Improving diameter bounds for distance-regular graphs

S. Bang^{*}

Com²MaC, Pohang University of Science and Technology Hyoja-dong, Namgu, Pohang 790-784 Korea e-mail: sjbang3@postech.ac.kr A. Hiraki†

> Division of Mathematical Sciences, Osaka Kyoiku University Asahigaoka 4-698-1, Kashiwara, Osaka 582-8582, Japan e-mail: hiraki@cc.osaka-kyoiku.ac.jp

J. H. Koolen

Division of Applied Mathematics, KAIST, 373-1 Kusongdong, Yusongku, Daejon 305-701 Korea e-mail: jhk@amath.kaist.ac.kr

March 14, 2004

Abstract

In this paper we study the sequence $(c_i)_{0\leq i\leq d}$ for a distance-regular graph. In particular we show that if $d \geq 2j$ and $c_j = c > 1$ then $c_{2j} > c$ holds. Using this we give improvements on diameter bounds by Hiraki and Koolen [5], and Pyber [8], respectively, by applying this inequality.

1 Introduction

Let Γ be a distance-regular graph of diameter $d \geq 2$, valency $k \geq 2$ and intersection numbers $c_i, a_i, b_i \ (0 \leq i \leq d)$. (For definitions, see next section.) We define

$$
\mathbf{h} = \mathbf{h}(\Gamma) := |\{i \mid 1 \le i \le d - 1 \text{ and } (c_i, a_i, b_i) = (c_1, a_1, b_1)\}|.
$$

[∗]The author thanks for the support of Com²MaC-KOSEF.

[†]The author thanks for the support of Grant-in-Aid for Scientific Research (No 14740072), the Ministry of Education, Science and Culture, JAPAN.

For each $1 \leq c \leq c_d$ we define

$$
\xi_c := \min\{i \mid c_i \ge c\} \n\eta_c := |\{i \mid c_i = c\}|.
$$

In this paper we study for a given integer c, the number of η_c for a distance-regular graph. We obtain the following result:

Theorem 1.1 Let Γ be a distance-regular graph of diameter $d \geq 2$. Let c be an integer with $2 \leq c \leq c_d$. Then $\eta_c \leq \xi_c - 1$.

Using Theorem 1.1, we will give improvements on the diameter bounds of distanceregular graphs found by Hiraki and Koolen [5] and Pyber [8], respectively.

In $[5]$ it was shown that the diameter of a distance-regular graph of valency k is bounded by $\frac{1}{2}k^2\eta_1$. In the next result we show we can interchange the power 2 by α , where

$$
\alpha := \min\{x > 0 \mid 4^{\frac{1}{x}} - 2^{\frac{1}{x}} \le 1\}.
$$

Note 1.2 We remark that $1.44 < \alpha < 1.441$.

Theorem 1.3 Let Γ be a distance-regular graph of diameter $d \geq 2$ and valency $k \geq 3$. Let $C := \{c_i \mid i = 1, \ldots, d\}$. Then

$$
\xi_c \le \frac{1}{2} (c^{\alpha} \eta_1 + 1) \tag{1}
$$

and

$$
\xi_c + \eta_c \le c^\alpha \eta_1 + 1\tag{2}
$$

hold for all $c \in C$. In particular if $h := h(\Gamma) \geq 2$ then

$$
\xi_c \le \frac{1}{2} \left\{ 2c^{\alpha} (h+1) + 1 \right\} \tag{3}
$$

and

$$
\xi_c + \eta_c \le 2c^{\alpha}(h+1) + 1\tag{4}
$$

hold for all $c \in C$.

Corollary 1.4 Let Γ be a distance-regular graph of diameter $d \geq 2$, valency $k \geq 3$ and $h := h(\Gamma)$. Then

$$
d \leq \frac{1}{2} \left(k^{\alpha} \eta_1 + 1 \right).
$$

In particular if $h \geq 2$ then

$$
d \le k^{\alpha}(\mathbf{h} + 1) + \frac{1}{2}
$$

holds.

In [8] Pyber showed that the diameter of distance-regular graphs is at most 5 times the 2-logarithm of the number of vertices. The following gives an improvement of this bound.

Theorem 1.5 Let Γ be a distance-regular graph with v vertices. Let d be the diameter of Γ. Then

$$
d < \frac{8}{3} \log_2 v.
$$

The paper is organized as follows: In Section 2 we give definitions, in Section 3 we give the proof of Theorem 1.1, in Section 4 we give the proofs of Theorem 1.3 and Corollary 1.4, and in the last section we give the proof of Theorem 1.5.

2 Defintions

All graphs in this paper are undirected graphs without loops and multiple edges. Suppose that Γ is a finite connected graph with vertex set $V\Gamma$. We define the distance between any two vertices x and y, $d(x, y)$, as to be the length of any shortest path in Γ between x and y, and the diameter d of Γ to be the largest distance between any pair of vertices in VT. For a vertex $x \in V\Gamma$ and any non-negative integer i not exceeding d, let $\Gamma_i(x)$ denote the subset of vertices in V Γ that are at distance i from x and put $\Gamma(x) := \Gamma_1(x)$ and $\Gamma_{-1}(x) = \Gamma_{d+1}(x) := \emptyset$. For any two vertices x and y in VT at distance i, let

$$
C_i(x, y) := \Gamma_{i-1}(x) \cap \Gamma_1(y)
$$

\n
$$
A_i(x, y) := \Gamma_i(x) \cap \Gamma_1(y)
$$

\n
$$
B_i(x, y) := \Gamma_{i+1}(x) \cap \Gamma_1(y).
$$

A graph Γ is called *distance-regular* if there are integers b_i, c_i $(0 \leq i \leq d)$ which satisfy $c_i = |C_i(x, y)|$ and $b_i = |B_i(x, y)|$ for any two vertices x and y in VT at distance i. Clearly such a graph is regular of valency $k := b_0$. The numbers c_i, b_i , and a_i , where

$$
a_i := k - b_i - c_i \quad (i = 0, ..., d)
$$

is the number of neighbors of y in $\Gamma_i(x)$ for $x, y \in V\Gamma$ at distance i, are called the *intersection* numbers of Γ . The array

$$
\left[\begin{array}{ccccccccc} c_0 & c_1 & c_2 & \cdots & c_i & \cdots & c_{d-1} & c_d \\ a_0 & a_1 & a_2 & \cdots & a_i & \cdots & a_{d-1} & a_d \\ b_0 & b_1 & b_2 & \cdots & b_i & \cdots & b_{d-1} & b_d \end{array}\right]
$$

is called the *intersection array* of Γ .

Now, suppose that Γ is a distance-regular graph of diameter $d \geq 2$, valency $k \geq 2$ and intersection numbers $c_i, a_i, b_i, 0 \le i \le d$. Clearly, $b_d = c_0 = a_0 = 0$ and $c_1 = 1$. In [2, Section 4.1, it is shown that $\Gamma_i(x)$ contains k_i elements where

$$
k_0 := 1, \ \ k_1 := k, \ \ k_{i+1} := k_i b_i / c_{i+1}, \quad i = 1, \ldots, d-1,
$$

and in [2, Proposition 4.1.6] it is shown that

$$
k = b_0 > b_1 \ge b_2 \ge \dots \ge b_{d-1} > b_d = 0,
$$

\n
$$
1 = c_1 \le c_2 \le \dots \le c_d \le k
$$

\nand
$$
c_i \le b_j \text{ if } i + j \le d.
$$
 (5)

For more information on distance-regular graphs, see [2].

3 Proof of Theorem 1.1

In this section we show Theorem 1.1. In order to show the theorem we use the intersection diagram with respect to an edge. Let Γ be a distance-regular graph of diameter $d \geq 2$ and valency $k \geq 3$. Let (u, v) be an edge in Γ . For each $0 \leq i, j \leq d$ set $D_j^i = D_j^i(u, v) :=$ $\Gamma_i(u) \cap \Gamma_j(v)$. The intersection diagram with respect to (u, v) is the collection $\{D_j^i\}_{0 \le i,j \le d}$ with lines between them such that if there is no line between D_j^i and D_t^s , then it means that there is no edge (x, y) for any $x \in D_i^i$ and $y \in D_i^s$. Also if we know that D_j^i is the empty set then we erase it.

Remark 3.1 If $c_i = c_{i+1}$ then there are no edges between any two of $\{D_i^{i+1}, D_i^i, D_{i+1}^i\}$.

Let c be an integer with $2 \leq c \leq c_d$. Let $\eta := \eta_c$ and $\xi := \xi_c$. Then for any edge (u, v) in Γ the intersection diagram with respect to (u, v) has the shape as in Figure 1.

Figure 1.

Lemma 3.2 If $c_{\eta} + c_{\xi-1} > c_{\xi}$ then the following hold: (i) There are no edges between D_{ε}^{ξ} ξ_{-1} and $D_{\xi}^{\xi-1}$ ξ⁻¹.
ξ (ii) There exists an edge (x_0, x_1) such that $x_0 \in D_{\xi-1}^{\xi-1}$ ξ_{-1}^{-1} and $x_1 \in D_{\xi}^{\xi}$ ξ−1 . (iii) $b_{\eta} \geq c_{\xi-1} + c_{\eta}$.

Proof: (i) Assume that there is an edge between $D_{\varepsilon}^{\xi-1}$ ξ^{-1} and D_{ξ}^{ξ} ξ_{-1} . Then there exists a path (y_0, y_1, \ldots, y_n) such that $y_0 \in D_{\xi}^{\xi-1}$ ξ^{-1} and $y_i \in D_{\xi-2+i}^{\xi-1+i}$ ζ_{-2+i}^{-1+i} for $1 \leq i \leq \eta$. Clearly $d(y_0, y_\eta) = \eta$. It follows that

$$
C_{\xi}(v,y_0) \supseteq \left[\Gamma(y_0) \cap D_{\xi-1}^{\xi}\right] \cup \left[\Gamma(y_0) \cap D_{\xi-1}^{\xi-2}\right] \supseteq C_{\eta}(y_{\eta},y_0) \cup C_{\xi-1}(u,y_0).
$$

This contradicts to $c_{\eta} + c_{\xi-1} > c_{\xi}$. This shows (i).

(ii) Let $x_1 \in D_{\xi}^{\xi}$ ξ⁻¹. As c_{ξ} > $c_{\xi-1}$ and there are no edges between D_{ξ}^{ξ} ξ_{-1} and $D_{\xi}^{\xi-1}$ ξ^{-1} , there must be a neighbour $x_0 \in D_{\xi-1}^{\xi-1}$ ξ_{-1}^{-1} of x_1 . This shows (ii).

(iii) It follows, from (ii), that there exists a path (x_0, x_1, \ldots, x_n) such that $x_0 \in D_{\xi-1}^{\xi-1}$ ξ−1 and $x_i \in D_{\xi-2+i}^{\xi-1+i}$ ξ_{-2+i}^{-1+i} for $1 \le i \le \eta$. Now $C_{\eta}(x_{\eta}, x_0) \subseteq \Gamma(x_0) \cap D_{\xi}^{\xi}$ ξ_{-1} and by symmetry we find that \overline{a} $\begin{array}{c} \begin{array}{c} \hline \end{array} \end{array}$ \overline{a} $\begin{matrix} \end{matrix}$ \overline{a} $\overline{}$ \overline{a} $\overline{}$

$$
c_{\eta} \leq \left| \Gamma(x_0) \cap D_{\xi-1}^{\xi} \right| = \left| \Gamma(x_0) \cap D_{\xi}^{\xi-1} \right|.
$$

We also have

$$
C_{\xi-1}(u,x_0) \cup \left[\Gamma(x_0) \cap D_{\xi}^{\xi-1}\right] \subseteq B_{\eta}(x_{\eta},x_0),
$$

$$
C_{\xi-1}(u,x_0) \cap \left[\Gamma(x_0) \cap D_{\xi}^{\xi-1}\right] = \emptyset,
$$

which implies

$$
c_{\xi-1} + c_{\eta} \le b_{\eta}.
$$

This shows (iii).

Proof of Theorem 1.1: Suppose $\xi \leq \eta$. We will derive a contradiction and this shows the theorem. In order to do this we will show several claims.

Let (u, v) be any edge in Γ and $D_j^i = D_j^i(u, v) := \Gamma_i(u) \cap \Gamma_j(v)$. Then Remark 3.1 and Lemma 3.2 (i) imply that the intersection diagram with respect to (u, v) has the shape as in Figure 2, and Lemma 3.2 (ii) implies that there exists a path $(x_0, x_1, \ldots, x_{\xi})$ of length ξ such that $x_0 \in D_{\ell-1}^{\xi-1}$ ξ_{-1}^{-1} and $x_i \in D_{\xi + i - 2}^{\xi + i - 1}$ ξ_{i+i-2}^{i+i-1} for all $1 \leq i \leq \xi$.

Figure 2.

Claim 1. (i) The set $D_{\xi}^{\xi} \cap A_{\xi}(x_{\xi}, x_0)$ is non-empty. (ii) Let $z \in D_{\xi}^{\xi} \cap A_{\xi}(x_{\xi}, x_0)$. Then $C_{\xi}(z, x_{\xi}) \subseteq D_{2\xi-3}^{2\xi-2} \cap \Gamma_1(x_{\xi})$. (iii) Let $z \in D_{\xi}^{\xi} \cap A_{\xi}(x_{\xi}, x_0)$. Then $D_{\xi+1}^{\xi+1} \cap C_{\xi}(x_{\xi}, z)$ is non-empty.

Proof: (i) The set $D_{\xi}^{\xi} \cap A_{\xi}(x_{\xi}, x_0)$ is non-empty, as otherwise

$$
C_{\xi-1}(u, x_0) \cup B_{\xi-1}(v, x_0) \subseteq B_{\xi}(x_{\xi}, x_0),
$$

$$
C_{\xi-1}(u, x_0) \cap B_{\xi-1}(v, x_0) = \emptyset
$$

hold and thus $c_{\xi-1} + b_{\xi-1} \leq b_{\xi}$ which is a contradiction as $\xi \geq 2$. This shows (i). (ii) It is clear that $C_{\xi}(z, x_{\xi}) \subseteq D_{2\xi-3}^{2\xi-2} \cup D_{2\xi-1}^{2\xi-1}$ 2ξ⁻¹. If there exists $z' \in D^{2\xi-1}_{2\xi-1} \cap C_{\xi}(z, x_{\xi})$ then

$$
C_{\xi}(x_0, z') \cup \{x_{\xi}\} \subseteq C_{2\xi - 1}(v, z').
$$

This contradicts to $c_{\xi} = c_{2\xi-1}$ as $\eta \geq \xi$. Thus $D_{2\xi-1}^{2\xi-1} \cap C_{\xi}(z, x_{\xi}) = \emptyset$ and this shows (ii). (iii) It is clear that $C_{\xi}(x_{\xi}, z) \subseteq D_{\xi-1}^{\xi} \cup D_{\xi+1}^{\xi+1}$. If $D_{\xi+1}^{\xi+1} \cap C_{\xi}(x_{\xi}, z) = \emptyset$ then

$$
C_{\xi}(x_{\xi},z) \cup \{x_0\} \subseteq C_{\xi}(v,z).
$$

which is a contradiction. Thus we have (iii).

Define $P := C_{\xi}(x_{\xi}, x_0)$ and $Q := B_{\xi-1}(x_{\xi-1}, x_0) - B_{\xi}(x_{\xi}, x_0)$.

Claim 2. The set $P \cap Q$ is empty and $P \cup Q \subseteq D_{\varepsilon}^{\xi}$ ξ−1 .

Proof: It is clear that $P \subseteq D_{\varepsilon}^{\xi}$ ξ_{-1} . Let $z \in Q$. If $z \in P$, then $x_0 \in D_{\xi}^{\xi}$ $\xi_{-1}(x_{\xi}, x_{\xi-1})$ and $z \in D_{\varepsilon}^{\xi-1}$ $\zeta^{-1}(x_{\xi}, x_{\xi-1})$ hold. As $\eta \ge \xi \ge 2$, it follows by Lemma 3.2 (i) that there are no edges between D_{ε}^{ξ} ξ_{-1} and $D_{\xi}^{\xi-1}$ ξ^{-1} . Therefore $P \cap Q = \emptyset$ and $Q \subseteq A_{\xi}(x_{\xi}, x_0)$ hold. As

$$
\left[D_{\xi-2}^{\xi-2} \cup D_{\xi-1}^{\xi-2} \cup D_{\xi}^{\xi-1}\right] \cap \Gamma_1(x_0) \subseteq B(x_{\xi}, x_0),
$$

it follows that $Q \subseteq D_{\xi}^{\xi} \cup D_{\xi-1}^{\xi-1} \cup D_{\xi-2}^{\xi-1} \cup D_{\xi}^{\xi}$ ξ−1 . Suppose z ∈ $D_{\xi}^{\xi} \cup D_{\xi-1}^{\xi-1} \cup D_{\xi-2}^{\xi-1}$ ξ−2 i . Then

$$
C_{\xi}(z, x_{\xi}) \subseteq D_{2\xi - 3}^{2\xi - 2} \cap \Gamma_1(x_{\xi}) = C_{2\xi - 1}(u, x_{\xi}).
$$
\n(6)

(The Equation (6) is clear when $z \in D_{\xi-1}^{\xi-1} \cup D_{\xi-2}^{\xi-1}$ ξ_{-2}^{-1} . If $z \in D_{\xi}^{\xi}$ ξ , then it follows from Claim 1 (ii).) By comparing both sides of (6) we have $x_{\xi-1} \in C_{2\xi-1}(u, x_{\xi}) = C_{\xi}(z, x_{\xi})$ which contradicts to $z \in B_{\xi-1}(x_{\xi-1}, x_0)$. Hence $Q \subseteq D_{\xi}^{\xi}$ ξ_{-1} . The claim is proved.

Claim 3. There exists $u' \in B_{\xi-1}(x_0, v) - B_{\xi-1}(x_1, v)$. Define $R := B_{\xi}(u', x_0)$. Then $R \subseteq D_{\varepsilon}^{\xi}$ ξ .

Proof: Since $u \in B_{\xi-1}(x_1, v) - B_{\xi-1}(x_0, v)$, there exists $u' \in B_{\xi-1}(x_0, v) - B_{\xi-1}(x_1, v)$.

Consider the intersection diagram with respect to (u', v) . Then we have $x_0 \in D_{\varepsilon}^{\xi}$ $\xi_{-1}(u',v)$ and $x_1 \in D_{\xi-1}^{\xi-1}$ $\xi_{-1}^{-1}(u',v)$. Take any $w_2 \in R$. Then $w_2 \in D_{\xi}^{\xi+1}$ $\xi^{\pm 1}(u',v)$ and we can take a path $(w_2, w_3, \ldots, w_{\xi})$ such that $w_i \in D_{\xi + i-2}^{\xi + i-1}$ $\zeta_{i,i-2}^{i+1}$ (u', v) for $2 \leq i \leq \xi$. By Claim 1 (i), (iii) there exists $z_0 \in D_{\varepsilon}^{\xi}$ $\xi(u',v) \cap A_{\xi}(w_{\xi},x_1)$ and $z_1 \in D_{\xi+1}^{\xi+1}(u',v) \cap C_{\xi}(w_{\xi},z_0)$ Let $(z_1,\ldots,z_{\xi}=w_{\xi})$ be a shortest path connecting z_1 and w_{ξ} . Since $z_1 \in D_{\xi+1}^{\xi+1}(u', v)$ and $z_{\xi} \in D_{2\xi-2}^{2\xi-1}$ $\frac{2\xi-1}{2\xi-2}(u',v)$ such that $d(z_1, z_{\xi}) = \xi - 1$ there exists an integer t with $2 \leq t \leq \xi - 1$ such that $z_i \in D_{\xi+i}^{\xi+i}$ $\xi_{i}^{i+1}(u',v)$ for all $0 \le i \le t - 1$ and $z_i \in D^{\xi + i - 1}_{\xi + i - 2}$ $\zeta_{i,i-2}^{i+1}$ (u', v) for all $t \leq i \leq \xi$ by Claim 1 (ii). Next we return to the intersection diagram with respect to (u, v) . Since $x_0 \in D_{\varepsilon-1}^{\xi-1}$ ξ_{-1}^{-1} and $w_2 \in B_{\xi-1}(v, x_0)$, we have $w_2 \in D_{\xi}^{\xi-1} \cup D_{\xi}^{\xi}$ ξ .

Suppose $w_2 \in D_{\xi}^{\xi-1}$ ξ^{-1} . Then we have $w_i \in D_{\xi + i - 2}^{\xi + i - 3}$ ζ_{i+i-2}^{i+i-3} for all $2 \leq i \leq \xi$ as the former diagram gives us the distance between v and w_i . Similarly we have $z_i \in D_{\zeta+i-2}^{\zeta+i-3}$ ξ_{i+i-2}^{i+i-3} for all $t \leq i \leq \xi$ and $z_i \in D_{\xi+i}^{\xi+i-1}$ $\xi_{i}^{i,i-1}$ for all $0 \leq i \leq t-1$. Hence (x_1, z_0) is an edge such that $x_1 \in D_{\xi}^{\xi}$ ξ_{-1} and $z_0 \in D_{\varepsilon}^{\xi-1}$ ξ^{-1} . This contradicts Lemma 3.2 (i) as $c_{\eta} + c_{\xi-1} > c_{\xi}$ holds by the assumption $\eta \geq \xi$. Hence we have $w_2 \in D_{\varepsilon}^{\xi}$ $\frac{\xi}{\xi}$ and our claim is proved. I Claims 2 and 3 show that the sets P , Q and R are disjoint and

$$
P \cup Q \cup R \subseteq B_{\xi-1}(u, x_0).
$$

As $|P| = c_{\xi}$, $|Q| = b_{\xi-1} - b_{\xi}$ and $|R| = b_{\xi}$ hold, this implies $c_{\xi} + (b_{\xi-1} - b_{\xi}) + b_{\xi} \le b_{\xi-1}$ which is a contradiction. The theorem is proved.

4 Proofs of Theorem 1.3 and Corollary 1.4

In this section we prove Theorem 1.3 and Corollary 1.4. Recall $C := \{c_i \mid i = 1, \ldots, d\}.$

Lemma 4.1 Let Γ be a distance-regular graph of diameter $d \geq 2$ and valency $k \geq 3$. Let $c \in C \setminus \{1\}$. Then

(i) $c_i + c_{\xi_c - i} \leq c$ for all $1 \leq i \leq \xi_c - 1$. (ii) ξ_c-1 $j=1$ $c_j \leq$ \sqrt{c} 2 ζ_c-1 .

Proof: (i) This is [7, Proposition 1 (ii)]. (ii) Let $\xi := \xi_c$. Then (i) implies that

$$
2\sqrt{c_jc_{\xi-j}} \leq c_j + c_{\xi-j} \leq c
$$

holds for all $1 \leq j \leq \xi - 1$. Hence we have

$$
\prod_{j=1}^{\xi-1} c_j = \prod_{j=1}^{\xi-1} \sqrt{c_j c_{\xi-j}} \le \left(\frac{c}{2}\right)^{\xi-1}.
$$

 \blacksquare

Lemma 4.2 Let $\beta := \left(\frac{1}{2}\right)$ $\overline{2}$ $\sqrt{1}$ $\overline{\alpha}$. For a real number x with $\beta \leq x \leq 1$

$$
x^{\alpha} + 2(1 - x)^{\alpha} \le 1
$$

holds.

Proof: Define $f : [\beta, 1] \to \mathbf{R}$ by

$$
f(x) := x^{\alpha} + 2(1 - x)^{\alpha}.
$$

By definition of β (and α), it follows easily that $f(\beta) = 1$. Also $f(1) = 1$. By straightforward calculation one sees that on $[\beta, 1]$, the function f has maxima at $x = 1$ and $x = \beta$. This shows the lemma. Ľ

Proof of Theorem 1.3: Let $C = {\gamma_1, \gamma_2, ..., \gamma_q}$ such that

$$
1 = \gamma_1 < \gamma_2 < \cdots < \gamma_q = c_d
$$

holds. We will prove

$$
\xi_{\gamma_j} \le \frac{1}{2} \left\{ (\gamma_j)^{\alpha} \eta_1 + 1 \right\} \tag{7}
$$

and

$$
\xi_{\gamma_j} + \eta_{\gamma_j} \le (\gamma_j)^{\alpha} \eta_1 + 1 \tag{8}
$$

hold for all $j = 1, 2, \ldots, q$ by induction on j.

As $1 = \xi_1 \leq \frac{1}{2}$ $\frac{1}{2}(\eta_1 + 1)$ and $\xi_1 + \eta_1 = \eta_1 + 1$ hold, so (7) and (8) hold for $j = 1$. Now let $s \geq 2$ and assume that (7) and (8) hold for all γ_i with $1 \leq i < s$. Let $c := \gamma_s$, $c' := \gamma_{(s-1)}$ and $c' = bc$ for some $0 < b < 1$.

First we will prove Equation (7) holds for $j = s$. In order to show this we need to consider two cases, namely the case $0 < b \leq \beta$ and the case $\beta < b < 1$, respectively.

Case-1: $0 < b \leq \beta$ *Proof:* As $c' = bc \leq \beta c$ and $b^{\alpha} \leq \beta^{\alpha} = \frac{1}{2}$ $\frac{1}{2}$ hold, we find

$$
\xi_c = \xi_{c'} + \eta_{c'} - 1 \leq (bc)^{\alpha} \eta_1 \leq \frac{1}{2} c^{\alpha} \eta_1
$$

hold by our induction hypothesis.

Case-2: $\beta < b < 1$ Proof: Let $c'' := c_{\xi_c-\xi_{c'}}$. Then Lemma 4.1 (i) implies that $c = c_{\xi_c} \geq c_{\xi_{c'}} + c_{\xi_c-\xi_{c'}} = c' + c''$ holds and thus $c'' \leq (1 - b)c$ holds. Therefore we find that

$$
\begin{array}{rcl}\n\xi_c & \leq & \xi_{c'} + (\xi_{c''} + \eta_{c''} - 1) \\
& \leq & \frac{1}{2} \left\{ (c')^\alpha \eta_1 + 1 \right\} + (c'')^\alpha \eta_1 \\
& \leq & \frac{1}{2} \left\{ (b^\alpha + 2(1 - b)^\alpha) \, c^\alpha \eta_1 + 1 \right\} \\
& \leq & \frac{1}{2} \left(c^\alpha \eta_1 + 1 \right)\n\end{array}
$$

hold by Lemma 4.2 and our induction hypothesis.

Ī

Γ

Hence Equation (7) holds for $j = s$. The fact that Equation (8) holds for $j = s$ follows from Theorem 1.1. Therefore we have shown that Equations (7) and (8) hold for all $1 \leq$ $j \leq q$.

Now assume $h \geq 2$. In [6, Theorem 2] it is shown that $\eta_1 \leq 2(h+1)$ holds. Equations (3) and (4) follow now immediately from Equations (1) and (2), respectively. I

Proof of Corollary 1.4: If $\xi_{c_d} = d$ then by Equation (1) the following holds:

$$
d = \xi_{c_d} \le \frac{1}{2} \left\{ (c_d)^{\alpha} \eta_1 + 1 \right\} \le \frac{1}{2} \left(k^{\alpha} \eta_1 + 1 \right).
$$

Now we assume that $\xi_{c_d} < d$. If $c_d \leq \beta k$ then the result holds as

$$
d \leq \xi_{c_d} + \eta_{c_d} - 1 \leq (c_d)^{\alpha} \eta_1 \leq (\beta k)^{\alpha} \eta_1 = \frac{1}{2} k^{\alpha} \eta_1
$$

holds by (2). To complete the proof we need to consider $\beta k < c_d$. Let $c_d = \epsilon k$ for some $\beta < \epsilon < 1$ and $c := c_{(d-\xi_{c_d})}$. Then $c = c_{(d-\xi_{c_d})} \leq b_{\xi_{c_d}} \leq k - c_d = (1 - \epsilon)k$ holds by (5). Therefore the result follows by Theorem 1.3 and Lemma 4.2:

$$
d \leq \xi_{c_d} + (\xi_c + \eta_c - 1)
$$

\n
$$
\leq \frac{1}{2} \{ (c_d)^{\alpha} \eta_1 + 1 \} + c^{\alpha} \eta_1
$$

\n
$$
\leq \frac{1}{2} \left[\{ \epsilon^{\alpha} + 2(1 - \epsilon)^{\alpha} \} \, k^{\alpha} \eta_1 + 1 \right]
$$

\n
$$
\leq \frac{1}{2} \left(k^{\alpha} \eta_1 + 1 \right).
$$

П

5 Proof of Theorem 1.5

In the proof of Theorem 1.5 we will use the following results.

Lemma 5.1 Let Γ be a distance-regular graph of diameter $d \geq 2$ and valency $k \geq 3$. Let $h = h(\Gamma)$. Then for any integer $1 \leq i \leq d$ the following hold: (i) If $k_{i+1} \leq k_i$, then $d \leq 3i$. (ii) $a_1 + 2 \leq c_i + b_{i-1}$. (iii) If $b_{i-1} = 2$ and $c_i = 1$ then $i \leq 2h + 2$.

Proof: (i),(ii): These follow from [2, Corollary 5.9.7] and [2, Proposition 5.5.1], respectively. (iii) We only need to consider the case $h = 1$ as for the case $h \geq 2$ the assertion follows from [6, Theorem 2]. Note that by (ii) $a_1 \leq 1$ holds. Now [4, Theorem 1.1–1.2] imply that $c_4 \neq 1$. Hence $\eta_1 \leq 3 < 2h + 2$. The lemma is shown.

Lemma 5.2 Let Γ be a distance-regular graph of diameter $d \geq 2$ and valency $k \geq 3$. Let $\ell \leq d$ be maximal such that $2c_{\ell} \leq b_{\ell-1}$. Then

$$
d \leq 4\ell.
$$

Proof: By definition of ℓ , $2c_{\ell} \leq b_{\ell-1}$ and $2c_{\ell+1} > b_{\ell}$ hold. We may assume that $3\ell + 1 \leq d$. Let $c := c_{2\ell+1}, \xi := \xi_c$ and $\eta := \eta_c$. Then $2c_{\ell+1} > b_\ell \ge c_{2\ell+1} = c$ holds by (5). We have $c \ge 2$ as otherwise $c_{\ell+1} = 1$ and $b_{\ell} = 1$ hold by the definition of ℓ , and thus $k_{\ell+1} = k_{\ell}$ holds which contradicts to Lemma 5.1 (i).

If $\eta \ge \ell + 1$, then $c_{\eta} + c_{\xi-1} \ge 2c_{\ell+1} > c = c_{\xi}$ as $\xi - 1 \ge \eta \ge \ell + 1$ by Theorem 1.1. By Lemma 3.2 (iii) we have

$$
b_{\ell} \ge b_{\eta} \ge c_{\xi-1} + c_{\eta} \ge 2c_{\ell+1}.
$$

But that is a contradiction with the definition of ℓ . Hence we find $\eta \leq \ell$. As $2(\ell + 1) \leq$ $\eta + \xi \leq 3\ell + 1$, $c_{3\ell+1} \geq c_{\eta+\xi} \geq 2c_{\ell+1} > b_{\ell}$ holds by Lemma 4.1 (i). So $d \leq 4\ell$ holds. \blacksquare

Proof of Theorem 1.5: Let $\ell \leq d$ be maximal such that $2c_{\ell} \leq b_{\ell-1}$. Let $c := c_{\ell}, \xi := \xi_c$ and $\eta := \eta_c$. In order to prove the theorem we need to consider three cases, namely $c_\ell \geq 2$, $(c_{\ell} = 1 \text{ and } b_{\ell-1} \geq 3) \text{ and } (c_{\ell} = 1 \text{ and } b_{\ell-1} = 2).$

Case-1: $c_{\ell} \geq 2$ Proof: We have

$$
\prod_{j=1}^{\xi-1} b_{j-1} \ge (2c)^{\xi-1} \quad \text{and} \quad \prod_{j=1}^{\xi-1} c_j \le \left(\frac{c}{2}\right)^{\xi-1}
$$

from Lemma 4.1 (ii). Theorem 1.1 implies that $\ell \leq \xi + \eta - 1 \leq 2\xi - 2$. Hence we have

$$
k_{\ell} = \prod_{j=1}^{\xi-1} \frac{b_{j-1}}{c_j} \prod_{j=\xi}^{\ell} \frac{b_{j-1}}{c_j} \ge 4^{\xi-1} 2^{\ell-\xi+1} = 2^{\ell+\xi-1}
$$

and thus $\log_2 v > \log_2 k_\ell \ge \ell + \xi - 1 \ge \frac{3}{2}$ $\frac{3}{2}\ell$ holds. Therefore by Lemma 5.2

$$
d \leq 4\ell < \frac{8}{3}\log_2 v
$$

ī

holds.

Case-2: $c_{\ell} = 1$ and $b_{\ell-1} \geq 3$ *Proof:* We have $\frac{b_{i-1}}{c_i} \geq 3$ for all $1 \leq i \leq \ell$. Hence $v > k_{\ell} \geq 3^{\ell}$ holds. By Lemma 5.2,

$$
d \le 4\ell < 4\log_3 v = 4(\log_3 2)(\log_2 v) < \frac{8}{3}\log_2 v
$$

П

holds.

Case-3: $c_{\ell} = 1$ and $b_{\ell-1} = 2$

Proof: There are two possibilities, namely $c_{\ell+1} = 1$ or $c_{\ell+1} \geq 2$, but in each case $k_{\ell+1} \leq k_{\ell}$ holds by $b_\ell \leq b_{\ell-1} = 2$ and $k_{\ell+1}c_{\ell+1} = k_\ell b_\ell$. Hence Lemma 5.1 (i) and (iii) implies that $d \leq 3\ell$ and $\ell \leq 2h + 2$. If $b_1 \leq 2$ then $k \leq 4$ as $a_1 \leq 1$ by Lemma 5.1 (ii). Hence the result is proved by [1] and [3].

Now we may assume $b_1 \geq 3$. Then

$$
v > k_{\ell} = \prod_{j=1}^{\ell} b_{j-1} \ge k b_1^{\mathbf{h}} 2^{\ell-1-\mathbf{h}} \ge 3^{\mathbf{h}+1} 2^{\ell-\mathbf{h}-1} \ge 6^{\frac{\ell}{2}}.
$$

Therefore we have $\log_2 v > \log_2 6^{\frac{\ell}{2}} > \frac{9}{8}$ $\frac{9}{8}$ l and thus

$$
d \leq 3\ell < \frac{8}{3}\log_2 v
$$

holds.

References

- [1] N.L. Biggs, A.G. Boshier and J. Shawe-Taylor, Cubic distance-regular graphs, J. London Math. Soc. **33, no. 2** 385–394, 1986
- [2] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989
- [3] A.E. Brouwer and J.H. Koolen, The distance-regular graphs of valency four, J. Algebraic Combin. 10, no. 1 5–24, 1999
- [4] Y.-L. Chen, A. Hiraki and J.H. Koolen, On distance-regular graphs with $c_4 = 1$ and $a_1 \neq a_2$, Kyushu J. Math. **52, no. 2** 265–277, 1998
- [5] A. Hiraki and J.H. Koolen, An improvement of the Ivanov Bound, Ann. Comb. 2, no. 2 131–135, 1998
- [6] A. Hiraki, A distance-regular graph with strongly closed subgraphs, J. Algebraic Combin. **14, no. 2** 127-131, 2001
- [7] J.H. Koolen, On subgraphs in distance-regular graphs, J. Algebraic Combin. 1, no. 4 353–362, 1992
- [8] L. Pyber, A bound for the diameter of distance-regular graphs, Combinatorica 19, no. 4 549–553, 1999.