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Abstract

Brouwer and Wilbrink showed that ¢t + 1 < (s? + 1)cq—1 holds for a regular near
2d-gon of order (s,t) with s > 2 and d is even.
In this note we generalize their inequality to all diameter.
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1 Introduction

The reader is referred to next section for the definitions.

Generalized n-gons of order (s,t) were introduced by Tits in [14]. Although formally n
is unbounded, a famous theorem of Feit-G. Higman asserts that, apart from the ordinary
polygons, finite examples can exist only for n = 3,4,6,8 or 12. ( See [6] and [3, Theorem
6.5.1]. ) Moreover, if n = 12 holds, then s = 1 or ¢t = 1. In the case of n = 4,6,8, D.G.
Higman [8, 9] and Haemers [7] showed that s and ¢t are bounded from above by functions
in t and s, respectively. To show this they used the Krein condition. ( See [3, Theorem
6.5.1]. )

Regular near polygons were introduced by Shult and Yanushka [15] as point-line geome-
tries satisfying certain axioms. It is well known that ( the collinearity graph of ) a regular
near 2d-gon of order (s,t) is a distance-regular graph of valency s(t + 1), diameter d and
a; = ¢;i(s — 1) for all 1 < ¢ < d such that for any vertex = the subgraph induced by the
neighbors of x is the disjoint union of £ + 1 complete graphs of size s.

Let T be a regular near 2d-gon of order (s,t) with s > 1 and let ¢; := ¢; — 1 for all
1 <@ < d. Brouwer and Wilbrink [5] showed, by using the Krein condition qd{l > 0, that

> () I (i5) =0

i=0 j=1

In particular, this implies that 1+t < (s2+1)(1+1t4_1) holds if d is even. This means that

if d is even, then is bounded from above by a function of s, namely by (s + 1).

Cd—1
We remark that a generalized 2d-gon of order (s,t) is a regular near 2d-gon of order
(s,t) with ¢4—1 = 1. So the result of Brouwer-Wilbrink can be regarded as a generalization
of Higman-Haemers result for generalized 2d-gons to regular near 2d-gons.

In this note we generalize the Brouwer-Wilbrink inequality to all diameters.

The following is our result.

Theorem 1 Let " be a regular near 2d-gon of order (s,t) with t > 2 and s > 2. Let
r=r(I') := max{i | (¢, ai, b;) = (c1,a1,b1)}. Then the following hold.

2d +1
(1) Let T := 503" Then 2
t+1 1
+ <s<2sT+> + 1.
Cd—1 2
3d+r (t+1)(s—1) _
L = <-— > T < 2g2p—1
(2) Let p pR— Suppose 01 < 41 hen t < 2s



We remark that dlim T=landthat 2<p<3asr+1<d.
— 00

We also remark that the dual polar graph on [2 454 1(s)] is a regular near 2d-gon of order

82d -1 SQd—Q -1 1
and ¢4 = ————. In this case we have s < <s?+1.
s—1 s—1 Cd—1

This example shows that the Brouwer-Wilbrink inequality is quite sharp for even diameter.

Note that for fixed s and d much larger then s the bound in Theorem 1 looks like

(s,t) witht 4+ 1=

t+1

Cd—1

< 5s5.

There are generalized hexagons with ¢ = s3. In this light we wonder whether the bound

t+1
Cd—1

§83+1.

would be true for all regular near 2d-gons

The results of Brouwer-Wilbrink and Higman-Haemers were shown by using the fact
that the Krein parameters are non-negative. In our proof we use the so-called absolute
bound instead. This bound relates the multplicities of eigenvalues.

This note is organized as follows. In Section 2 we give definitions and prove a basic
result. And we prove main result in Section 3.

2 Preliminaries

Let I' = (VT', ET') be a connected undirected graph without loops or multiple edges. For
vertices x and y in I we denote by dr(x,y) the usual shortest path distance between x and
y in I'. The diameter of I', denoted by d, is the maximal distance of two vertices in I'. For
a vertex x in I' we denote by I';(z) the set of vertices which are at distance i from z, and
put I'_q(z) = Tgy1(z) := 0.

A connected graph I' with diameter d is called distance-reqular if for all 0 < ¢ < d there
are numbers ¢;, a; and b; such that for any two vertices x and y in I' at distance ¢ the sets

Fici(z) NTi(y),Ti(x) NT1(y) and Tipa(z) NTi(y)
have cardinalities c;, a; and b;, respectively. Then I' is regular with valency k := by. The

numbers ¢;, a; and b; are called the intersection numbers of T.

Now suppose I' is a distance-regular graph of diameter d > 2, valency k > 3 with the
intersection numbers ¢;, a; and b;. Define r = r(I") := max{i | (¢;, a;, b;) = (¢1,a1,b1)}.

Let k; := |I';(x)| for all 0 <14 < d which does not depend on the choice of x.



By an eigenvalue of I' we will mean an eigenvalue of its adjacency matrix A. Its multi-
plicity is its multiplicity as eigenvalue of A. Define the polynomials u;(x) by

uo(x) = 1,uy(x) := z/k, and
ciui—1(z) + agui(x) + biuir1(x) = zui(z), i=1,2,...,d—1

Let 0 be an eigenvalue of I" with multiplicity m(6). The sequence (ug(6),u1(0), ..., uq(0))
is called the standard sequence corresponding to 6.

The following is well-known basic result. ( See [3, Corollary 4.1.2, Theorem 4.1.4]. )

Proposition 2 Let T' be a distance-reqular graph with diameter d > 2 and valency k > 3.
Then I' has exactly d + 1 distinct eigenvalues k = 60y > 01 > -+ > 043_1 > 04. Then
(1) The standard sequence corresponding to 6; has exactly j singe changes.

(2)
VT

m(0;) = S kug(6;)2

We would like to refer to the books [1, 2, 3, 4] for more information on distance-regular
graphs.

A graph T is said to be of order (s,t) if I';(x) is a disjoint union of ¢+ 1 cliques of size s
for every vertex x in I'. In this case, I' is a regular graph of valency k = s(t 4+ 1) and every
edge lies on a clique of size s + 1. A clique of size s + 1 is called a singular line of T'.

A graph T is called ( the collinearity graph of ) a regular near 2d-gon of order (s,t)
if it is a distance-regular graph of order (s,t) with diameter d and a; = ¢;(s — 1) for all
1< <d.

More information on regular near 2d-gons will be found in [3, §6.4-6.6].
To close this section we recall the following result.

Lemma 3 Let I' be a distance-reqular graph with diameter d such that bg_1 > cq_1, then
the second largest eigenvalue 01 satisfies

th < ag—1+2v/cq-1bg—1.

Proof.  Let u; := u;(6y) for all 0 < i < d. If 61 > ag_1 + 21/bg_1¢4—1, then it is easy
to show by induction that u; > 0 for all 4. This is a contradiction as the standard sequence
corresponding to 61 has to have exactly one sign change. 1



3 Proof of the Theorem

The rest of this paper I' = (VT', ET') denotes a regular near 2d-gon of order (s,t) with
s > 2. Let 64 be the smallest eigenvalues of I', and let #; be the second largest eigenvalue of
I' with the standard sequence (ug,us,...,uq). Let r := max{i | (¢;,a;,b;) = (1,5 — 1, st)}.

Lemma 4 (1) ag_, < 01 and m(0y) < s*?.

01\" _
(2) If 01 < ag, then 0 < u; < <i> for1<i<d-—1 and ug <0 with |ug| < zd—lud,g.
S d—1

(3) If 01 < ag — bg_15~2, then the Krein parameter qdld is mot zero.
ad

s
(4) If the Krein parameter qd{d is not zero, then m(6) < -

Proof. (1) These are proved in [13, Lemma 8] and [12, Lemma 4 (4)].
(2) Since cqug—1 = (01 — ag)ug, ug—1 and ug have different signs. Note that the standard
sequence corresponding to #; has only one sign change. Hence we have 0 < u; for 1 < i <
d—1 and ug < 0.

For 1 <i < d— 2 we have

01 —a; 0
Ujp1 < L < .
bl' st
The first assertion is proved by induction on 4.

Since ag—1 < 01 and by_qug = (01 — ag—1)ug—1 — c4—1ug—2. The desired result is proved.
(3) Note that g ; = 0 if and only if

d
Z kiu,-s_m =0.
=0

Since cgkg = bg—1kq—1, cquq—1 = (01 — ag)ug and ug < 0, we have

k
kg—1ug—1 + kdudsd = bLW(Gl —aq + bd_1872) > 0.
d—1
This implies qd{d #0,asu; >0forall 0 <i<d—1and ug <0.
(4) Suppose qd{d # (0. Then we have

m(0a){m(0a) + 1}

m(61) < Y m(6;) < 5

qj,dio

by the absolute bound. The assertion follows from (1). The lemma is proved. 1



Proposition 5 Suppose 01 < ag — bg_15"2. Then we have

gld ¢
VT < = Z kju?
Proof. 'We have qd{ 4 7 0 from Lemma 4 (3). It follows, by Lemma 4 (4), that

r 4d
‘V | = m(01) <

S
Z?:o kiug 2
Let p be as in Theorem 1. Since r + 1 < d, we have 2 < p < 3.

Dis—1
Lemma 6 Suppose 6; < M Then the following hold.

sP+1
2kd L
(1) Z kl Uj =
i=r+1

t
2
(2) kiu; §<5p
t T
2p—1
(8) If 2s°P—+ < t, theng kiu? <2( 2p1> .

=0

) forall 0 <1 <.

Proof.  Since cq_1(s — 1) = ag—1 < 01, we have (s” 4+ 1)cg—1 < t + 1. It follows that
bi1=s(t+1—cq1)> sty 1 and

6 (t+1)(s—1)
— =
st st(sP + 1) sP

(1) For all r +1 < <d—1 we have

Gt ey N1 1 \d-1-
ki =k 7z < kq- — <kg|— .
N S S a-1 (bd—1> < Kd-1 <5p+1>

Hence Lemma 4 (2) implies that

1 N4l /2 . 1\
0,2 - S d—1
hiui < Ka-1 <5/’+1> <8P> = (s(/"i‘l)(d—l)) <8P_1>
kol < ka-1ba-1 (ca-1\’ 1 2d-2) < kg1 1 \¢
d%q > d ba_1 sP = \ glp+1)(d-1) gp—1 )

and




It follows that

d r+1
kq— 1 2kg_
02 d—1 d—1
Z Riui < 2 <5(p+1)(d1)> (5p1> < s4d -

i=r+1

2
(2) We have k:ou% =1 and k:lu% = 5(750:— D < <52£—1> .Foralll <¢<7r—1we have

1 01
Ujr] = §(91 — s+ Du; —uj—q < gt

It follows, by using induction on i, that

¢ t i+1
, 42 2

The desired result is proved.
(3) This follows from (2). The lemma is proved. 1

1\ 2
Proof of Theorem 1. (1) Let v:=s <25T + 2) . Suppose cg—1(y+1) < (¢t +1). Then

t+1 t+1 (t+1)%sy
cg—1bg_1=cq1(t+1—cqg1)s < —<3t+1— —— = .
d—10d—1 d—1( dl)_,y_'_l{ } (v +1)2

It follows, by Lemma 3, that

(t+1)(s—1) N 2t +1)y/5y  (t+1)(4s™ 4+ 25 — 1) _ (t+1)

th
v+1 v+1 v+1 ST

IN

1
Forall1§i§d—2wehave@1—ai§—T(t—i-l—ci) and thus
s

biki (01— a;\? bi 1 \?
ki’ < —~ ) w2 — ) ka?
S bi T \sTH) T

It follow that

(2 b

2 j
Kipiuip1” < ( 2T+2>

i=0 Cj+18

By Lemma 4 (2) we have

kq—2bi—2bq—1 <Cd—1
CdCd—1 ba—1

kqug® <

2 S 2 1 2
> ug—2” < —kg—oui—2° < —5ka—au4—2".
% 4s

Since

b; by
i_> 2l s T sy
cj+1827'+2 Cd,1827—+2 g2m+1

6



we have

d —
2k
2 1— d 1 2 72 d—1
> kiu? < |_| <c+1327+2>{4 e LI R

It follows, by Proposition 5, that

b 4d d
k‘d1<1+dl>—kd 1+/€d<‘VF’<—Zk'uZ < skg_1.
Cd

Hence we have
t+1<s(t+1)—bg_1 =cq-15.

which is a contradiction.
(2) Suppose 2s2?~1 <t to derive a contradiction. Proposition 5 and Lemma 6 imply that

gdd 4 4d " T kg
K 1+kd<|VF\<—Zk:u <2{2<52p1> +s4d}‘

Since

b "'b b d " 1
— T —_ T P T
kg = —— 41 a1 > s(st) d-1 > s T (gl
o Cd—1

we have
Sd(sp)d—r—l <54d8r(1 Qp)‘

This is a contradiction. The theorem is proved.
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