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Abstract

In this paper we study the sequence (ci)0≤i≤d for a distance-regular graph. In
particular we show that if d ≥ 2j and cj = c > 1 then c2j > c holds. Using this
we give improvements on diameter bounds by Hiraki and Koolen [5], and Pyber [8],
respectively, by applying this inequality.

1 Introduction

Let Γ be a distance-regular graph of diameter d ≥ 2, valency k ≥ 2 and intersection numbers
ci, ai, bi (0 ≤ i ≤ d). (For definitions, see next section.) We define

h = h(Γ) := |{i | 1 ≤ i ≤ d− 1 and (ci, ai, bi) = (c1, a1, b1)}| .
∗The author thanks for the support of Com2MaC-KOSEF.
†The author thanks for the support of Grant-in-Aid for Scientific Research (No 14740072), the Ministry

of Education, Science and Culture, JAPAN.
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For each 1 ≤ c ≤ cd we define

ξc := min{i | ci ≥ c}
ηc := |{i | ci = c}| .

In this paper we study for a given integer c, the number of ηc for a distance-regular
graph. We obtain the following result:

Theorem 1.1 Let Γ be a distance-regular graph of diameter d ≥ 2. Let c be an integer
with 2 ≤ c ≤ cd. Then ηc ≤ ξc − 1.

Using Theorem 1.1, we will give improvements on the diameter bounds of distance-
regular graphs found by Hiraki and Koolen [5] and Pyber [8], respectively.

In [5] it was shown that the diameter of a distance-regular graph of valency k is bounded
by 1

2k2η1. In the next result we show we can interchange the power 2 by α, where

α := min{x > 0 | 4 1
x − 2

1
x ≤ 1}.

Note 1.2 We remark that 1.44 < α < 1.441.

Theorem 1.3 Let Γ be a distance-regular graph of diameter d ≥ 2 and valency k ≥ 3. Let
C := {ci | i = 1, . . . , d}. Then

ξc ≤ 1
2
(cαη1 + 1) (1)

and
ξc + ηc ≤ cαη1 + 1 (2)

hold for all c ∈ C.
In particular if h := h(Γ) ≥ 2 then

ξc ≤ 1
2
{2cα(h + 1) + 1} (3)

and
ξc + ηc ≤ 2cα(h + 1) + 1 (4)

hold for all c ∈ C.

Corollary 1.4 Let Γ be a distance-regular graph of diameter d ≥ 2, valency k ≥ 3 and
h := h(Γ). Then

d ≤ 1
2

(kαη1 + 1) .

In particular if h ≥ 2 then

d ≤ kα(h + 1) +
1
2

holds.
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In [8] Pyber showed that the diameter of distance-regular graphs is at most 5 times the
2-logarithm of the number of vertices. The following gives an improvement of this bound.

Theorem 1.5 Let Γ be a distance-regular graph with v vertices. Let d be the diameter of
Γ. Then

d <
8
3

log2 v.

The paper is organized as follows: In Section 2 we give definitions, in Section 3 we give
the proof of Theorem 1.1, in Section 4 we give the proofs of Theorem 1.3 and Corollary 1.4,
and in the last section we give the proof of Theorem 1.5.

2 Defintions

All graphs in this paper are undirected graphs without loops and multiple edges. Suppose
that Γ is a finite connected graph with vertex set V Γ. We define the distance between
any two vertices x and y, d(x, y), as to be the length of any shortest path in Γ between
x and y, and the diameter d of Γ to be the largest distance between any pair of vertices
in V Γ. For a vertex x ∈ V Γ and any non-negative integer i not exceeding d, let Γi(x)
denote the subset of vertices in V Γ that are at distance i from x and put Γ(x) := Γ1(x)
and Γ−1(x) = Γd+1(x) := ∅. For any two vertices x and y in V Γ at distance i, let

Ci(x, y) := Γi−1(x) ∩ Γ1(y)
Ai(x, y) := Γi(x) ∩ Γ1(y)
Bi(x, y) := Γi+1(x) ∩ Γ1(y).

A graph Γ is called distance-regular if there are integers bi, ci (0 ≤ i ≤ d) which satisfy
ci = |Ci(x, y)| and bi = |Bi(x, y)| for any two vertices x and y in V Γ at distance i. Clearly
such a graph is regular of valency k := b0. The numbers ci, bi, and ai, where

ai := k − bi − ci (i = 0, . . . , d)

is the number of neighbors of y in Γi(x) for x, y ∈ V Γ at distance i, are called the intersection
numbers of Γ. The array




c0 c1 c2 · · · ci · · · cd−1 cd

a0 a1 a2 · · · ai · · · ad−1 ad

b0 b1 b2 · · · bi · · · bd−1 bd




is called the intersection array of Γ.
Now, suppose that Γ is a distance-regular graph of diameter d ≥ 2, valency k ≥ 2 and

intersection numbers ci, ai, bi, 0 ≤ i ≤ d. Clearly, bd = c0 = a0 = 0 and c1 = 1. In [2,
Section 4.1], it is shown that Γi(x) contains ki elements where

k0 := 1, k1 := k, ki+1 := kibi/ci+1, i = 1, . . . , d− 1,
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and in [2, Proposition 4.1.6] it is shown that

k = b0 > b1 ≥ b2 ≥ · · · ≥ bd−1 > bd = 0,

1 = c1 ≤ c2 ≤ · · · ≤ cd ≤ k

and ci ≤ bj if i + j ≤ d. (5)

For more information on distance-regular graphs, see [2].

3 Proof of Theorem 1.1

In this section we show Theorem 1.1. In order to show the theorem we use the intersection
diagram with respect to an edge. Let Γ be a distance-regular graph of diameter d ≥ 2
and valency k ≥ 3. Let (u, v) be an edge in Γ. For each 0 ≤ i, j ≤ d set Di

j = Di
j(u, v) :=

Γi(u) ∩ Γj(v). The intersection diagram with respect to (u, v) is the collection {Di
j}0≤i,j≤d

with lines between them such that if there is no line between Di
j and Ds

t , then it means
that there is no edge (x, y) for any x ∈ Di

j and y ∈ Ds
t . Also if we know that Di

j is the
empty set then we erase it.

Remark 3.1 If ci = ci+1 then there are no edges between any two of {Di+1
i , Di

i, D
i
i+1}.

Let c be an integer with 2 ≤ c ≤ cd. Let η := ηc and ξ := ξc. Then for any edge (u, v)
in Γ the intersection diagram with respect to (u, v) has the shape as in Figure 1.

Figure 1.
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Lemma 3.2 If cη + cξ−1 > cξ then the following hold:
(i) There are no edges between Dξ

ξ−1 and Dξ−1
ξ .

(ii) There exists an edge (x0, x1) such that x0 ∈ Dξ−1
ξ−1 and x1 ∈ Dξ

ξ−1.
(iii) bη ≥ cξ−1 + cη.

Proof: (i) Assume that there is an edge between Dξ−1
ξ and Dξ

ξ−1. Then there exists a path

(y0, y1, . . . , yη) such that y0 ∈ Dξ−1
ξ and yi ∈ Dξ−1+i

ξ−2+i for 1 ≤ i ≤ η. Clearly d(y0, yη) = η.
It follows that

Cξ(v, y0) ⊇
[
Γ(y0) ∩Dξ

ξ−1

]
∪

[
Γ(y0) ∩Dξ−2

ξ−1

]
⊇ Cη(yη, y0) ∪ Cξ−1(u, y0).

This contradicts to cη + cξ−1 > cξ. This shows (i).

(ii) Let x1 ∈ Dξ
ξ−1. As cξ > cξ−1 and there are no edges between Dξ

ξ−1 and Dξ−1
ξ , there

must be a neighbour x0 ∈ Dξ−1
ξ−1 of x1. This shows (ii).

(iii) It follows, from (ii), that there exists a path (x0, x1, . . . , xη) such that x0 ∈ Dξ−1
ξ−1

and xi ∈ Dξ−1+i
ξ−2+i for 1 ≤ i ≤ η. Now Cη(xη, x0) ⊆ Γ(x0) ∩Dξ

ξ−1 and by symmetry we find
that

cη ≤
∣∣∣Γ(x0) ∩Dξ

ξ−1

∣∣∣ =
∣∣∣Γ(x0) ∩Dξ−1

ξ

∣∣∣ .

We also have

Cξ−1(u, x0) ∪
[
Γ(x0) ∩Dξ−1

ξ

]
⊆ Bη(xη, x0),

Cξ−1(u, x0) ∩
[
Γ(x0) ∩Dξ−1

ξ

]
= ∅,

which implies
cξ−1 + cη ≤ bη.

This shows (iii).

Proof of Theorem 1.1: Suppose ξ ≤ η. We will derive a contradiction and this shows the
theorem. In order to do this we will show several claims.

Let (u, v) be any edge in Γ and Di
j = Di

j(u, v) := Γi(u) ∩ Γj(v). Then Remark 3.1 and
Lemma 3.2 (i) imply that the intersection diagram with respect to (u, v) has the shape as
in Figure 2, and Lemma 3.2 (ii) implies that there exists a path (x0, x1, . . . , xξ) of length ξ

such that x0 ∈ Dξ−1
ξ−1 and xi ∈ Dξ+i−1

ξ+i−2 for all 1 ≤ i ≤ ξ.
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Figure 2.
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Claim 1. (i) The set Dξ
ξ ∩Aξ(xξ, x0) is non-empty.

(ii) Let z ∈ Dξ
ξ ∩Aξ(xξ, x0). Then Cξ(z, xξ) ⊆ D2ξ−2

2ξ−3 ∩ Γ1(xξ).

(iii) Let z ∈ Dξ
ξ ∩Aξ(xξ, x0). Then Dξ+1

ξ+1 ∩ Cξ(xξ, z) is non-empty.

Proof: (i) The set Dξ
ξ ∩Aξ(xξ, x0) is non-empty, as otherwise

Cξ−1(u, x0) ∪Bξ−1(v, x0) ⊆ Bξ(xξ, x0),
Cξ−1(u, x0) ∩Bξ−1(v, x0) = ∅

hold and thus cξ−1 + bξ−1 ≤ bξ which is a contradiction as ξ ≥ 2. This shows (i).
(ii) It is clear that Cξ(z, xξ) ⊆ D2ξ−2

2ξ−3 ∪D2ξ−1
2ξ−1. If there exists z′ ∈ D2ξ−1

2ξ−1 ∩ Cξ(z, xξ) then

Cξ(x0, z
′) ∪ {xξ} ⊆ C2ξ−1(v, z′).

This contradicts to cξ = c2ξ−1 as η ≥ ξ. Thus D2ξ−1
2ξ−1 ∩ Cξ(z, xξ) = ∅ and this shows (ii).

(iii) It is clear that Cξ(xξ, z) ⊆ Dξ
ξ−1 ∪Dξ+1

ξ+1. If Dξ+1
ξ+1 ∩ Cξ(xξ, z) = ∅ then

Cξ(xξ, z) ∪ {x0} ⊆ Cξ(v, z).

which is a contradiction. Thus we have (iii).

Define P := Cξ(xξ, x0) and Q := Bξ−1(xξ−1, x0)−Bξ(xξ, x0).
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Claim 2. The set P ∩Q is empty and P ∪Q ⊆ Dξ
ξ−1.

Proof: It is clear that P ⊆ Dξ
ξ−1. Let z ∈ Q. If z ∈ P, then x0 ∈ Dξ

ξ−1(xξ, xξ−1) and

z ∈ Dξ−1
ξ (xξ, xξ−1) hold. As η ≥ ξ ≥ 2, it follows by Lemma 3.2 (i) that there are no edges

between Dξ
ξ−1 and Dξ−1

ξ . Therefore P ∩Q = ∅ and Q ⊆ Aξ(xξ, x0) hold. As
[
Dξ−2

ξ−2 ∪Dξ−2
ξ−1 ∪Dξ−1

ξ

]
∩ Γ1(x0) ⊆ B(xξ, x0),

it follows that Q ⊆ Dξ
ξ ∪Dξ−1

ξ−1 ∪Dξ−1
ξ−2 ∪Dξ

ξ−1. Suppose z ∈
[
Dξ

ξ ∪Dξ−1
ξ−1 ∪Dξ−1

ξ−2

]
. Then

Cξ(z, xξ) ⊆ D2ξ−2
2ξ−3 ∩ Γ1(xξ) = C2ξ−1(u, xξ). (6)

(The Equation (6) is clear when z ∈ Dξ−1
ξ−1 ∪ Dξ−1

ξ−2. If z ∈ Dξ
ξ , then it follows from Claim

1 (ii).) By comparing both sides of (6) we have xξ−1 ∈ C2ξ−1(u, xξ) = Cξ(z, xξ) which
contradicts to z ∈ Bξ−1(xξ−1, x0). Hence Q ⊆ Dξ

ξ−1. The claim is proved.

Claim 3. There exists u′ ∈ Bξ−1(x0, v) − Bξ−1(x1, v). Define R := Bξ(u′, x0). Then
R ⊆ Dξ

ξ .

Proof: Since u ∈ Bξ−1(x1, v)−Bξ−1(x0, v), there exists u′ ∈ Bξ−1(x0, v)−Bξ−1(x1, v).

Consider the intersection diagram with respect to (u′, v). Then we have x0 ∈ Dξ
ξ−1(u

′, v)

and x1 ∈ Dξ−1
ξ−1(u

′, v). Take any w2 ∈ R. Then w2 ∈ Dξ+1
ξ (u′, v) and we can take a path

(w2, w3, . . . , wξ) such that wi ∈ Dξ+i−1
ξ+i−2(u

′, v) for 2 ≤ i ≤ ξ. By Claim 1 (i),(iii) there exists

z0 ∈ Dξ
ξ(u

′, v) ∩ Aξ(wξ, x1) and z1 ∈ Dξ+1
ξ+1(u

′, v) ∩ Cξ(wξ, z0) Let (z1, . . . , zξ = wξ) be a

shortest path connecting z1 and wξ. Since z1 ∈ Dξ+1
ξ+1(u

′, v) and zξ ∈ D2ξ−1
2ξ−2(u

′, v) such that

d(z1, zξ) = ξ − 1 there exists an integer t with 2 ≤ t ≤ ξ − 1 such that zi ∈ Dξ+i
ξ+i(u

′, v) for

all 0 ≤ i ≤ t− 1 and zi ∈ Dξ+i−1
ξ+i−2(u

′, v) for all t ≤ i ≤ ξ by Claim 1 (ii). Next we return to

the intersection diagram with respect to (u, v). Since x0 ∈ Dξ−1
ξ−1 and w2 ∈ Bξ−1(v, x0), we

have w2 ∈ Dξ−1
ξ ∪Dξ

ξ .

Suppose w2 ∈ Dξ−1
ξ . Then we have wi ∈ Dξ+i−3

ξ+i−2 for all 2 ≤ i ≤ ξ as the former diagram

gives us the distance between v and wi. Similarly we have zi ∈ Dξ+i−3
ξ+i−2 for all t ≤ i ≤ ξ

and zi ∈ Dξ+i−1
ξ+i for all 0 ≤ i ≤ t − 1. Hence (x1, z0) is an edge such that x1 ∈ Dξ

ξ−1 and

z0 ∈ Dξ−1
ξ . This contradicts Lemma 3.2 (i) as cη +cξ−1 > cξ holds by the assumption η ≥ ξ.

Hence we have w2 ∈ Dξ
ξ and our claim is proved.
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Claims 2 and 3 show that the sets P , Q and R are disjoint and

P ∪Q ∪R ⊆ Bξ−1(u, x0).

As |P | = cξ, |Q| = bξ−1 − bξ and |R| = bξ hold, this implies cξ + (bξ−1 − bξ) + bξ ≤ bξ−1

which is a contradiction. The theorem is proved.

4 Proofs of Theorem 1.3 and Corollary 1.4

In this section we prove Theorem 1.3 and Corollary 1.4. Recall C := {ci | i = 1, . . . , d}.

Lemma 4.1 Let Γ be a distance-regular graph of diameter d ≥ 2 and valency k ≥ 3. Let
c ∈ C \ {1}. Then

(i) ci + cξc−i ≤ c for all 1 ≤ i ≤ ξc − 1.

(ii)
ξc−1∏

j=1

cj ≤
( c

2

)ξc−1
.

Proof: (i) This is [7, Proposition 1 (ii)].
(ii) Let ξ := ξc. Then (i) implies that

2
√

cjcξ−j ≤ cj + cξ−j ≤ c

holds for all 1 ≤ j ≤ ξ − 1. Hence we have

ξ−1∏

j=1

cj =
ξ−1∏

j=1

√
cjcξ−j ≤

( c

2

)ξ−1
.

Lemma 4.2 Let β :=
(

1
2

) 1
α . For a real number x with β ≤ x ≤ 1

xα + 2(1− x)α ≤ 1

holds.

Proof: Define f : [β, 1] → R by

f(x) := xα + 2(1− x)α.
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By definition of β (and α), it follows easily that f(β) = 1. Also f(1) = 1. By straightfor-
ward calculation one sees that on [β, 1], the function f has maxima at x = 1 and x = β.
This shows the lemma.

Proof of Theorem 1.3: Let C = {γ1, γ2, . . . , γq} such that

1 = γ1 < γ2 < · · · < γq = cd

holds. We will prove

ξγj ≤
1
2
{(γj)αη1 + 1} (7)

and
ξγj + ηγj ≤ (γj)αη1 + 1 (8)

hold for all j = 1, 2, . . . , q by induction on j.
As 1 = ξ1 ≤ 1

2(η1 + 1) and ξ1 + η1 = η1 + 1 hold, so (7) and (8) hold for j = 1. Now let
s ≥ 2 and assume that (7) and (8) hold for all γi with 1 ≤ i < s. Let c := γs, c′ := γ(s−1)

and c′ = bc for some 0 < b < 1.

First we will prove Equation (7) holds for j = s. In order to show this we need to consider
two cases, namely the case 0 < b ≤ β and the case β < b < 1, respectively.

Case-1: 0 < b ≤ β
Proof: As c′ = bc ≤ βc and bα ≤ βα = 1

2 hold, we find

ξc = ξc′ + ηc′ − 1 ≤ (bc)αη1 ≤ 1
2
cαη1

hold by our induction hypothesis.

Case-2: β < b < 1
Proof: Let c′′ := cξc−ξc′ . Then Lemma 4.1 (i) implies that c = cξc ≥ cξc′ + cξc−ξc′ = c′ + c′′

holds and thus c′′ ≤ (1− b)c holds. Therefore we find that

ξc ≤ ξc′ + (ξc′′ + ηc′′ − 1)

≤ 1
2

{
(c′)αη1 + 1

}
+ (c′′)αη1

≤ 1
2
{(bα + 2(1− b)α) cαη1 + 1}

≤ 1
2

(cαη1 + 1)

hold by Lemma 4.2 and our induction hypothesis.
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Hence Equation (7) holds for j = s. The fact that Equation (8) holds for j = s follows
from Theorem 1.1. Therefore we have shown that Equations (7) and (8) hold for all 1 ≤
j ≤ q.

Now assume h ≥ 2. In [6, Theorem 2] it is shown that η1 ≤ 2(h + 1) holds. Equations
(3) and (4) follow now immediately from Equations (1) and (2), respectively.

Proof of Corollary 1.4: If ξcd
= d then by Equation (1) the following holds:

d = ξcd
≤ 1

2
{(cd)

α η1 + 1} ≤ 1
2

(kαη1 + 1) .

Now we assume that ξcd
< d. If cd ≤ βk then the result holds as

d ≤ ξcd
+ ηcd

− 1 ≤ (cd)αη1 ≤ (βk)αη1 =
1
2
kαη1

holds by (2). To complete the proof we need to consider βk < cd. Let cd = εk for some
β < ε < 1 and c := c(d−ξcd

). Then c = c(d−ξcd
) ≤ bξcd

≤ k − cd = (1 − ε)k holds by (5).
Therefore the result follows by Theorem 1.3 and Lemma 4.2:

d ≤ ξcd
+ (ξc + ηc − 1)

≤ 1
2
{(cd)αη1 + 1}+ cαη1

≤ 1
2

[{εα + 2(1− ε)α} kαη1 + 1]

≤ 1
2

(kαη1 + 1) .

5 Proof of Theorem 1.5

In the proof of Theorem 1.5 we will use the following results.

Lemma 5.1 Let Γ be a distance-regular graph of diameter d ≥ 2 and valency k ≥ 3. Let
h = h(Γ). Then for any integer 1 ≤ i ≤ d the following hold :
(i) If ki+1 ≤ ki, then d ≤ 3i.
(ii) a1 + 2 ≤ ci + bi−1.
(iii) If bi−1 = 2 and ci = 1 then i ≤ 2h + 2.

Proof: (i),(ii): These follow from [2, Corollary 5.9.7] and [2, Proposition 5.5.1], respectively.
(iii) We only need to consider the case h = 1 as for the case h ≥ 2 the assertion follows
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from [6, Theorem 2]. Note that by (ii) a1 ≤ 1 holds. Now [4, Theorem 1.1–1.2] imply that
c4 6= 1. Hence η1 ≤ 3 < 2h + 2. The lemma is shown.

Lemma 5.2 Let Γ be a distance-regular graph of diameter d ≥ 2 and valency k ≥ 3. Let
` ≤ d be maximal such that 2c` ≤ b`−1. Then

d ≤ 4`.

Proof: By definition of `, 2c` ≤ b`−1 and 2c`+1 > b` hold. We may assume that 3` + 1 ≤ d.
Let c := c2`+1, ξ := ξc and η := ηc. Then 2c`+1 > b` ≥ c2`+1 = c holds by (5). We have
c ≥ 2 as otherwise c`+1 = 1 and b` = 1 hold by the definition of `, and thus k`+1 = k` holds
which contradicts to Lemma 5.1 (i).

If η ≥ ` + 1, then cη + cξ−1 ≥ 2c`+1 > c = cξ as ξ − 1 ≥ η ≥ ` + 1 by Theorem 1.1. By
Lemma 3.2(iii) we have

b` ≥ bη ≥ cξ−1 + cη ≥ 2c`+1.

But that is a contradiction with the definition of `. Hence we find η ≤ `. As 2(` + 1) ≤
η + ξ ≤ 3` + 1, c3`+1 ≥ cη+ξ ≥ 2c`+1 > b` holds by Lemma 4.1 (i). So d ≤ 4` holds.

Proof of Theorem 1.5: Let ` ≤ d be maximal such that 2c` ≤ b`−1. Let c := c`, ξ := ξc

and η := ηc. In order to prove the theorem we need to consider three cases, namely c` ≥ 2,
(c` = 1 and b`−1 ≥ 3) and (c` = 1 and b`−1 = 2).

Case-1: c` ≥ 2
Proof: We have

ξ−1∏

j=1

bj−1 ≥ (2c)ξ−1 and
ξ−1∏

j=1

cj ≤
( c

2

)ξ−1

from Lemma 4.1 (ii). Theorem 1.1 implies that ` ≤ ξ + η − 1 ≤ 2ξ − 2. Hence we have

k` =
ξ−1∏

j=1

bj−1

cj

∏̀

j=ξ

bj−1

cj
≥ 4ξ−12`−ξ+1 = 2`+ξ−1

and thus log2 v > log2 k` ≥ ` + ξ − 1 ≥ 3
2` holds. Therefore by Lemma 5.2

d ≤ 4` <
8
3

log2 v

holds.
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Case-2: c` = 1 and b`−1 ≥ 3
Proof: We have bi−1

ci
≥ 3 for all 1 ≤ i ≤ `. Hence v > k` ≥ 3` holds. By Lemma 5.2,

d ≤ 4` < 4 log3 v = 4(log3 2)(log2 v) <
8
3

log2 v

holds.

Case-3: c` = 1 and b`−1 = 2
Proof: There are two possibilities, namely c`+1 = 1 or c`+1 ≥ 2, but in each case k`+1 ≤ k`

holds by b` ≤ b`−1 = 2 and k`+1c`+1 = k`b`. Hence Lemma 5.1 (i) and (iii) implies that
d ≤ 3` and ` ≤ 2h + 2. If b1 ≤ 2 then k ≤ 4 as a1 ≤ 1 by Lemma 5.1 (ii). Hence the result
is proved by [1] and [3].

Now we may assume b1 ≥ 3. Then

v > k` =
∏̀

j=1

bj−1 ≥ kbh1 2`−1−h ≥ 3h+12`−h−1 ≥ 6
`
2 .

Therefore we have log2 v > log2 6
`
2 > 9

8` and thus

d ≤ 3` <
8
3

log2 v

holds.
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