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Abstract

Brouwer and Wilbrink showed that t + 1 ≤ (s2 + 1)cd−1 holds for a regular near
2d-gon of order (s, t) with s ≥ 2 and d is even.

In this note we generalize their inequality to all diameter.

∗This work was partly supported by the Grant-in-Aid for Scientific Research (No 14740072), the Ministry
of Education, Science and Culture, JAPAN.

1



1 Introduction

The reader is referred to next section for the definitions.

Generalized n-gons of order (s, t) were introduced by Tits in [14]. Although formally n
is unbounded, a famous theorem of Feit-G. Higman asserts that, apart from the ordinary
polygons, finite examples can exist only for n = 3, 4, 6, 8 or 12. ( See [6] and [3, Theorem
6.5.1]. ) Moreover, if n = 12 holds, then s = 1 or t = 1. In the case of n = 4, 6, 8, D.G.
Higman [8, 9] and Haemers [7] showed that s and t are bounded from above by functions
in t and s, respectively. To show this they used the Krein condition. ( See [3, Theorem
6.5.1]. )

Regular near polygons were introduced by Shult and Yanushka [15] as point-line geome-
tries satisfying certain axioms. It is well known that ( the collinearity graph of ) a regular
near 2d-gon of order (s, t) is a distance-regular graph of valency s(t + 1), diameter d and
ai = ci(s − 1) for all 1 ≤ i ≤ d such that for any vertex x the subgraph induced by the
neighbors of x is the disjoint union of t + 1 complete graphs of size s.

Let Γ be a regular near 2d-gon of order (s, t) with s > 1 and let ti := ci − 1 for all
1 ≤ i ≤ d. Brouwer and Wilbrink [5] showed, by using the Krein condition q d

dd ≥ 0, that

d−1∑

i=0

(−1
s2

)i i∏

j=1

(
t− tj
1 + tj

)
≥ 0.

In particular, this implies that 1+ t ≤ (s2 +1)(1+ td−1) holds if d is even. This means that

if d is even, then
t + 1
cd−1

is bounded from above by a function of s, namely by (s2 + 1).

We remark that a generalized 2d-gon of order (s, t) is a regular near 2d-gon of order
(s, t) with cd−1 = 1. So the result of Brouwer-Wilbrink can be regarded as a generalization
of Higman-Haemers result for generalized 2d-gons to regular near 2d-gons.

In this note we generalize the Brouwer-Wilbrink inequality to all diameters.

The following is our result.

Theorem 1 Let Γ be a regular near 2d-gon of order (s, t) with t ≥ 2 and s ≥ 2. Let
r = r(Γ) := max{i | (ci, ai, bi) = (c1, a1, b1)}. Then the following hold.

(1) Let τ :=
2d + 1
2d− 2

. Then

t + 1
cd−1

< s

(
2sτ +

1
2

)2

+ 1.

(2) Let ρ :=
3d + r

d + r − 1
. Suppose θ1 ≤ (t + 1)(s− 1)

sρ + 1
. Then t ≤ 2s2ρ−1.
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We remark that lim
d→∞

τ = 1 and that 2 < ρ < 3 as r + 1 ≤ d.

We also remark that the dual polar graph on [2A2d−1(s)] is a regular near 2d-gon of order

(s, t) with t + 1 =
s2d − 1
s− 1

and cd−1 =
s2d−2 − 1

s− 1
. In this case we have s2 <

t + 1
cd−1

≤ s2 + 1.

This example shows that the Brouwer-Wilbrink inequality is quite sharp for even diameter.

Note that for fixed s and d much larger then s the bound in Theorem 1 looks like

t + 1
cd−1

< 5s3.

There are generalized hexagons with t = s3. In this light we wonder whether the bound

t + 1
cd−1

≤ s3 + 1.

would be true for all regular near 2d-gons

The results of Brouwer-Wilbrink and Higman-Haemers were shown by using the fact
that the Krein parameters are non-negative. In our proof we use the so-called absolute
bound instead. This bound relates the multplicities of eigenvalues.

This note is organized as follows. In Section 2 we give definitions and prove a basic
result. And we prove main result in Section 3.

2 Preliminaries

Let Γ = (V Γ, EΓ) be a connected undirected graph without loops or multiple edges. For
vertices x and y in Γ we denote by ∂Γ(x, y) the usual shortest path distance between x and
y in Γ. The diameter of Γ, denoted by d, is the maximal distance of two vertices in Γ. For
a vertex x in Γ we denote by Γi(x) the set of vertices which are at distance i from x, and
put Γ−1(x) = Γd+1(x) := ∅.

A connected graph Γ with diameter d is called distance-regular if for all 0 ≤ i ≤ d there
are numbers ci, ai and bi such that for any two vertices x and y in Γ at distance i the sets

Γi−1(x) ∩ Γ1(y),Γi(x) ∩ Γ1(y) and Γi+1(x) ∩ Γ1(y)

have cardinalities ci, ai and bi, respectively. Then Γ is regular with valency k := b0. The
numbers ci, ai and bi are called the intersection numbers of Γ.

Now suppose Γ is a distance-regular graph of diameter d ≥ 2, valency k ≥ 3 with the
intersection numbers ci, ai and bi. Define r = r(Γ) := max{i | (ci, ai, bi) = (c1, a1, b1)}.

Let ki := |Γi(x)| for all 0 ≤ i ≤ d which does not depend on the choice of x.
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By an eigenvalue of Γ we will mean an eigenvalue of its adjacency matrix A. Its multi-
plicity is its multiplicity as eigenvalue of A. Define the polynomials ui(x) by

u0(x) := 1, u1(x) := x/k, and
ciui−1(x) + aiui(x) + biui+1(x) = xui(x), i = 1, 2, . . . , d− 1.

Let θ be an eigenvalue of Γ with multiplicity m(θ). The sequence (u0(θ), u1(θ), . . . , ud(θ))
is called the standard sequence corresponding to θ.

The following is well-known basic result. ( See [3, Corollary 4.1.2, Theorem 4.1.4]. )

Proposition 2 Let Γ be a distance-regular graph with diameter d ≥ 2 and valency k ≥ 3.
Then Γ has exactly d + 1 distinct eigenvalues k = θ0 > θ1 > · · · > θd−1 > θd. Then
(1) The standard sequence corresponding to θj has exactly j singe changes.
(2)

m(θj) =
|V Γ|∑d

i=0 kiui(θj)2
.

We would like to refer to the books [1, 2, 3, 4] for more information on distance-regular
graphs.

A graph Γ is said to be of order (s, t) if Γ1(x) is a disjoint union of t+1 cliques of size s
for every vertex x in Γ. In this case, Γ is a regular graph of valency k = s(t + 1) and every
edge lies on a clique of size s + 1. A clique of size s + 1 is called a singular line of Γ.

A graph Γ is called ( the collinearity graph of ) a regular near 2d-gon of order (s, t)
if it is a distance-regular graph of order (s, t) with diameter d and ai = ci(s − 1) for all
1 ≤ i ≤ d.

More information on regular near 2d-gons will be found in [3, §6.4–6.6].

To close this section we recall the following result.

Lemma 3 Let Γ be a distance-regular graph with diameter d such that bd−1 ≥ cd−1, then
the second largest eigenvalue θ1 satisfies

θ1 ≤ ad−1 + 2
√

cd−1bd−1.

Proof. Let ui := ui(θ1) for all 0 ≤ i ≤ d. If θ1 > ad−1 + 2
√

bd−1cd−1, then it is easy
to show by induction that ui > 0 for all i. This is a contradiction as the standard sequence
corresponding to θ1 has to have exactly one sign change.
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3 Proof of the Theorem

The rest of this paper Γ = (V Γ, EΓ) denotes a regular near 2d-gon of order (s, t) with
s ≥ 2. Let θd be the smallest eigenvalues of Γ, and let θ1 be the second largest eigenvalue of
Γ with the standard sequence (u0, u1, . . . , ud). Let r := max{i | (ci, ai, bi) = (1, s− 1, st)}.

Lemma 4 (1) ad−1 ≤ θ1 and m(θd) < s2d.

(2) If θ1 < ad, then 0 < ui <

(
θ1

st

)i

for 1 ≤ i ≤ d− 1 and ud < 0 with |ud| ≤ cd−1

bd−1
ud−2.

(3) If θ1 ≤ ad − bd−1s
−2, then the Krein parameter q 1

d,d is not zero.

(4) If the Krein parameter q 1
d,d is not zero, then m(θ1) <

s4d

2
.

Proof. (1) These are proved in [13, Lemma 8] and [12, Lemma 4 (4)].
(2) Since cdud−1 = (θ1 − ad)ud, ud−1 and ud have different signs. Note that the standard
sequence corresponding to θ1 has only one sign change. Hence we have 0 < ui for 1 ≤ i ≤
d− 1 and ud < 0.

For 1 ≤ i ≤ d− 2 we have

ui+1 ≤ θ1 − ai

bi
ui <

θ1

st
ui.

The first assertion is proved by induction on i.

Since ad−1 ≤ θ1 and bd−1ud = (θ1− ad−1)ud−1− cd−1ud−2. The desired result is proved.
(3) Note that q 1

d,d = 0 if and only if

d∑

i=0

kiuis
−2i = 0.

Since cdkd = bd−1kd−1, cdud−1 = (θ1 − ad)ud and ud < 0, we have

kd−1ud−1 + kduds
−2 =

kdud

bd−1
(θ1 − ad + bd−1s

−2) ≥ 0.

This implies q 1
d,d 6= 0, as ui > 0 for all 0 ≤ i ≤ d− 1 and ud < 0.

(4) Suppose q 1
d,d 6= 0. Then we have

m(θ1) ≤
∑

q j
d,d 6=0

m(θj) ≤ m(θd){m(θd) + 1}
2

by the absolute bound. The assertion follows from (1). The lemma is proved.
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Proposition 5 Suppose θ1 ≤ ad − bd−1s
−2. Then we have

|V Γ| < s4d

2

d∑

i=0

kiu
2
i .

Proof. We have q 1
d,d 6= 0 from Lemma 4 (3). It follows, by Lemma 4 (4), that

|V Γ|∑d
i=0 kiu2

i

= m(θ1) <
s4d

2
.

Let ρ be as in Theorem 1. Since r + 1 ≤ d, we have 2 < ρ < 3.

Lemma 6 Suppose θ1 ≤ (t + 1)(s− 1)
sρ + 1

. Then the following hold.

(1)
d∑

i=r+1

kiu
2
i ≤

2kd−1

s4d
.

(2) kiu
2
i ≤

(
t

s2ρ−1

)i

for all 0 ≤ i ≤ r.

(3) If 2s2ρ−1 ≤ t, then
r∑

i=0

kiu
2
i ≤ 2

(
t

s2ρ−1

)r

.

Proof. Since cd−1(s− 1) = ad−1 ≤ θ1, we have (sρ + 1)cd−1 ≤ t + 1. It follows that
bd−1 = s(t + 1− cd−1) ≥ sρ+1cd−1 and

θ1

st
=

(t + 1)(s− 1)
st(sρ + 1)

<
1
sρ

.

(1) For all r + 1 ≤ i ≤ d− 1 we have

ki = kd−1
cd−1 · · · ci+1

bi · · · bd−2
≤ kd−1

(
cd−1

bd−1

)d−1−i

≤ kd−1

(
1

sρ+1

)d−1−i

.

Hence Lemma 4 (2) implies that

kiu
2
i ≤ kd−1

(
1

sρ+1

)d−1−i ( 1
sρ

)2i

≤
(

kd−1

s(ρ+1)(d−1)

) (
1

sρ−1

)i

and

kdu
2
d ≤

kd−1bd−1

cd

(
cd−1

bd−1

)2 (
1
sρ

)2(d−2)

≤
(

kd−1

s(ρ+1)(d−1)

)(
1

sρ−1

)d

.
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It follows that
d∑

i=r+1

kiu
2
i ≤ 2

(
kd−1

s(ρ+1)(d−1)

)(
1

sρ−1

)r+1

≤ 2kd−1

s4d
.

(2) We have k0u
2
0 = 1 and k1u

2
1 =

θ1
2

s(t + 1)
≤

(
t

s2ρ−1

)
. For all 1 ≤ i ≤ r − 1 we have

ui+1 =
1
st

(θ1 − s + 1)ui − ui−1 <
θ1

st
ui.

It follows, by using induction on i, that

ki+1ui+1
2 ≤ kiu

2
i

(
t

s2ρ−1

)
≤

(
t

s2ρ−1

)i+1

.

The desired result is proved.
(3) This follows from (2). The lemma is proved.

Proof of Theorem 1. (1) Let γ := s

(
2sτ +

1
2

)2

. Suppose cd−1(γ + 1) ≤ (t + 1). Then

cd−1bd−1 = cd−1(t + 1− cd−1)s ≤ t + 1
γ + 1

{
t + 1− t + 1

γ + 1

}
s =

(t + 1)2sγ
(γ + 1)2

.

It follows, by Lemma 3, that

θ1 ≤ (t + 1)(s− 1)
γ + 1

+
2(t + 1)

√
sγ

γ + 1
=

(t + 1)(4sτ+1 + 2s− 1)
γ + 1

<
(t + 1)

sτ
.

For all 1 ≤ i ≤ d− 2 we have θ1 − ai ≤ 1
sτ

(t + 1− ci) and thus

ki+1ui+1
2 <

biki

ci+1

(
θ1 − ai

bi

)2

u2
i ≤

bi

ci+1

(
1

sτ+1

)2

kiu
2
i

It follow that

ki+1ui+1
2 ≤

i∏

j=0

(
bj

cj+1s2τ+2

)

By Lemma 4 (2) we have

kdud
2 ≤ kd−2bd−2bd−1

cdcd−1

(
cd−1

bd−1

)2

ud−2
2 <

s

γ
kd−2ud−2

2 <
1

4s2
kd−2ud−2

2.

Since
bj

cj+1s2τ+2
≥ bd−1

cd−1s2τ+2
≥ γ

s2τ+1
≥ 4,
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we have

d∑

i=0

kiui
2 ≤

d−2∏

j=0

(
bj

cj+1s2τ+2

)
{41−d + · · ·+ 4−1 + 1 + 4−2s−2} <

2kd−1

s4d−1
.

It follows, by Proposition 5, that

kd−1

(
1 +

bd−1

cd

)
= kd−1 + kd < |V Γ| ≤ s4d

2

d∑

i=0

kiui
2 < skd−1.

Hence we have
t + 1 < s(t + 1)− bd−1 = cd−1s.

which is a contradiction.
(2) Suppose 2s2ρ−1 ≤ t to derive a contradiction. Proposition 5 and Lemma 6 imply that

kd−1 + kd < |V Γ| ≤ s4d

2

d∑

i=0

kiu
2
i ≤

s4d

2

{
2

(
t

s2ρ−1

)r

+
2kd−1

s4d

}
.

Since

kd =
b0 · · · bd−1

c1 · · · cd
≥ s(st)r

(
bd−1

cd−1

)d−r−1

≥ trsr+1(sρ+1)d−r−1.

we have
sd(sρ)d−r−1 < s4dsr(1−2ρ).

This is a contradiction. The theorem is proved.
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