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Abstract. FETI-DP method is a substructuring method that uses La-
grange multipliers to match the continuity condition on the subdomain
boundaries. For the FETI-DP method on nonmatching grids, two dif-
ferent formulations are known with respect to how to employ the mor-
tar matching condition. Keeping step with the developments of the
FETI-DP methods, a variety of preconditioners for the FETI-DP oper-
ator have been developed. However, there has not been any numerical
study for the FETI-DP method, which compares those precondition-
ers on nonmatching grids while there have been a few of literatures for
numerical study on the comparison of FETI preconditioners. There-
fore, we present the numerical study of four different preconditioners for
two dimensional elliptic problems. The numerical results confirm the
superiority of the preconditioner by Kim and Lee [6] for noncompara-
bly nonmatching grids, while the superiority of the preconditioner by
Dryja and Widlund [2] is confirmed for matching grids and comparably
nonmatching grids.

1. Introduction

Finite Element Tearing and Interconnecting(FETI) method is one of the
substructuring methods, which was first introduced by Farhat and Roux [5].
The main idea is to match the continuity condition across subdomain bound-
aries by Lagrange multipliers. By eliminating primal variables of subdo-
mains, an operator for the Lagrange multipliers is obtained.

In [3], Farhat et al. introduced a different substructuring method called
Dual-Primal FETI(FETI-DP) method. In the FETI-DP method, the conti-
nuity condition across the subdomain boundaries is matched by primal vari-
ables at corners and dual variables(Lagrange multipliers) on edges. Mandel
and Tezaur [10] showed its optimal condition number bound,

κ ≤ C(1 + log(H/h))2 (1.1)
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with Dirichlet preconditioner for both second and fourth order elliptic prob-
lems in 2-D, where H and h denote the sizes of subdomain and mesh, re-
spectively. Furthermore, Klawonn et al. [8] obtained the same bound by
employing a new preconditioner for 3-D elliptic problems with heterogeneous
coefficients.

The original FETI-DP methods were designed on matching grids. Re-
cently, the FETI-DP methods on nonmatching grids were developed. For
the FETI-DP formulation on nonmatching grids, mortar matching condi-
tion is employed to match the continuity condition across the subdomain
boundaries. Dryja and Widlund [1, 2] imposed the mortar matching condi-
tion after eliminating unknowns on both interior and vertex nodal points.
Furthermore, to obtain the stability of the mortar projection operator under
H−1/2-norm, they imposed a restriction that hδm(i)

and hγm(j)
, the sizes of

meshes on the nonmortar side and the mortar side, respectively, are compa-
rable. Kim and Lee [6] formulated the FETI-DP operator in a different way
by imposing the mortar matching condition after eliminating unknowns on
interior nodal points only. Then they proposed a Neumann-Dirichlet precon-
ditioner which gives the optimal condition number bound (1 + log(H/h))2

without the restriction that hδm(i)
∼ hγm(j)

. The proposed preconditioner is
easy to implement and the operator from the nodal values on the interface of
subdomains to the Lagrange multiplier space requires only the nodal values
on the nonmortar side. Hence, the cost for multiplying the operator to a
vector is reduced by half compared with preconditioners developed in other
literatures(see [1, 2]).

In this paper, we compare four kinds of preconditioners, the Dirichlet
preconditioner [4], and the preconditioner by Klawonn and Widlund [7],
which are developed originally for matching grids, and the preconditioner by
Dryja and Widlund [2] and the preconditioner by Kim and Lee [6], which are
developed for the FETI-DP operator on nonmatching grids. The numerical
results show that the preconditioner by Dryja and Widlund works the most
efficiently on matching grids and comparably nonmatching grids. On the
other hand, the numerical results for noncomparably nonmatching grids
confirm the superiority of the preconditioner by Kim and Lee. Furthermore,
we showed heuristically that the preconditioner by Kim and Lee is the limit
form of the preconditioner by Klawonn and Widlund.

This paper is organized as follows. The FETI-DP formulation developed
by Kim and Lee is described in Section 2, and four preconditioners are
introduced in Section 3. In Section 4, we provide the comparison based on
numerical results, and the conclusion is given in Section 5.

2. FETI-DP Formulation

In this section, we introduce a FETI-DP formulation developed by Kim
and Lee [6].
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2.1. A Model Problem and Finite Element Formulation. In this pa-
per, we consider the FETI-DP method on nonmatching grids for the follow-
ing elliptic problem:

−∇ · (A(x)∇u(x)) = f(x) in Ω,
u(x) = 0 on ∂Ω, (2.1)

where A(x) = (αij(x)) for i, j = 1, 2. We assume that αij(x) ∈ L∞(Ω),
f(x) ∈ L2(Ω) and A(x) is uniformly elliptic for all x ∈ Ω. We also assume
that the domain Ω is decomposed into a finite number of nonoverlapping
bounded subdomains, i.e., Ω =

⋃N
i=1 Ωi and Ωi ∩ Ωj = ∅ for i 6= j and

|Ωi| < ∞ for all i. Moreover, we assume that this partition is geometrically
conforming, which means that the subdomains intersect with neighboring
subdomains on a whole edge or at a vertex. Then we triangulate each
subdomain Ωi independently so that the meshes need not match across the
subdomain boundaries.

We write the problem (2.1) in a variational form as follows: For f ∈ L2(Ω),
find u ∈ H1

0 (Ω) such that

a(u, v) = (f, v)Ω ∀v ∈ H1
0 (Ω), (2.2)

where

a(u, v) :=
∫

Ω
A∇u · ∇v dx,

(f, v)Ω :=
∫

Ω
fv dx.

Here,

H1
0 (Ω) =

{
v ∈ L2(Ω) :

∫

Ω
∇v · ∇v dx +

∫

Ω
v2 dx < ∞, v = 0 on ∂Ω

}
.

We let Ωh
i be a quasi-uniform triangulation of the subdomain Ωi. That is,

there exist positive constants γ and σ such that γhi ≤ hτ ≤ σρτ for all
τ ∈ Ωh

i , where hτ = |τ |, ρτ is the diameter of the circle inscribed in τ and
hi = max

τ∈Ωh
i

|τ |. For each subdomain Ωi, we define a finite element space

Xi := {v ∈ H1
D(Ωi) : v|τ ∈ P1(τ), τ ∈ Ωh

i },
where H1

D(Ωi) := {v ∈ H1(Ωi) : v = 0 on ∂Ω ∩ ∂Ωi} and P1(τ) is the set
of polynomials of degree ≤ 1 in τ . Then we define finite element spaces as
follows:

X :=

{
v ∈

N∏

i=1

Xi : v is continuous at subdomain vertices

}
,

Wi := Xi|∂Ωi ∀i = 1, · · · , N,

W :=

{
w ∈

N∏

i=1

Wi : w is continuous at subdomain vertices

}
.
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Figure 1. Mortar and nonmortar sides of Γij

Now, we approximate the solution of the problem (2.2) in X. To do
this, on nonmatching grids we construct a Lagrange multiplier space. Let
Γij := ∂Ωi ∩ ∂Ωj . On Γij we distinguish Ωj |Γij and Ωi|Γij as in Figure 1,
and then we choose one as a mortar side and the other as a nonmortar side.
We define

mi := {j : |Γij | 6= 0,Ωj |Γij is a mortar side of Γij},
si := {j : |Γij | 6= 0,Ωj |Γji is a nonmortar side of Γji}

and
Wij := {v|Γij : v ∈ Xi} for i = 1, . . . , N and j ∈ mi.

Next, we let
{φij

0 , φij
1 , · · · , φij

Nij
, φij

Nij+1}
be the nodal basis functions for Wij . We assume that the basis functions are
sequentially ordered according to the location of nodes on Γij . We define

ξij
1 := φij

0 + φij
1 ,

ξij
k := φij

k for k = 2, · · · , Nij − 1,

ξij
Nij

:= φij
Nij

+ φij
Nij+1,

and
Mij := span{ξij

1 , · · · , ξij
Nij
}.

Then we take the Lagrange multiplier space as

M :=
N∏

i=1

∏

j∈mi

Mij .

With this Lagrange multiplier space, we impose mortar matching condition
on v = (v1, · · · , vN ) ∈ X∫

Γij

(vi − vj)λij ds = 0 ∀λij ∈ Mij , i = 1, · · · , N, j ∈ mi. (2.3)
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We define

V := {v ∈ X : v satisfies (2.3)},

ai(u, v) :=
∫

Ωi

A∇u · ∇v dx,

fi(v) := (f, v)Ωi .

Then we consider a variational problem: Find u ∈ V such that

N∑
i=1

ai(u, v) =
N∑

i=1
(f, v)Ωi ∀v ∈ V. (2.4)

In the sequel, we use the bold face character to represent the vector of
which entries are the nodal values of a function. Similarly, we use the bold
face character to represent the set of vectors corresponding to a function
space.

2.2. FETI-DP Formulation. In this section, we construct the FETI-DP
operator for the problem (2.2) with the mortar matching condition as con-
straints. The discrete problem (2.4) can be written as the following equiva-
lent minimization problem with constraints: Find u ∈ V such that

N∑

i=1

(
1
2
ai(u, u)− fi(u)

)
= min

v∈V

N∑

i=1

(
1
2
ai(v, v)− fi(v)

)
. (2.5)

We introduce a matrix Bi to implement the mortar matching condition (2.3).
For |∂Ωi∩∂Ωj | 6= 0, we denote ∂Ωi∩∂Ωj as Γij if Ωi|Γij is a nonmortar side
and as Γji, otherwise. Then we let Wij

l be the set of vectors that correspond
to the nodal values for the functions in Wl restricted on Γij . We assume
that Ωi|Γij is the nonmortar side and Ωj |Γij is the mortar side of Γij . We
define matrices Bij

l : Wij
l → Mij for l = i, j by

(
Bij

i

)
lk

=
∫

Γij

ξij
l φij

k ds, for l = 1, · · · , Nij , and k = 0, · · · , Nij + 1,

(
Bij

j

)
lk

= −
∫

Γij

ξij
l φji

k ds, for l = 1, · · · , Nij , and k = 0, · · · , Nji + 1.

For wij
i ∈ Wij

i and wij
j ∈ Wij

j , we rewrite the mortar matching condi-
tion (2.3) as

Bij
i wij

i + Bij
j wj

ij = 0.

Now, we define Eij : Mij → M, an extension operator from Mij to M by
zero and Rl

ij : Wl → Wij
l for l = i, j, a restriction operator. Let

Bi =
∑

j∈mi

EijB
ij
i Ri

ij +
∑

j∈si

EjiB
ji
i Ri

ji.
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Then the mortar matching condition (2.3) becomes

N∑

i=1

Biwi = 0 , (2.6)

where wi ∈ Wi.
In the sequel, we use the subscript symbols r and c to represent the degrees

of freedom corresponding to nodes on the edges and at vertices, respectively.
For wi ∈ Wi, we may write

wi =
(
wi

r

wi
c

)
.

We denote Wc as the set of vectors which have degrees of freedom corre-
sponding to the union of subdomain vertices, that is, global corner points.
We define the matrix Li

c which consists of 0 and 1 and restricts the value of
wc ∈ Wc on the vertices of subdomain Ωi. Therefore, for w = (w1, · · · ,wN ) ∈
W, there exists wc ∈ Wc satisfying Li

cwc = wi
c for all i = 1, · · · , N . Hence,

for w ∈ W, the coefficient vector can be written as

w =




w1
r,c
...

wN
r,c


 where wi

r,c =
(

wi
r

Li
cwc

)
for some wc ∈ Wc.

Let Ai be the stiffness matrix induced from the bilinear form ai(·, ·), Si the
Schur complement matrix from Ai, and gi the Schur complement forcing
vector induced from fi(v).

Now, we eliminate interior variables in (2.5). Then the problem (2.5)
becomes: Find z ∈ W satisfying

1
2z

tSz− ztg = min
w∈W

(1
2w

tSw −wtg) subject to
N∑

i=1
Biwi = 0. (2.7)

where

S = diagi=1,··· ,N (Si), Si =
(

Si
rr Si

rc

Si
cr Si

cc

)
, g =




g1

...
gN


 .

Let Bi,r be the columns of Bi of which entries are multiplied by the nodal
values on the edges, and let Bi,c be the columns of Bi, that are multiplied
by the nodal values at the vertices. Then (2.7) can be written as follows:
Find z× λ ∈ W ×M such that

Srrzr + Srczc + Bt
rλ = gr, (2.8a)

Scrzr + Scczc + Bt
cλ = gc, (2.8b)

Brzr + Bczc = 0. (2.8c)
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where
Srr = diagi=1,··· ,N (Si

rr),

Src =




S1
rcL

1
c

...
SN

rcL
N
c


 , Scr = St

rc

Scc =
N∑

i=1

(
Li

c

)t
Si

ccL
i
c,

Br = (B1,r, · · · , BN,r), Bc =
N∑

i=1
Bi,cL

i
c,

gr =




g1
r
...

gN
r


 , gc =

N∑
i=1

(
Li

c

)t gi
c, zr =




z1
r
...

zN
r


 .

Solving (2.8a) for zr, we get

zr = S−1
rr (gr − Srczc −Bt

rλ).

By substituting zr into (2.8b) and (2.8c), we obtain

BrS
−1
rr Bt

rλ + (BrS
−1
rr Src −Bc)zc = BrS

−1
rr gr,

(ScrS
−1
rr Bt

r −Bt
c)λ− (Scc − ScrS

−1
rr Src)zc = −(gc − ScrS

−1
rr gr).

Let

Frr = BrS
−1
rr Bt

r,

Frc = BrS
−1
rr Src −Bc,

Fcr = ScrS
−1
rr Bt

r −Bt
c(= F t

rc),

Fcc = Scc − ScrS
−1
rr Src,

dr = BrS
−1
rr gr,

dc = gc − ScrS
−1
rr gr.

Then (λ, zc) satisfies (
Frr Frc

Fcr −Fcc

)(
λ
zc

)
=

(
dr

−dc

)
.

Eliminating zc in the above equation, we obtain

(Frr + FrcF
−1
cc Fcr)λ = dr − FrcF

−1
cc dc.

Here, FDP = Frr + FrcF
−1
cc Fcr is called the FETI-DP operator.

3. Preconditioners for the FETI-DP Operator

In this section, we introduce four preconditioners that will be applied
to the FETI-DP operator formulated in the previous section. In the first
two sections, we consider the preconditioners developed for matching grids,
where the continuity condition across the interface Γij is given by

ui
r|Γij − uj

r|Γij = 0 for ur ∈ X. (3.1)
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Then, this continuity condition induces a Boolean matrix B̃r satisfying

B̃rur = 0.

We use this notation B̃r to introduce the preconditioners in Section 3.1
and 3.2. The next two sections deal with the preconditioners developed for
the FETI-DP preconditioners on nonmatching grids.

3.1. The Dirichlet Preconditioner. The Dirichlet preconditioner was
first designed for the FETI operator on matching grids by Farhat et al. [4].
In [4], it has been shown numerically that the condition number of the FETI
operator with the Dirichlet preconditioner is bounded by C(1 + log(H/h))2

when it is applied to the second order elliptic problems like Poisson prob-
lem, plane stress problem and plain strain problem. Here, H/h is the ratio
of the subdomain and the mesh size. Mandel and Tezaur [9] proved that
the condition number is bounded by C(1 + log(H/h))m with m ≤ 3 for the
second order elliptic problems in 2-D and 3-D both.

Furthermore, Mandel and Tezaur [10] obtained C(1 + log(H/h))2 for
FETI-DP operator with the Dirichlet preconditioner of the form

F̂−1
D := B̃rSrrB̃

t
r,

for the second and fourth order elliptic problems in 2-D. The numerical
results are provided by Farhat et al. [3].

3.2. The Preconditioner by Klawonn and Widlund. Klawonn and
Widlund [7] designed a preconditioner for the FETI operator with matching
grids, working on second order elliptic problems with jumps of coefficients.
We apply the preconditioner to the FETI-DP operator by eliminating the
corner effects.

We let ρi be the constant coefficient depending on the subdomain Ωi and
∂Ωh

i,r the set of nodes on ∂Ωi excluding vertices. We also denote Nx as
the set of indices of the subdomains which have x on its boundary. The
weighted counting function µi(x) which is associated with the individual
∂Ωi is defined as

µi(x) =
∑

j∈Nx

ργ
j (x) for x ∈ ∂Ωh

i,r with γ ∈ [1/2,∞) .

The diagonal matrix Di,r is composed of the diagonal entry ργ
i (x)/µi(x)

corresponding to the point x ∈ ∂Ωh
i,r, and the matrix Dr is defined as

Dr := diagi=1,...,N (Di,r) . (3.2)

Then the preconditioner is of the form

F̂−1
KW : = (B̃rD

−1
r B̃t

r)
−1B̃rD

−1
r SrrD

−1
r B̃t

r(B̃rD
−1
r B̃t

r)
−1. (3.3)
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Stefanica and Klawonn provided the numerical results in [12] applying
F̂−1

D and F̂−1
KW to the FETI operator for the two dimensional elliptic prob-

lems and showed that F̂−1
KW is superior to F̂−1

D both on matching grids and
nonmatching grids.

3.3. The Preconditioner by Dryja and Widlund. Dryja and Wid-
lund [2] formulated the FETI-DP operator on nonmatching grids by em-
ploying the mortar matching condition. For |∂Ωi ∩ ∂Ωj | 6= 0, we denote the
mortar and nonmortar edges of Γij = ∂Ωi ∩ ∂Ωj by γm(j) and δm(i) if ∂Ωj

is the mortar edge and ∂Ωi is the nonmortar edge, respectively. For conve-
nience, we denote the matrix Bi,r|Γij by Bδm(i)

when Ωi is the nonmortar
side, so that Bj,r|Γij is denoted by Bγm(j)

. Then, we define a scaling matrix
Dδm(i)

given by

Dδm(i)

(
ui|δm(i)

uj |γm(j)

)
≡

(
1

hδm(i)

Bδm(i)

1
hγm(j)

Bγm(j)

)(
ui|δm(i)

uj |γm(j)

)
.

Here, hδm(i)
and hγm(j)

are the mesh parameters of δm(i) and γm(j), respec-

tively. If we define B̂ ≡ diag
i=1,··· ,N

{Dδm(i)
}, the preconditioner by Driya and

Widlund is of the form

F̂−1
DW := (BrB̂

t)−1B̂SrrB̂
t(BrB̂

t)−1 ,

where Br is the mortar matching matrix defined on edges. It was proven that
the condition number of the FETI-DP method with this preconditioner is
bounded by C max

i=1,··· ,N
(1 + log(Hi/hi))2 where Hi and hi are the subdomain

size and mesh size of Ωi, respectively. In proving this optimal condition
number estimate, it was assumed that the sizes of meshes on nonmortar
side and mortar side are comparable. To the best of our knowledge, no
numerical results have been reported yet for this FETI-DP operator with
F̂−1

DW .
For the above three preconditioners, we remark the followings: If the

exact matching condition is used, F̂−1
D , F̂−1

KW and F̂−1
DW are identical up

to constant for the FETI-DP operator with 2-D elliptic problems of which
coefficients do not permit jumps across the subdomain boundaries. In fact,
B̃rB̃

t
r = 2I and Dr = 1

2I. Moreover, under the assumption that hδm(i)
and

hγm(j)
are comparable, F̂−1

KW and F̂−1
DW are identical up to constant even on

nonmatching grids if the coefficients of the problems do not allow jumps
across the interfaces.

3.4. The Preconditioner by Kim and Lee. Kim and Lee [6] developed
the FETI-DP method on nonmatching grids through the different approach
from Dryja and Widlund [2]. They also designed a new preconditioner, so
called Neumann-Dirichlet preconditioner, and proved its optimal condition



10 YEON-WOO CHANG, HYEA HYUN KIM, AND CHANG-OCK LEE

number bound estimate. To introduce this preconditioner, we first define
vector spaces as follows: For |∂Ωi ∩ ∂Ωj | 6= 0,

W 0
i := {v ∈ Wi : v = 0 at the corner points of Ωi},

W 0
ij := {v ∈ Wij : v = 0 at the end of points of Γij},

W 0 :=
N∏

i=1

∏
j∈mi

W 0
ij .

Then the preconditioner is of the form

F̂−1
KL :=

N∑

i=1


 ∑

j∈mi

Ei
ijB

ij
i,r

−1
Rij




t

S
∑

j∈mi

Ei
ijB

ij
i,r

−1
Rij ,

where Ei
ij : W 0

ij → W 0
j is the extension operator by 0, Bij

i,r : W 0
ij → Mij is the

mortar matching matrix on the nonmortar edge of Γij and Rij : M → Mij is
a restriction operator. In their FETI-DP formulation, the choice of mortar
side and nonmortar side is arbitrary, and noncomparably nonmatching grids
are permitted. In addition, the preconditioned FETI-DP method permits
jumps of coefficients with careful choice of the nonmortar side, and then the
condition number bound is independent of the coefficients. The numerical
results have been provided for a two dimensional Poisson problem in [6].

4. Comparison of Preconditioners Based on Numerical Results

In this section, we provide numerical tests to compare various precon-
ditioners introduced in the previous section for the FETI-DP method on
nonmatching grids. We consider the following problem on the domain
Ω = [0, 1]× [0, 1]:

−∇ · (α(x, y)∇u(x, y)) = f(x, y) in Ω,
u = 0 on ∂Ω,

(4.1)

where α(x, y) is a piecewise constant function with jumps across the subdo-
main boundaries.

We employ piecewise bilinear finite elements for the triangulations on
each subdomain. Since the induced linear system is symmetric and positive
definite, we use the conjugate gradient(CG) algorithm to solve it. The
stopping criterion of CG is ‖rk‖/‖r0‖ ≤ 10−8, where rk is the residual at
k-th iteration of CG and ‖rk‖ is the Euclidean norm of the vector rk.

We perform the numerical experiments on both matching grids and non-
matching grids, and the results of these experiments are provided in Sec-
tion 4.1 for matching grids and in Section 4.2 for nonmatching grids.

4.1. Performances on Matching Grids. The experiments using match-
ing grids are performed for both cases that the preconditioners take the
Boolean matrix B̃r which implements the continuity condition (3.1) and the
matrix Br which implements the mortar matching condition (2.6). For these
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No Preconditioner F̂−1
KL F̂−1

D

N H/h Iter Error(factor) Iter Cond Iter Cond
4 9 3.23e-3 15 4.63 6 2.10
8 15 8.05e-4(0.249) 17 7.56 7 3.05

4× 4 16 21 2.01e-4(0.250) 18 11.35 8 3.82
32 32 5.03e-5(0.250) 20 15.46 9 5.16
64 42 1.26e-5(0.250) 22 21.84 10 6.54
128 60 3.14e-6(0.249) 25 27.07 11 8.63
4 17 8.05e-4 17 5.13 10 2.72
8 25 2.01e-4(0.250) 21 8.49 12 4.31

8× 8 16 36 5.03e-5(0.250) 24 12.36 13 5.75
32 52 1.26e-5(0.250) 27 18.07 15 6.94
64 73 3.14e-6(0.249) 29 24.69 17 8.82
4 19 2.01e-4 18 5.21 10 2.87

16× 16 8 29 5.03e-5(0.250) 22 8.54 12 4.29
16 44 1.26e-5(0.250) 25 12.52 14 6.30
32 66 3.14e-6(0.249) 29 17.46 16 6.96

Table 1. Results on matching grids with the exact matching condition

cases, we consider the elliptic problem (4.1) with α(x, y) = 1 and the exact
solution uexact(x, y) = sin(πx)y(1− y).

Table 1 shows the numurical results of the case that we use the con-
tinuity condition B̃rur = 0. Here, N , Iter, Error and Cond denote the
number of subdomains, the number of CG iterations, the relative L2 error,
i.e., ‖ûh−uexact‖0

‖uexact‖0 and the condition number of the preconditioned FETI-DP
operators, respectively. We do not test all preconditioners because the pre-
conditioners F̂−1

D , F̂−1
DW and F̂−1

KW with the Boolean matrix B̃r are identical
up to constant on matching grids. Hence, we just compare F̂−1

KL and F̂−1
D .

We observe that the ratio of relative errors, ‖ûh−uexact‖0
‖û2h−uexact‖0 , approaches 0.25 as

the mesh size reduces by half in the test of the FETI-DP operator without
a preconditioner. In addition, in the cases with F̂−1

KL and F̂−1
D , we get the

relative errors of the same level as without a preconditioner. Therefore, we
assume that we solve the problem up to the truncation level with the above
stopping criterion of CG.

We observe in Table 1 that the CG iteration numbers of the FETI-DP
operator with F̂−1

KL and F̂−1
D are much smaller than those without a precon-

ditioner. In the comparison between F̂−1
KL and F̂−1

D , we observe that the CG
iteration number with F̂−1

D is smaller than that with F̂−1
KL. We infer these

results from the principal difference between F̂−1
KL and F̂−1

D such that the
preconditioner F̂−1

KL takes the information of the nonmortar side only while
F̂−1

D takes the information of both sides of nonmortar and mortar. In Fig-
ure 2, it is shown that the preconditioners F̂−1

KL and F̂−1
D yield numerically
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Figure 2. Numerical scalibility on matching grids: H/h =
8, (I) = F̂−1

KL, (II) = F̂−1
D with the exact matching condition

or F̂−1
DW with the mortar matching condition
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Figure 3. Estimation of C ≈ κ
(1+log(H/h))2

on matching

grids: N = 4 × 4, (I) = F̂−1
KL, (II) = F̂−1

D with the exact
matching condition or F̂−1

DW with the mortar matching con-
dition

scalable FETI-DP methods. Figure 3 shows the estimated constant C in
(1.1) for various H/h. In this figure, we see the log2 growth of the condition
numbers of the operators F̂−1

KLFDP and F̂−1
D FDP , which is optimal in the

standard substructuring methods.
Now, the numerical results using Br, which implements the mortar match-

ing condition, are provided in Table 2. Even though the grids are matching,
we may use the mortar matching condition instead of the exact matching
condition. We do this experiment to know how the mortar matching con-
dition deteriorates the performance of the preconditioners for the FETI-DP
method with matching grids. We compare F̂−1

KL, F̂−1
D and F̂−1

DW and do not
test F̂−1

KW because F̂−1
DW and F̂−1

KW are identical up to constant in the case



DUAL-PRIMAL FETI METHODS ON NONMATCHING GRIDS 13

No Preconditioner F̂−1
KL F̂−1

D F̂−1
DW

N H/h Iter Error(factor) Iter Cond Iter Cond Iter Cond

4 12 3.23e-3 15 4.63 10 >1.65e+1 6 2.10
8 28 8.05e-4(0.249) 17 7.56 20 >2.93e+1 7 3.05

4× 4 16 49 2.01e-4(0.250) 18 11.35 40 >3.74e+1 8 3.82
32 67 5.03e-5(0.250) 20 15.46 59 >3.05e+2 9 5.51
64 93 1.26e-5(0.250) 22 21.80 63 >4.52e+2 10 6.48
128 123 3.14e-6(0.249) 25 27.13 68 >5.15e+2 11 12.69

4 24 8.05e-4 17 5.13 20 >5.67e+1 10 2.72
8 45 2.01e-4(0.250) 21 8.49 30 >7.55e+1 12 4.31

8× 8 16 82 5.03e-5(0.250) 24 12.36 56 >1.31e+2 13 5.75
32 112 1.26e-5(0.250) 27 18.07 82 >3.55e+2 15 6.94
64 157 3.14e-6(0.249) 29 24.69 88 7.77e+2 17 8.82

4 28 2.01e-4 18 5.21 20 >9.50e+1 10 2.87
16× 16 8 54 5.03e-5(0.250) 22 8.54 35 >6.44e+1 12 4.29

16 96 1.26e-5(0.250) 25 12.52 55 >1.97e+2 14 6.30
32 138 3.14e-6(0.249) 29 17.42 84 >3.30e+2 16 6.96

Table 2. Results on matching grids with the mortar match-
ing condition

that the elliptic problem does not have jumps of coefficients. In this table,
we also observe the optimal order of convergence O(h2). We see that the CG
iteration numbers with the preconditioners F̂−1

KL and F̂−1
DW are much smaller

than that without a preconditioner, and we get the best performance results
of F̂−1

DW among the preconditioners. On the other hand, the CG iteration
number with F̂−1

D is much larger than those with F̂−1
KL and F̂−1

DW even though
it is smaller than that without a preconditioner. Especially, comparing with
Table 1, we observe that the numbers of the CG iterations without a pre-
conditioner and with F̂−1

D are much larger than those in Table 1 while F̂−1
KL

gives the same numerical results and F̂−1
DW also gives the same results as

F̂−1
D in Table 1. We estimate the condition numbers from the CG coef-

ficients [11]. It causes numerical instability when the the CG coefficients
are small. Therefore, sometimes, we are able to estimate the growth of the
condition number instead of the exact condition number.

4.2. Performances on Nonmatching Grids. In this section, we provide
the numerical results for the FETI-DP operators on nonmatching grids.
The experiments are performed for both comparably and noncomparably
nonmatching grids.

Table 3 provides the numerical results of the FETI-DP methods for com-
parably nonmatching grids with the mortar matching condition. We con-
sider the problem (4.1) with α(x, y) = 1 and the exact solution uexact(x, y) =
sin(πx)y(1− y). To get comparably nonmatching grids, we take ni random
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No Preconditioner F̂−1
KL F̂−1

D F̂−1
DW

N ni + 1 Iter Error(factor) Iter Cond Iter Cond Iter Cond

4 39 3.90e-3 16 5.48 53 >1.82e+2 10 2.49
8 94 9.46e-4(0.243) 19 9.80 202 >4.41e+3 11 4.01

4× 4 16 181 2.35e-4(0.248) 20 15.59 410 >2.19e+4 13 5.92
32 248 5.86e-5(0.249) 22 20.74 518 6.91e+4 15 7.59
64 355 1.46e-5(0.249) 24 26.97 638 >5.94e+4 17 10.91
128 434 3.65e-6(0.250) 27 36.50 718 >1.13e+5 18 13.27

4 56 9.68e-4 19 6.04 88 3.12e+2 12 2.73
8 144 2.40e-4(0.248) 23 10.31 353 7.05e+3 14 4.14

8× 8 16 264 5.96e-5(0.248) 26 15.22 655 >2.64e+4 17 5.88
32 381 1.49e-5(0.250) 29 20.78 821 >3.65e+4 20 8.06
64 506 3.71e-6(0.249) 32 27.50 938 >6.03e+4 22 10.68

4 66 2.46e-4 20 6.81 111 4.36e+2 12 2.86
16× 16 8 172 5.95e-5(0.246) 24 10.77 411 6.07e+3 15 4.36

16 324 1.48e-5(0.249) 27 15.19 711 2.37e+4 17 6.30
32 477 3.68e-6(0.249) 30 20.45 943 5.86e+4 20 8.66

Table 3. Results on comparably nonmatching grids

nodes with the restriction

hi ≤ 1.5
Hi

ni + 1

on each edge of the subdomain Ωi, and generate meshes on each subdomain.
Here, Hi is the size of the subdomain Ωi, ni is the number of nodes on each
edge excluding end points and hi is the maximum size of the meshes on each
edge of the subdomain Ωi. Then, this restriction satisfies the assumption of
quasi-uniform triangulation.

By the same reason as in the case of Table 2, we only compare the three
preconditioners F̂−1

KL, F̂−1
D and F̂−1

DW . We still observe that the CG iteration
number for the FETI-DP operator with F̂−1

DW and the condition number
of the operator F̂−1

DW FDP are the smallest. The experiment for F̂−1
KL also

shows that the CG iteration number is much smaller than that without a
preconditioner. In the case of F̂−1

D , we observe that the CG iteration number
is much larger than that without a preconditioner. From the numerical
results for the FETI method by Stefanica and Widlund [12], we remark that
when the Dirichlet preconditioner employing mortar matching condition is
applied to the FETI operator, it also does not work effectively on both
matching grids and nonmatching grids as our numerical results show for
the FETI-DP method. Figure 4 shows the numerical scalabilities of the
FETI-DP methods with F̂−1

KL and F̂−1
DW . In Figure 5 we observe that the

estimated constant C for F̂−1
KL and F̂−1

DW is getting stable around 0.8 and
0.3, respectively. It demonstrates the optimal condition number estimates
of the FETI-DP methods with F̂−1

KL and F̂−1
DW .
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Until now, we have considered the numerical experiments performed with
the elliptic problem (4.1) of which coefficients do not have jumps across
the subdomain boundaries. Now, we perform the numerical experiments
with the problem (4.1) that have the jumps of coefficients across subdomain
boundaries. We consider the cases of 2× 2, 4× 4 and 8× 8 subdomains. In
addition, for each case, we choose the test problem of which solution belongs
to H1(Ω) that is the function space required by the theory of finite elements.
From now on, for convenience, we distinguish each subdomain by Ωij instead
of Ωi. The order of indices of subdomains is explained graphically in Figure
6. Then, the coefficients are determined by followings:

α(x, y)|Ωij = ρij =





1 if both i and j are even,
250 if i is odd and j even,
5000 if i is even and j is odd,
10 if both i and j are odd

and we take the exact solution

uexact(x, y) =





(x− 1/2)(y − 1/2) sin(πx) sin(πy)/α(x, y) for N = 2× 2,
(x− 1/4)(x− 3/4)(y − 1/4)(y − 3/4)

× sin(2πx) sin(2πy)/α(x, y) for N = 4× 4,
sin(8πx) sin(8πy)/α(x, y) for N = 8× 8.

To get noncomparably nonmatching grids, we take uniform grids on all
subdomains with the condition that the ratio

hij

hkl
≈ 4

√
ρij

ρkl

for ∂Ωij ∩ ∂Ωkl 6= ∅, where hij and hkl denote the mesh sizes corresponding
to Ωij and Ωkl, respectively (see [13]). For an example, when N = 2× 2 we
obtain a triangulation as in Figure 6. In [13], it is shown numerically that the
choice of nonmortar sides are quite crucial for the problem with jumps of co-
efficients and a good approximation solution is obtained when the Lagrange
multiplier space has higher dimension. That is, the subdomain boundary
which has finer grids than the adjacent subdomain boundary should be cho-
sen as a nonmortar side. Hence, for |∂Ωij∩∂Ωkl| 6= 0, we choose Ωij |∂Ωij∩∂Ωkl

as a nonmortar side if the number of nodes on Ωij |∂Ωij∩∂Ωkl
is larger than

those on Ωkl|∂Ωij∩∂Ωkl
.

Table 4 and 5 provide the numerical results for F̂−1
KL, F̂−1

DW and F̂−1
KW on

noncomparably nonmatching grids with mortar matching condition. We do
not test F̂−1

D here because it does not work efficiently even on comparably
nonmatching grids. For the numerical tests of F̂−1

KW , we choose γ = 1/2, 1, 2
and 10 for the diagonal scaling matrix Dr in (3.2). Especially, the results of
the case γ = 10 are provided in Table 4 with the results of F̂−1

KL and F̂−1
DW .

It is observed that the CG iteration number with F̂−1
DW is much larger than

those with F̂−1
KL and F̂−1

KW . It is even larger than that without a precondi-
tioner for N = 4× 4 and N = 8× 8. This fact proves numerically that the



DUAL-PRIMAL FETI METHODS ON NONMATCHING GRIDS 17

No Preconditioner F̂−1
KL F̂−1

KW F̂−1
DW

N max(Hi/hi) Iter Error(factor) Iter Iter Iter
16 47 1.76e-4 4 4 24
32 55 4.39e-5(0.249) 4 4 36

2× 2 64 74 1.10e-5(0.251) 4 4 68
128 96 2.74e-6(0.249) 4 4 92
256 116 6.86e-7(0.250) 4 4 108
16 96 1.79e-3 5 5 132
32 104 4.46e-4(0.249) 5 5 124

4× 4 64 127 1.11e-4(0.249) 5 5 177
128 164 2.78e-5(0.250) 6 6 200
16 92 1.73e-3 5 5 167

8× 8 32 127 4.33e-4(0.250) 5 5 223
64 168 1.08e-4(0.249) 5 5 290

Table 4. Results on noncomparably nonmatching grids
with the mortar matching condition

γ = 1/2 γ = 1 γ = 2 γ = 10 F̂−1
KL

N max(Hi/hi) Iter Cond(Iter) Cond(Iter) Cond(Iter) Cond(Iter)

16 16 1.09 (4) 1.04(4) 1.05(4) 1.05(4)
32 24 1.15 (5) 1.06(4) 1.06(4) 1.06(4)

2× 2 64 32 1.22 (5) 1.07(4) 1.07(4) 1.07(4)
128 39 1.30 (6) 1.08(4) 1.09(4) 1.09(4)
256 47 1.38 (6) 1.09(4) 1.10(4) 1.10(4)

16 54 1.35 (7) 1.09(5) 1.10(5) 1.10(5)
32 51 1.49 (7) 1.13(5) 1.14(5) 1.14(5)

4× 4 64 64 1.70 (8) 1.17(5) 1.18(5) 1.18(5)
128 74 1.92 (8) 1.23(6) 1.23(6) 1.23(6)

16 63 1.33 (7) 1.10(5) 1.10(5) 1.10(5)
8× 8 32 81 1.54 (8) 1.13(5) 1.14(5) 1.14(5)

64 97 1.79(10) 1.18(5) 1.18(5) 1.18(5)

Table 5. Comparison of F̂−1
KW for different γ: Noncompara-

bly nonmatching grids with the mortar matching condition

meshes on each edge of the adjacent subdomains should be comparable in
order that the preconditioner F̂−1

DW yields the FETI-DP method with opti-
mal condition number bound, as it was proved in [2]. However, in the cases
of F̂−1

KL and F̂−1
KW with γ = 10, the CG algorithm finds the approximation

solution of which error attains discretization level within a few iterations. In
Table 5, the iteration numbers are equal as well as the estimated condition
numbers. We also observe that the CG iteration number of F̂−1

KW is getting
smaller as γ is getting larger. When γ = 1

2 , the CG iteration number is
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somewhat large even though it is smaller than the case without a precon-
ditioner. However, the iteration number decreases drastically when γ = 1,
and it becomes equal to the results of F̂−1

KL when γ = 10.

4.3. Heuristic Comparison of F̂−1
KL and F̂−1

KW with γ = ∞. Recall the
diagonal scaling matrix Dr in (3.2) and F̂−1

KW in (3.3). For more specific
explain, we assume that Ωi|Γij is a nonmortar side and Ωj |Γij is a mortar
side for Γij = ∂Ωi ∩ ∂Ωj 6= ∅, which implies that ρi < ρj . Then, for the
nodal points on Ωi|Γij , the elements of Di,r and Dj,r are determined as

ζi :=
ργ

i

ργ
i + ργ

j

, ζj :=
ργ

j

ργ
i + ργ

j

,

respectively. Hence

ζ−1
i →∞, ζ−1

j → 1 as γ →∞ . (4.2)

Therefore the effect of the matrix D−1
j,r can be ignored when γ is large. We

may write

B̃rD
−1
r B̃t

r =
(
B̃r,s B̃r,m

)(
D−1

r,s 0
0 D−1

r,m

)(
B̃t

r,s

B̃t
r,m

)
,

where the subscripts s and m denote submatrices on nonmortar sides and
mortar sides, respectively. From (4.2), it holds that

B̃rD
−1
r B̃t

r → B̃r,sD
−1
r,s B̃t

r,s as γ →∞ . (4.3)

Similarly, we obtain

B̃rD
−1
r =

(
B̃r,s B̃r,m

)(
D−1

r,s 0
0 D−1

r,m

)
→

(
B̃r,sD

−1
r,s 0

)
as γ →∞ .

(4.4)
Therefore, from (4.3) and (4.4), it follows that

F̂−1
KW →

(
B̃−t

r,s 0
)

Srr

(
B̃−1

r,s

0

)
= F̂−1

KL as γ →∞.

This is a distinguished feature of the preconditioner F̂−1
KL.

In the aspect of the cost of calculation, F̂−1
KL is somewhat better than

F̂−1
KW because F̂−1

KL does not require the information of mortar sides at all,
and also it does not use the matrix Dr.

5. Conclusion

In this paper, we have compared four preconditioners. Among them, two
were originally developed for matching grids and the other two were de-
veloped for FETI-DP methods on nonmatching grids. However, we have
not applied all preconditioners for all numerical experiments because some
preconditioners become identical for some cases. In particular, the precon-
ditioner introduced by Kim and Lee has a distinguished feature. It just
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uses the flux information of the nonmortar side. We have observed that the
preconditioner F̂−1

DW introduced by Dryja and Widlund works effectively for
all experiments except noncomparably nonmatching grids and good perfor-
mance results of the preconditioner F̂−1

KL which was introduced by Kim and
Lee. Furthermore, we have observed that its efficiency catch up with that of
F̂−1

KW when we consider the elliptic problem of which coefficients have jumps
across the subdomain boundaries on noncomparably nonmatching grids. In
this case, the performances of F̂−1

KL and F̂−1
KW with γ = 10 are almost same.

In fact, F̂−1
KL is the limit form of F̂−1

KW as γ approaches ∞. Considering
the cost of the calculation to implement the preconditioners F̂−1

KW and F̂−1
KL,

we have somewhat better result for F̂−1
KL because it does not require to im-

plement the information of mortar sides at all, and does not require the
diagonal scaling matrix.

In practice, it is useful to allow noncomparably nonmatching grids across
subdomain boundaries because many elliptic problems appearing in the real
world have nonconstant coefficients and we have to deal with this problem
numerically by putting the coefficients constant on each subdomain inde-
pendently. Considering this fact, it seems that that the preconditioner F̂−1

KL
is the most useful preconditioner in a practical sense.
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