (5) ⇒ (1) is proved. Choose
further a norm one linear functional φ on mΨ which vanishes on m0

Ψ. Letting for x ∈ mΨ,

P1(x) =
(x(1) + · · ·+ x(n))2

Ψ(n)2
,

P2(x) =
(x(1) + · · ·+ x(n))2

Ψ(n)2
+

x(n + 1)
Ψ(n + 1)

φ(x),

we can easily see that they are two distinct norm-preserving extensions of P to mΨ. This
proves (6) ⇒ (1). Finally, we will construct a norm-attaining bounded linear functional
which is not finite. Define a linear functional ϕ on m0

Ψ as follows

ϕ(x) =
x(1) + · · ·+ x(n)

Ψ(n)
+

1
Ψ(n)

∞∑

k=1

x(n + k)
2k

.



ON UNIQUENESS OF EXTENSION OF HOMOGENEOUS POLYNOMIALS 15

Then ϕ(x0) = 1, ‖ϕ‖ = 1, and ϕ is not finite. Indeed, for each ‖x‖ ≤ 1, by the Hardy-
Littlewood inequality [5],

|ϕ(x)| ≤ x∗(1) + · · ·+ x∗(n)
Ψ(n)

+
1

Ψ(n)

∞∑

k=1

x∗(n + k)
2k

≤ x∗(1) + · · ·+ x∗(n)
Ψ(n)

+
1

Ψ(n)

∞∑

k=1

x∗(n + 1)
2k

≤ x∗(1) + · · ·+ x∗(n) + x∗(n + 1)
Ψ(n + 1)

≤ 1.

This shows that (7) yields (1) and completes the proof.
¤

Remark 4.5. (i) In view of Proposition 3.9, property (7) above yields that every norm
attaining linear functional on m0

Ψ has a unique norm-preserving extension from m0
Ψ to

mΨ. The converse implication however does not need to hold. Indeed, take Ψ such that
limn→∞Ψ(n) = ∞, limn→∞Ψ(n)/n = 0 and Ψ is not strictly increasing. Then a norm-
attaining functional does not need to be finite (since (1) is equivalent to (7)), but still its
norm-preserving extension is unique since m0

Ψ is an M -ideal in mΨ by Theorem 4.2.
(ii) For Ψ strictly concave the equivalence of (5) and (6) in Theorem 4.4 has been shown

in [6].

As a corollary of the above theorem we obtain that there exists a renorming of c0 and
`∞ such that the results in [4] (Propositions 2 and 3) still hold true, despite the fact that
under this renorming c0 does not need to be an M -ideal in `∞ (cf. Example 4.7). In fact,
let Ψ be such that limn→∞Ψ(n)/n > 0. Then it is easy to show (cf. [12]) that m0

Ψ = c0

and mΨ = `∞ as sets and the norms ‖ · ‖mΨ and ‖ · ‖∞ are equivalent. Thus we get the
following result.

Corollary 4.6. Let limn→∞Ψ(n)/n > 0, limn→∞Ψ(n) = ∞ and Ψ be strictly increasing.
Then for k = 1, 2 every k-homogeneous norm-attaining polynomial on complex (c0, ‖·‖mΨ

)
is finite and has a unique extension to its bidual (`∞, ‖·‖mΨ

).

Example 4.7. Let Ψ(0) = 0, Ψ(n) = max{2n
3 , 1} for n ∈ N. Then mΨ = `∞ with the norm

‖x‖Ψ = sup
{

x∗(1),
3(x∗(1) + x∗(2))

4
, · · · ,

3
∑n

k=1 x∗(k)
2n

, · · ·
}

that is equivalent to ‖·‖∞-norm. Then (c0, ‖·‖mΨ
) is not an M -ideal of (`∞, ‖·‖mΨ

), but
the conclusion of Corollary 4.6 still holds.

Proof. It is clear that Ψ satisfies the assumptions of Corollary 4.6. In order to show that
(c0, ‖·‖mΨ

) is not an M -ideal of (`∞, ‖·‖mΨ
), we will use the so called 3-ball property [11],

which states that a closed subspace Y is an M -ideal in a Banach space X if and only if
for all y1, y2, y3 ∈ BY , all x ∈ BX and ε > 0 there is y ∈ Y satisfying

‖x + yi − y‖ ≤ 1 + ε for all i = 1, 2, 3.

Let now x1 = e1 + 1
3e2, x2 = e1 − 1

3e2, x3 = −e1 + 1
3e2, and let x ≡ 2/3. Note that

‖xi‖ = ‖x‖ = 1. Then there is no y ∈ c0 such that ‖xi + x − y‖Ψ < 5
4 . Observe the

following formulas for any y ∈ c0,

|x1 + x− y| = (|5/3− y(1)|, |1− y(2)|, |2/3− y(3)|, . . .),
|x2 + x− y| = (|5/3− y(1)|, |0− y(2)|, |2/3− y(3)|, . . .),
|x3 + x− y| = (|1/3 + y(1)|, |1− y(2)|, |2/3− y(3)|, . . .).
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Then max{|5/3 − y(1)|, |1/3 + y(1)|} ≥ 1 for all scalars y(1). Therefore for each y ∈ c0

there is i such that (xi + x− y)∗(1) ≥ 1 and note that limn→∞ |2/3− y(n)| = 2/3, so that
(xi + x − y)∗(2) ≥ 2/3 for all i = 1, 2, 3. This proves that for every y ∈ c0 there is some
i such that ‖xi + x− y‖Ψ ≥ 3/4(1 + 2/3) = 5/4, which shows that 3-ball property is not
satisfied. ¤

We also see that it is not true that every renorming of c0 and `∞ guarantees the
hypothesis of Corollary 4.6. In fact, in Example 3.8 we constructed a non-symmetric
norm ‖·‖ equivalent to ‖·‖∞ such that the conclusion of Corollary 4.6 failed. However we
can ask another question, whether or not, in c0 equipped with an equivalent symmetric
norm, every 2-homogeneous norm-attaining polynomial is finite and has a unique extension
to its bidual `∞? But, as we see below, both answers are negative.

Example 4.8. Let Ψ(0) = 0, Ψ(n) = max{n, 2} for n ∈ N. Then mΨ = `∞ and m0
Ψ = c0

with the norm ‖x‖ = x∗(1)+x∗(2)
2 , which is equivalent to ‖·‖∞-norm. Since limn→∞Ψ(n) =

∞ and Ψ is not strictly increasing, Theorem 4.4 shows that there is a norm-attaining
polynomial on m0

Ψ = c0 which has at least two different norm preserving extensions to
mΨ = `∞. Note also that mΨ is a symmetric space not satisfying the condition (3.1) of
Theorem 3.2.

Example 4.9. Let Ψ(0) = 0, Ψ(n) = max{√n, 2} for n ∈ N. Then m0
Ψ is an M -ideal of its

bidual mΨ (see Theorem 4.2) with the norm

‖x‖ = ‖x‖Ψ = max

{
max

k∈{1,2,3,4}

∑k
i=1 x∗(i)

2
, sup

k≥5

∑k
i=1 x∗(i)√

k

}
.

Then Theorem 4.4 can be used to show that there are two distinct norm-preserving ex-
tensions of a 2-homogeneous polynomial from m0

Ψ to mΨ, and also that there exists a
norm-attaining polynomial on m0

Ψ which is not finite.
So even though m0

Ψ is an M -ideal in mΨ, we cannot obtain the results similar to Corol-
laries 3.5 and 3.6, without the assumption (3.1) of Theorem 3.2.

5. Applications to r.i. sequence spaces

Suppose now that X is a complex r.i. sequence space with the Fatou property. We will
apply the results of Theorem 4.4 to X. Let Φ be a fundamental function of X, that is
Φ(0) = 0 and for each n ∈ N,

Φ(n) = ‖e1 + · · ·+ en‖X .

It is well known [5] that {Φ(n)/n} is decreasing and the associated space X ′ is an r.i.
space with the fundamental function Ψ satisfying for every n ∈ N ∪ {0},

Φ(n)Ψ(n) = n.

Given X with the fundamental function Φ, define the Marcinkiewicz sequence space mΨ

as the set of all x = {x(n)} such that

‖x‖mΨ
= sup

n∈N

{∑n
k=1 x∗(k)
Ψ(n)

}
= sup

n∈N

{
Φ(n)

n

n∑

k=1

x∗(k)

}
< ∞.

Then obviously the fundamental function of mΨ is Φ. Moreover, it is well known [5] that
mΨ is the smallest r.i. space 1-embedded in X with the same fundamental function as X.
Thus we have

‖x‖mΨ
≤ ‖x‖X , x ∈ X.
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This implies that if x ∈ SX is a complex extreme point of BmΨ , then x is a complex
extreme point of BX .

In the proof of Theorem 4.4, we showed that if Ψ is not strictly increasing then there
is an n ∈ N such that

x0 =
n∑

i=1

Ψ(n)
n

ei

is a complex extreme point of BmΨ . Note that

‖x0‖X =
Ψ(n)

n
‖e1 + · · ·+ en‖X =

Ψ(n)Φ(n)
n

= 1.

Hence if Ψ is not strictly increasing, then x0 is a complex extreme point of BX . Note
also that if Ψ is not strictly increasing, then we can take Q and ϕ as in the proof of
Theorem 4.4. Since ‖x‖mΨ

≤ ‖x‖X , Q is a 2-homogeneous norm-attaining polynomial on
X and ϕ is a norm-attaining bounded linear functional on X. Moreover, they are not
finite. Thus we proved the following proposition.

Proposition 5.1. Suppose a complex r.i. sequence space X with the Fatou property has
a fundamental function Φ such that {Φ(n)/n} is not strictly decreasing. Then BX has a
complex extreme point. Moreover, for k = 1, 2 there is a norm-attaining k-homogeneous
polynomial on X which is not finite.

Assume now that X is not reflexive. Then we can choose a norm one linear functional
φ on X∗∗ which vanishes on X. So if Ψ is not strictly increasing then we can use P1 and
P2 from the proof of Theorem 4.4 as two different norm-preserving extensions of P from
X to X∗∗. Hence we get the following result.

Proposition 5.2. Suppose a complex r.i. sequence space X with the Fatou property has
a fundamental function Φ such that {Φ(n)/n} is not strictly decreasing and that X is not
reflexive. Then there is a norm-attaining 2-homogeneous polynomial which has at least
two norm-preserving extensions from X to X∗∗.

Corollary 5.3. Let X be a complex r.i. sequence space with the Fatou property. Assume
no point of SX is a complex extreme point of BX . Then the fundamental function of its
associate space X ′ is strictly increasing.

We shall show that the converse of Corollary 5.3 does not hold in general, even though
X is an order continuous symmetric sequence space. Before we present an example con-
tradicting the converse of Corollary 5.3 we will need the following simple but useful fact
about complex extreme points of a unit ball in a r.i. sequence space.

Proposition 5.4. Let X be a complex r.i. sequence space. Then an order continuous ele-
ment x0 ∈ SX is a complex extreme point of BX if and only if its decreasing rearrangement
x∗0 is a complex extreme point of BX .

Proof. Observe that if T : X → X is an isometric isomorphism, then T preserves the
complex extreme points of BX .

Let x0 ∈ SX and x0 be an order continuous element. Then limn→∞ x∗0(n) = 0. So
there is a permutation σ of N such that |x0(σ(n))| = x∗0(n) for each n ∈ N. Let λn =
sign(x0(σ(n)) for n ∈ N, where for z ∈ C, sign z = z̄/|z| if z 6= 0 and sign z = 1 if z = 0.
Define an isometric isomorphism T on X as follows

Tx = {λnx(σ(n))}, x ∈ X.

Then Tx0 = x∗0, and so x0 is a complex extreme point of BX if and only if x∗0 is a complex
extreme point of BX . ¤
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Example 5.5. Let X be the set of all complex sequences x = {x(n)} such that

‖x‖ =
∞∑

k=1

(
√

n−√n− 1)x∗(n) < ∞.

Since the sequence {√n − √
n− 1} is decreasing, (X, ‖ · ‖) is a Lorentz space and it is

order continuous [13, 14]. It is clear that the fundamental functions Φ and Ψ of X and
X ′, respectively, are equal and Φ(n) =

√
n = Ψ(n) for all n ∈ N.

We shall show that every point of SX is a complex extreme point of BX . By Proposi-
tion 5.4, we have only to show that every point x∗ ∈ SX is a complex extreme point of
BX . Let x∗ ∈ SX and y ∈ X be such that ‖x∗ + ζy‖ ≤ 1 for all |ζ| < 1. Then by the
Hardy-Littlewood inequality [5],

∞∑

n=1

(
√

n−√n− 1) |x∗(n) + ζy(n)| ≤
∞∑

n=1

(
√

n−√n− 1)(x∗ + ζy)∗(n) ≤ 1.

The function f : BC → `1 defined by

f(ζ) =
∞∑

n=1

(
√

n−√n− 1) (x∗(n) + ζy(n)) en,

is analytic and ‖f(ζ)‖1 attains its maximum at ζ = 0. By a strong version of the Maximum
Modulus Theorem (cf. Theorem 3.1 in [17]), f is constant. Hence y = 0 and x∗ is a complex
extreme point of BX .

Note that even though both Φ and Ψ are strictly increasing concave functions and X
is order continuous, we cannot obtain the converse of Corollary 5.3.

Note also that although m0
Ψ is order continuous and it has the same fundamental func-

tion as X, no point of Sm0
Ψ

is a complex extreme point of BmΨ since Ψ is strictly increasing.
Therefore we cannot completely determine the complex extreme points of an r.i. space X
by its fundamental function.
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