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ABSTRACT. FETI-DP method is a substructuring method that uses La-
grange multipliers to match the continuity condition on the subdomain
boundaries. For the FETI-DP method on nonmatching grids, two dif-
ferent formulations are known with respect to how to employ the mor-
tar matching condition. Keeping step with the developments of the
FETI-DP methods, a variety of preconditioners for the FETI-DP oper-
ator have been developed. However, there has not been any numerical
study for the FETI-DP method, which compares those precondition-
ers on nonmatching grids while there have been a few of literatures for
numerical study on the comparison of FETI preconditioners. There-
fore, we present the numerical study of four different preconditioners for
two dimensional elliptic problems. The numerical results confirm the
superiority of the preconditioner by Kim and Lee [6] for noncompara-
bly nonmatching grids, while the superiority of the preconditioner by
Dryja and Widlund [2] is confirmed for matching grids and comparably
nonmatching grids.

1. INTRODUCTION

Finite Element Tearing and Interconnecting(FETI) method is one of the
substructuring methods, which was first introduced by Farhat and Roux [5].
The main idea is to match the continuity condition across subdomain bound-
aries by Lagrange multipliers. By eliminating primal variables of subdo-
mains, an operator for the Lagrange multipliers is obtained.

In [3], Farhat et al. introduced a different substructuring method called
Dual-Primal FETI(FETI-DP) method. In the FETI-DP method, the conti-
nuity condition across the subdomain boundaries is matched by primal vari-
ables at corners and dual variables(Lagrange multipliers) on edges. Mandel
and Tezaur [10] showed its optimal condition number bound,

k< C(1+ log(H/h))? (1.1)
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with Dirichlet preconditioner for both second and fourth order elliptic prob-
lems in 2-D, where H and h denote the sizes of subdomain and mesh, re-
spectively. Furthermore, Klawonn et al. [8] obtained the same bound by
employing a new preconditioner for 3-D elliptic problems with heterogeneous
coeflicients.

The original FETI-DP methods were designed on matching grids. Re-
cently, the FETI-DP methods on nonmatching grids were developed. For
the FETI-DP formulation on nonmatching grids, mortar matching condi-
tion is employed to match the continuity condition across the subdomain
boundaries. Dryja and Widlund [1, 2] imposed the mortar matching condi-
tion after eliminating unknowns on both interior and vertex nodal points.
Furthermore, to obtain the stability of the mortar projection operator under
H~/2-norm, they imposed a restriction that hEm(i) and h’Ym(j)’ the sizes of
meshes on the nonmortar side and the mortar side, respectively, are compa-
rable. Kim and Lee [6] formulated the FETI-DP operator in a different way
by imposing the mortar matching condition after eliminating unknowns on
interior nodal points only. Then they proposed a Neumann-Dirichlet precon-
ditioner which gives the optimal condition number bound (1 + log(H/h))?
without the restriction that h5m(¢> ~ hy,, ;- The proposed preconditioner is
easy to implement and the operator from the nodal values on the interface of
subdomains to the Lagrange multiplier space requires only the nodal values
on the nonmortar side. Hence, the cost for multiplying the operator to a
vector is reduced by half compared with preconditioners developed in other
literatures(see [1, 2]).

In this paper, we compare four kinds of preconditioners, the Dirichlet
preconditioner [4], and the preconditioner by Klawonn and Widlund [7],
which are developed originally for matching grids, and the preconditioner by
Dryja and Widlund [2] and the preconditioner by Kim and Lee [6], which are
developed for the FETI-DP operator on nonmatching grids. The numerical
results show that the preconditioner by Dryja and Widlund works the most
efficiently on matching grids and comparably nonmatching grids. On the
other hand, the numerical results for noncomparably nonmatching grids
confirm the superiority of the preconditioner by Kim and Lee. Furthermore,
we showed heuristically that the preconditioner by Kim and Lee is the limit
form of the preconditioner by Klawonn and Widlund.

This paper is organized as follows. The FETI-DP formulation developed
by Kim and Lee is described in Section 2, and four preconditioners are
introduced in Section 3. In Section 4, we provide the comparison based on
numerical results, and the conclusion is given in Section 5.

2. FETI-DP FORMULATION

In this section, we introduce a FETI-DP formulation developed by Kim
and Lee [6].
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2.1. A Model Problem and Finite Element Formulation. In this pa-
per, we consider the FETI-DP method on nonmatching grids for the follow-
ing elliptic problem:

V- (A@)Vu(z)) = f(z) inQ,
u(z) = 0 on 05, (2.1)

where A(x) = (a;j(x)) for 4,5 = 1,2. We assume that a;;(z) € L>(Q),
f(x) € L*(Q) and A(z) is uniformly elliptic for all z € Q. We also assume
that the domain €2 is decomposed into a finite number of nonoverlapping
bounded subdomains, i.e., Q = Uf\il Q; and ;N Q; =0 for i # j and
|2;| < oo for all i. Moreover, we assume that this partition is geometrically
conforming, which means that the subdomains intersect with neighboring
subdomains on a whole edge or at a vertex. Then we triangulate each
subdomain §2; independently so that the meshes need not match across the
subdomain boundaries.

We write the problem (2.1) in a variational form as follows: For f € L?(€2),
find u € H}(2) such that

a(u,v) = (f,v)a Vv e HHQ), (2.2)
where
a(u,v) := /AVU Voudz,
(fo)as= [ fode
Here,

H&(Q):{UELQ(Q):/Vv-Vvdx+/dea:<oo,v:00n8Q}.
Q Q

We let Qf be a quasi-uniform triangulation of the subdomain €2;. That is,
there exist positive constants v and ¢ such that vh; < hy < op; for all
7 € QF, where h, = |7|, p, is the diameter of the circle inscribed in 7 and

h; = max]7'| For each subdomain 2;, we define a finite element space
TeQh

Xi = {ve Hp() : vl € Pu(7),7 € O},

where H} () := {v € HY(Q;) : v = 0 on 92N 9Q;} and Pi(7) is the set
of polynomlals of degree < 1 in 7. Then we define finite element spaces as
follows:

N

X = {v € HXi : v is continuous at subdomain vertices} ,
i=1

WZ:XZ|8QZ vj:l)"'vNa

N
W .= {w € l_II/VZ : w is continuous at subdomain Vertices} )
i=1
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FIGURE 1. Mortar and nonmortar sides of I';;

Now, we approximate the solution of the problem (2.2) in X. To do
this, on nonmatching grids we construct a Lagrange multiplier space. Let
[ij := 08; N 08Y;. On T'y; we distinguish |p,; and Q|r,; as in Figure 1,
and then we choose one as a mortar side and the other as a nonmortar side.
We define

m; = {j : || # 0,94, is a mortar side of I';;},

si = {7 : [Tyl #0, Qj|pﬁ is a nonmortar side of I'j;}
and

Wij :={vlr,; : v€ X;} fori=1,...,N and j € m;.
Next, we let o - -
{¢(1)J7 zljv T ’(ﬁ%ij’ f]{fij_t,_l

be the nodal basis functions for W;;. We assume that the basis functions are
sequentially ordered according to the location of nodes on I';;. We define

U= gl 4 ¢,
& = ¢ fork=2,--- Nj—1,
;\jfz'j a %ij + gb%ij"!‘l’
Mij = span{&ij, Tty %”}
Then we take the Lagrange multiplier space as
N
M= [T My
i=1ljEm,;

With this Lagrange multiplier space, we impose mortar matching condition
onv=(vy, - ,un) €X

/ (vi—vj))\ijds:() V)\Z] EMij, i=1,---,N, j€Em,. (2.3)
T

ij
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We define
V:={v e X : v satisfies (2.3)},

ai(u,v) := / AVu - Voudz,

7

fi(v) := (f,v)e;

Then we consider a variational problem: Find v € V such that

N

éai(u,v) = ;(ﬂv)m Vo € V. (2.4)

In the sequel, we use the bold face character to represent the vector of
which entries are the nodal values of a function. Similarly, we use the bold
face character to represent the set of vectors corresponding to a function
space.

2.2. FETI-DP Formulation. In this section, we construct the FETI-DP
operator for the problem (2.2) with the mortar matching condition as con-
straints. The discrete problem (2.4) can be written as the following equiva-
lent minimization problem with constraints: Find v € V such that

Y1 Y1

> 5ai(u,w) = fi(u) ) = min Sai(v,v0) = fiv) ). (25)
; 2 veV 4 2

i=1 =1

We introduce a matrix B; to implement the mortar matching condition (2.3).
For |0€2; N08Y;| # 0, we denote 9€2; N0 as Ty if Qy|r,; is a nonmortar side

and as I'j;, otherwise. Then we let W;j be the set of vectors that correspond
to the nodal values for the functions in W, restricted on I';;. We assume
that Qih"ij is the nonmortar side and th"ij is the mortar side of I';;. We

define matrices Blij : Wlij — M;; for [ =1, j by
<B§j>lk _ / €969 ds, forl=1,--- Ny, and k=0, Ny +1,

B?ﬂ')
( I )k

For wz:j € W;J and W;] € W;J ,
tion (2.3) as

- [ o s fort =1 Ny, and k=0, Nk,
ij
we rewrite the mortar matching condi-

(Y] W 4
B;'w;” + B; w;" =
Now, we define E;; : M;; — M, an extension operator from M;; to M by

zero and Rﬁj :W; — Wlij for [ =1, j, a restriction operator. Let

Bi= Y EyB’Rj+Y E;B]'Rj.

jeEM; JES;
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Then the mortar matching condition (2.3) becomes

N
> Biwi =0, (2.6)
=1

where w; € W;,.

In the sequel, we use the subscript symbols r and ¢ to represent the degrees
of freedom corresponding to nodes on the edges and at vertices, respectively.
For w; € W;, we may write

W; = .
w

We denote W, as the set of vectors which have degrees of freedom corre-
sponding to the union of subdomain vertices, that is, global corner points.
We define the matrix L! which consists of 0 and 1 and restricts the value of
w. € W, on the vertices of subdomain ;. Therefore, forw = (wy,--- ,wy) €
W, there exists w. € W, satisfying Liw, = w' for all i = 1,--- , N. Hence,
for w € W, the coeflicient vector can be written as

0 S .

1
T,c

, i
— : 2
w = : where w, . = (

W

i V:fc) for some w. € W.,.
C

r,c

Let A’ be the stiffness matrix induced from the bilinear form a;(-,-), S* the
Schur complement matrix from A?, and g! the Schur complement forcing
vector induced from f;(v).

Now, we eliminate interior variables in (2.5). Then the problem (2.5)
becomes: Find z € W satisfying

N
32'Sz — z'g = min (3w'Sw — w'g)  subject to Biw; =0. (2.7)
weW i=1
where

gl

5 =dingi (80, 5'= (G %) e
cr cc gN

Let B;, be the columns of B; of which entries are multiplied by the nodal
values on the edges, and let B; . be the columns of B;, that are multiplied
by the nodal values at the vertices. Then (2.7) can be written as follows:
Find z x A\ € W x M such that

SyrZy + SpeZe + Bf)\ gr, (2.8a)
SerZr + SecZe + BIN = g, (2.8b)
B,z, + B.z. = 0. (2.8¢)
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where A
Srr = diagi:l N(sz"r)?
Sty

Src — ; Scr — Sﬁc
SNLN
N rc‘ ct .
Scc = Z (Llc) SécLZm
=1

N .
B'f’ = (BI,T7 T 7BN,7")7 BC = ZBi,cLch
i=1

g . 7
. it i
g?” = . ) gc = Z (Lc) gé7 Zr = .
g = z)

Solving (2.8a) for z,, we get

z, = S;,} (g — Speze — BLN).
By substituting z, into (2.8b) and (2.8c), we obtain

B.S'BI\+ (B,.S.'S,. — B.)z. = B.S.,'g,,
(SerSp B — BIX = (Sce — Ser Sy Sre)ze = —(8c — SerSry' 1)

Let

Fyy = B,S,,' By,

Fre = ByS,,' Sre — B,

For = SerSy, By = Bi(= Fy),

Fee = Sec = SerSyy Sre,

dr = B, Sy, g,

dc =8¢ — Scrsr_rlgr-
Then (A, z.) satisfies
Frr Frc A _ dr
Fcr _Fcc Zc _dC .
Eliminating z. in the above equation, we obtain

(Frr + Fpe F For)\ = dy — F o Fop de..
Here, Fpp = F,r + Frchlecr is called the FETI-DP operator.

3. PRECONDITIONERS FOR THE FETI-DP OPERATOR

In this section, we introduce four preconditioners that will be applied
to the FETI-DP operator formulated in the previous section. In the first
two sections, we consider the preconditioners developed for matching grids,
where the continuity condition across the interface I';; is given by

ufn\pi]. - uﬂpij =0 foru, €X. (3.1)
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Then, this continuity condition induces a Boolean matrix Er satisfying
Erur = 0.

We use this notation ET to introduce the preconditioners in Section 3.1
and 3.2. The next two sections deal with the preconditioners developed for
the FETI-DP preconditioners on nonmatching grids.

3.1. The Dirichlet Preconditioner. The Dirichlet preconditioner was
first designed for the FETI operator on matching grids by Farhat et al. [4].
In [4], it has been shown numerically that the condition number of the FETI
operator with the Dirichlet preconditioner is bounded by C(1 + log(H/h))?
when it is applied to the second order elliptic problems like Poisson prob-
lem, plane stress problem and plain strain problem. Here, H/h is the ratio
of the subdomain and the mesh size. Mandel and Tezaur [9] proved that
the condition number is bounded by C(1 + log(H/h))™ with m < 3 for the
second order elliptic problems in 2-D and 3-D both.

Furthermore, Mandel and Tezaur [10] obtained C(1 + log(H/h))? for
FETI-DP operator with the Dirichlet preconditioner of the form

Folm B8, B,

for the second and fourth order elliptic problems in 2-D. The numerical
results are provided by Farhat et al. [3].

3.2. The Preconditioner by Klawonn and Widlund. Klawonn and
Widlund [7] designed a preconditioner for the FETT operator with matching
grids, working on second order elliptic problems with jumps of coefficients.
We apply the preconditioner to the FETI-DP operator by eliminating the
corner effects.

We let p; be the constant coefficient depending on the subdomain €2; and
89% the set of nodes on 0€); excluding vertices. We also denote N, as
the set of indices of the subdomains which have x on its boundary. The
weighted counting function p;(z) which is associated with the individual
09; is defined as

wi(x) = Z p}(w) for z € 3@27, with v € [1/2,00).
JEN,

The diagonal matrix D;, is composed of the diagonal entry p](z)/pi(x)
corresponding to the point z € QP | and the matrix D, is defined as

i,r)
DT = dlagZ:L’N (Di’r) . (32)
Then the preconditioner is of the form

Fil - = (B,D;'BY)"'B,D;'S,,D; ' BL(B,D; 'BL)"'.  (3.3)
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Stefanica and Klawonn provided the numerical results in [12] applying
Fp L and FI}%/V to the FETT operator for the two dimensional elliptic prob-

lems and showed that 131}114, is superior to ﬁB ! both on matching grids and
nonmatching grids.

3.3. The Preconditioner by Dryja and Widlund. Dryja and Wid-
lund [2] formulated the FETI-DP operator on nonmatching grids by em-
ploying the mortar matching condition. For [0€; N 0€2;| # 0, we denote the
mortar and nonmortar edges of I';; = 9€2; N 982 by vp(jy and 6,y if 9
is the mortar edge and 02; is the nonmortar edge, respectively. For conve-
nience, we denote the matrix Bw\pij by B5m(i) when €2; is the nonmortar
side, so that Bj,|r,; is denoted by By, Then, we define a scaling matrix
Ds,, ., given by

D Us ‘5m(i) — 1 B 1 B i "Sm(w
m(j) m(i) TYm(5) m(j)

Here, h5m<i) and h,, . are the mesh parameters of d,,;) and 7 (j), respec-

tively. If we define B = diag {ng(i)}, the preconditioner by Driya and
i=1,-,N

Widlund is of the form
FpL = (B.BY)"'BS,.B'(B,B")™!,

where B, is the mortar matching matrix defined on edges. It was proven that

the condition number of the FETI-DP method with this preconditioner is

bounded by C' I{laXN(l +log(H;/h;))? where H; and h; are the subdomain
=1,

size and mesh size of €);, respectively. In proving this optimal condition
number estimate, it was assumed that the sizes of meshes on nonmortar
side and mortar side are comparable. To the best of our knowledge, no
riumerical results have been reported yet for this FETI-DP operator with
Fry.

For the above three preconditioners, we remark the followings: If the
exact matching condition is used, ﬁ_l, ﬁg‘l/v and ﬁg&v are identical up
to constant for the FETI-DP operator with 2-D elliptic problems of which
coefficients do not permit jumps across the subdomain boundaries. In fact,
Ergﬁ =2[ and D, = %I . Moreover, under the assumption that h(;m(i) and

h%nm are comparable, F I}II/V and ﬁfn}v are identical up to constant even on
nonmatching grids if the coefficients of the problems do not allow jumps
across the interfaces.

3.4. The Preconditioner by Kim and Lee. Kim and Lee [6] developed
the FETI-DP method on nonmatching grids through the different approach
from Dryja and Widlund [2]. They also designed a new preconditioner, so
called Neumann-Dirichlet preconditioner, and proved its optimal condition
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number bound estimate. To introduce this preconditioner, we first define
vector spaces as follows: For [0€; N 0Q;| # 0,

W? :={v e W;:v=0 at the corner points of ;},

1

WZ-Oj = {v € Wj; : v =0 at the end of points of I';;},

N
wo =1 IT W}

i=ljem;

Then the preconditioner is of the form

ﬁ[}i_z Z zr lRij SZ zr ZJ’

=1 \jeEm; jeEM;

where EZ : WO — WO is the extension operator by 0, B VVZ0 — M;j is the
mortar matchmg matrlx on the nonmortar edge of I';; and R;j: M — M;; is
a restriction operator. In their FETI-DP formulation, the choice of mortar
side and nonmortar side is arbitrary, and noncomparably nonmatching grids
are permitted. In addition, the preconditioned FETI-DP method permits
jumps of coefficients with careful choice of the nonmortar side, and then the
condition number bound is independent of the coefficients. The numerical

results have been provided for a two dimensional Poisson problem in [6].

4. COMPARISON OF PRECONDITIONERS BASED ON NUMERICAL RESULTS

In this section, we provide numerical tests to compare various precon-
ditioners introduced in the previous section for the FETI-DP method on
nonmatching grids. We consider the following problem on the domain
Q=10,1] x [0, 1]:

-V - (a(x,y)Vu(z,y)) = [f(z,y) in 9,
! yu =0 ! on 01, (4.1)

where a(x,y) is a piecewise constant function with jumps across the subdo-
main boundaries.

We employ piecewise bilinear finite elements for the triangulations on
each subdomain. Since the induced linear system is symmetric and positive
definite, we use the conjugate gradient(CG) algorithm to solve it. The
stopping criterion of CG is ||rx]|/|70]] < 1078, where 7} is the residual at
k-th iteration of CG and ||rg|| is the Euclidean norm of the vector ry.

We perform the numerical experiments on both matching grids and non-
matching grids, and the results of these experiments are provided in Sec-
tion 4.1 for matching grids and in Section 4.2 for nonmatching grids.

4.1. Performances on Matching Grids. The experiments using match-
ing grids are performed for both cases that the preconditioners take the
Boolean matrix B, which implements the continuity condition (3.1) and the
matrix B, which implements the mortar matching condition (2.6). For these
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’ ‘ No Preconditioner ‘ Flzi ‘ ry ! ‘
| N [ H/h] Tter [ Error(factor) [ Iter | Cond | Tter | Cond |
4 9 3.23e-3 15 4.63 6 2.10

8 15 | 8.05e-4(0.249) | 17 756 | 7 3.05
4 x4 16 21 | 2.01e-4(0.250) | 18 11.35| 8 3.82
32 32 | 5.03e-5(0.250) | 20 1546 | 9 5.16

64 42 | 1.26e-5(0.250) | 22 21.84 | 10 6.54
(0.249)

128 60 | 3.14e-6(0.249 25 27.07 | 11 8.63

4 [ 17 | 8.05e-4 17 | 513] 10 | 272

8 | 25 |201e4(0.250) | 21 | 849 | 12 | 4.31

8x8 | 16 | 36 |5.03e-5(0.250) | 24 | 12.36| 13 | 5.75

32 | 52 |1.26e-5(0.250) | 27 | 18.07 | 15 | 6.94
(0.249)

64 | 73 |3.14e-6(0.249) | 29 | 24.69 | 17 | 8.82
4 [ 19 [2.0led 18 | 521] 10 | 287
16x16| 8 | 29 |5.03e-5(0.250) | 22 | 854| 12 | 4.29
16 | 44 |1.26e-5(0.250) | 25 | 1252 | 14 | 6.30
32 | 66 |3.14e-6(0.249) | 29 | 17.46 | 16 | 6.96

TABLE 1. Results on matching grids with the exact matching condition

cases, we consider the elliptic problem (4.1) with a(z,y) = 1 and the exact
solution Uepqet(z,y) = sin(mx)y(l — y).

Table 1 shows the numurical results of the case that we use the con-
tinuity condition B,u, = 0. Here, N, Iter, Error and Cond denote the
number of subdomains, the number of CG iterations, the relative L? error,
i.e. W and the condition number of the preconditioned FETI-DP
operators, respectlvely We do not test all preconditioners because the pre-
conditioners FD , FD and FKW with the Boolean matrix B, are identical
up to constant on matching grids. Hence, we just compare FK 7, and FD_ .
We observe that the ratio of relative errors, %, approaches 0.25 as
the mesh size reduces by half in the test of the FETI-DP operator without
a preconditioner. In addition, in the cases with F I}}J and F Iy ! we get the
relative errors of the same level as without a preconditioner. Therefore, we
assume that we solve the problem up to the truncation level with the above
stopping criterion of CG.

We observe in Table 1 that the CG iteration numbers of the FETI-DP

operator with ﬁfgi and ﬁg 1 are much smaller than those without a precon-
ditioner. In the comparison between F [;i and F ~1. we observe that the CG
iteration number with ﬁg !is smaller than that with F 1;114 We infer these
results from the principal difference between F I}i and F D ! such that the
preconditioner F I;}J takes the information of the nonmortar side only while
ﬁf) ! takes the information of both sides of nonmortar and mortar. In Fig-
ure 2, it is shown that the preconditioners ﬁI}i and F D ! yield numerically



12 YEON-WOO CHANG, HYEA HYUN KIM, AND CHANG-OCK LEE

25 T T T T T 10 T T T T T
20 :// - 8/ ‘ ‘ -
2 =
il g
© L i £ L i
_:“_E 15 5 6
k] > &
2 10 -’,’l 4 § 4 | X O I x|
E | 3
2 (]
5F i —— A 2 - N —— A
) ---x--- Iy —-x-—-
0 1 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of subdomains Number of subdomains

FIGURE 2. Numerical scalibility on matching grids: H/h =
8, (I) F[}L, (I = 5 with the exact matching condition
or FDW with the mortar matching condition
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FIGURE 3. Estimation of C' =~ 7 on matching
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gridss N =4 x4, () = FK}J, (1 = 5 with the exact
matching condition or FDW with the mortar matching con-
dition

scalable FETI-DP methods. Figure 3 shows the estimated constant C' in
(1.1) for various H/h. In this figure, we see the log? growth of the condition
numbers of the operators ﬁgiFDp and ﬁD_ 1FDp, which is optimal in the
standard substructuring methods.

Now, the numerical results using B,., which implements the mortar match-
ing condition, are provided in Table 2. Even though the grids are matching,
we may use the mortar matching condition instead of the exact matching
condition. We do this experiment to know how the mortar matching con-
dition deteriorates the performance of the precondltloners for the FETI-DP
method with matchlng grids. We compare F % L, F 5 and F DW and do not

test FKW because FDW and FKW are identical up to constant in the case
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’ ‘ No Preconditioner ‘ Fyr ‘ Fpt ‘ Fpu ‘
l N ‘ H/h ‘ Tter ‘ Error(factor) ‘ Iter ‘ Cond ‘ Iter ‘ Cond ‘ Tter ‘ Cond ‘
4 12 | 3.23e-3 15 4.63 | 10 | >1.65e+1 2.10

6
8 28 | 8.05e-4(0.249) | 17 756 | 20 | >2.93e+1 | 7 3.05
4x4 16 49 | 2.01e-4(0.250) | 18 | 11.35 | 40 | >3.74e+1 | 8
32 67 | 5.03e-5(0.250) | 20 | 1546 | 59 | >3.05e+2 | 9 5.51
64 93 | 1.26e-5(0.250) | 22 | 21.80 | 63 | >4.52¢+2 | 10 6.48
128 | 123 | 3.14e-6(0.249) | 25 | 27.13 | 68 | >5.15e+2 | 11 12.69

4 24 | 8.05e-4 17 513 | 20 | >5.67e+1 | 10 2.72
8 45 | 2.01e-4(0.250) | 21 8.49 | 30 | >7.55e+1 | 12 4.31
8 x 8 16 82 | 5.03e-5(0.250) | 24 | 12.36 | 56 | >1.3le+2 | 13 5.75
32 112 | 1.26e-5(0.250) | 27 | 18.07 | 82 | >3.55e+2 | 15 6.94
64 157 | 3.14e-6(0.249) | 29 | 24.69 | 88 7.7Te+2 | 17 8.82

4 28 | 2.01e-4 18 5.21 | 20 | >9.50e+1 | 10 2.87
16 x 16 8 54 | 5.03e-5(0.250) | 22 8.54 | 35 | >6.44e+1 | 12 4.29
16 96 | 1.26e-5(0.250) | 25 | 12.52 | 55 | >1.97e+2 | 14 6.30
32 138 | 3.14e-6(0.249) | 29 | 17.42 | 84 | >3.30e+2 | 16 6.96

TABLE 2. Results on matching grids with the mortar match-
ing condition

===

that the elliptic problem does not have jumps of coefficients. In this table,
we also observe the optimal order of convergence O(h2) We see that the CG
iteration numbers with the preconditioners F L and F W are much smaller
than that without a preconditioner, and we get the best performance results
of F 5‘}[, among the preconditioners. On the other hand, the CG iteration

number with F D !is much larger than those with F [}i and F BI}V even though
it is smaller than that without a preconditioner. Especially, comparing with
Table 1, we observe that the numbers of the CG iterations without a pre-
conditioner and with 135 ! are much larger than those in Table 1 while ﬁlgi
gives the same numerical results and F L_N}V also gives the same results as

I D 1'in Table 1. We estimate the condition numbers from the CG coef-
ficients [11]. It causes numerical instability when the the CG coefficients
are small. Therefore, sometimes, we are able to estimate the growth of the
condition number instead of the exact condition number.

4.2. Performances on Nonmatching Grids. In this section, we provide
the numerical results for the FETI-DP operators on nonmatching grids.
The experiments are performed for both comparably and noncomparably
nonmatching grids.

Table 3 provides the numerical results of the FETI-DP methods for com-
parably nonmatching grids with the mortar matching condition. We con-
sider the problem (4.1) with «(z,y) = 1 and the exact solution uezqct(z,y) =
sin(mz)y(1 —y). To get comparably nonmatching grids, we take n; random
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’ ‘ No Preconditioner ‘ Ffi ‘ FBl ‘ nglv ‘
l N n; +1 ‘ Iter ‘ Error(factor) ‘ Iter | Cond ‘ Tter ‘ Cond ‘ Tter ‘ Cond ‘

4 39 | 3.90e-3 16 548 | 53 | >1.82¢+2 | 10 2.49

8 94 | 9.46e-4(0.243) | 19 9.80 | 202 | >4.41e+3 | 11 4.01

4 x4 16 181 | 2.35e-4(0.248) 20 15.59 | 410 | >2.19e+4 13 5.92

32 248 | 5.86e-5(0.249) | 22 20.74 | 518 6.91e+4 | 15 7.59

64 355 | 1.46e-5(0.249) 24 26.97 | 638 | >5.94e+4 17 10.91

128 434 | 3.65e-6(0.250) 27 36.50 | 718 | >1.13e+5 18 13.27

4 56 | 9.68¢e-4 19 6.04 | 88 3.12e+2 | 12 2.73

8 144 | 2.40e-4(0.248) 23 10.31 | 353 7.05e+3 14 4.14

8 x 8 16 264 | 5.96e-5(0.248) 26 15.22 | 655 | >2.64e+4 17 5.88

32 381 | 1.49e-5(0.250) | 29 20.78 | 821 | >3.65e+4 | 20 8.06

64 506 | 3.71e-6(0.249) | 32 27.50 | 938 | >6.03e+4 | 22 10.68

1 66 | 2.460-4 20 | 681 111 | 4.36e+2 | 12 | 2.86

16 x 16 8 172 | 5.95e-5(0.246) | 24 10.77 | 411 6.07e+3 | 15 4.36

16 | 324 | 1.48e-5(0.249) | 27 | 1519 | 711 | 2.37e+4 | 17 | 6.30

32 477 | 3.68e-6(0.249) | 30 20.45 | 943 5.86e+4 | 20 8.66

TABLE 3. Results on comparably nonmatching grids

nodes with the restriction

H;
h; <1.5
' n; + 1

on each edge of the subdomain €2;, and generate meshes on each subdomain.
Here, H; is the size of the subdomain (2;, n; is the number of nodes on each
edge excluding end points and h; is the maximum size of the meshes on each
edge of the subdomain €2;. Then, this restriction satisfies the assumption of
quasi-uniform triangulation.

By the same reason as in the case of Table 2, we only compare the three
FBl and FB&V We still observe that the CG iteration

number for the FETI-DP operator with FB;V and the condition number

el -1
precondltloners FKL’

of the operator F BéVFD p are the smallest. The experiment for F gi also
shows that the CG iteration number is much smaller than that without a
preconditioner. In the case of F5!, we observe that the CG iteration number
is much larger than that without a preconditioner. From the numerical
results for the FETT method by Stefanica and Widlund [12], we remark that
when the Dirichlet preconditioner employing mortar matching condition is
applied to the FETI operator, it also does not work effectively on both
matching grids and nonmatching grids as our numerical results show for
the FETI-DP method. Figure 4 shows the numerical scalabilities of the
FETI-DP methods with F L and FD‘%V In Figure 5 we observe that the
estimated constant C for F L and F W is getting stable around 0.8 and

0.3, respectively. It demonstrates the optimal condition number estimates
of the FETI-DP methods with ng and FB&V
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Until now, we have considered the numerical experiments performed with
the elliptic problem (4.1) of which coefficients do not have jumps across
the subdomain boundaries. Now, we perform the numerical experiments
with the problem (4.1) that have the jumps of coefficients across subdomain
boundaries. We consider the cases of 2 x 2, 4 x 4 and 8 x 8 subdomains. In
addition, for each case, we choose the test problem of which solution belongs
to H' () that is the function space required by the theory of finite elements.
From now on, for convenience, we distinguish each subdomain by €2;; instead
of ;. The order of indices of subdomains is explained graphically in Figure
6. Then, the coefficients are determined by followings:

1 if both ¢ and j are even,
oz, 9)la, = pij = 250 if 4 is odd and j even,
Y15 = Pii = Y 5000 if i is even and j is odd,

10 if both 7 and j are odd

and we take the exact solution
(x —1/2)(y — 1/2) sin(7x) sin(ny) /a(z,y) for N =2 x 2,
gy — 4 @ =370~ 1/ —3/4)
cracti x sin(2mz) sin(27y) /a(z, y) for N =4 x 4,
sin(87x) sin(87y) /a(x, y) for N =8 x 8.

To get noncomparably nonmatching grids, we take uniform grids on all

subdomains with the condition that the ratio

hij o ofPid

b Pkl
for 0Q;; N O # 0, where h;; and hy; denote the mesh sizes corresponding
to ;; and Qy, respectively (see [13]). For an example, when N =2 x 2 we
obtain a triangulation as in Figure 6. In [13], it is shown numerically that the
choice of nonmortar sides are quite crucial for the problem with jumps of co-
efficients and a good approximation solution is obtained when the Lagrange
multiplier space has higher dimension. That is, the subdomain boundary
which has finer grids than the adjacent subdomain boundary should be cho-
sen as a nonmortar side. Hence, for [0€2;;N0Q| # 0, we choose Q;j|a0,,;no0y,
as a nonmortar side if the number of nodes on Qij|agijmagkl is larger than
those on Qplaq,;nay, -

Table 4 and 5 provide the numerical results for F Ki, F _W and F2 KW on
noncomparably nonmatching grids with mortar matching condition. We do
not test F ! here because it does not work efficiently even on comparably
nonmatching grids. For the numerical tests of F' K‘I,V, we choose v =1/2,1,2
and 10 for the diagonal scaling matrix D, in (3.2). Especially, the results of
the case v = 10 are provided in Table 4 with the results of F I}}J and F Bl}v.
It is observed that the CG iteration number with F BI}V is much larger than

those with ﬁ[;i and ﬁ[;‘l,v It is even larger than that without a precondi-
tioner for N =4 x 4 and N = 8 x 8. This fact proves numerically that the
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|

‘ No Preconditioner ‘ Flzi ‘ F_‘l,[, ‘ FB&V ‘

|

N | max(H;/h;) | Tter | Error(factor) | Iter | Tter [ Tter |

16 47 | 1.76e-4 4 4 24
32 55 | 4.39e-5(0.249) 4 4 36
2x2 64 74 | 1.10e-5(0.251) 4 4 68
128 96 | 2.74e-6(0.249) 4 4 92
256 116 | 6.86e-7(0.250) 4 4 108
16 96 | 1.79e-3 ) ) 132
32 104 | 4.46e-4(0.249) 5 5 124
4 x4 64 127 | 1.11e-4(0.249) 5 ) 177
128 164 | 2.78e-5(0.250) 6 6 200
16 92 | 1.73e-3 5 ) 167
8x8 32 127 | 4.33e-4(0.250) 5) ) 223
64 168 | 1.08e-4(0.249) 5 5 290

TABLE 4. Results on noncomparably nonmatching grids
with the mortar matching condition

| [v=1/2] y=1 [ y=2 | y=10 | Fg |
| N | max(H;/h;) [ Tter [ Cond(Iter) | Cond(Iter) [ Cond(Iter) [ Cond(Iter) |
16 16 1.09 (4) 1.04(4) 1.05(4) 1.05(4)
32 24 1.15 (5) 1.06(4) 1.06(4) 1.06(4)
2% 2 64 32 1.22 (5) 1.07(4) 1.07(4) 1.07(4)
128 39 1.30 (6) 1.08(4) 1.09(4) 1.09(4)
256 47 1.38 (6) 1.09(4) 1.10(4) 1.10(4)
16 54 1.35 (7) 1.09(5) 1.10(5) 1.10(5)
32 51 1.49 (7) 1.13(5) 1.14(5) 1.14(5)
4x4 64 64 1.70 (8) 1.17(5) 1.18(5) 1.18(5)
128 74 1.92 (8) 1.23(6) 1.23(6) 1.23(6)
16 63 1.33 (7) 1.10(5) 1.10(5) 1.10(5)
8x8 32 81 1.54 (8) 1.13(5) 1.14(5) 1.14(5)
64 97 1.79(10) 1.18(5) 1.18(5) 1.18(5)
TABLE 5. Comparison of F I;%,V for different «: Noncompara-
bly nonmatching grids with the mortar matching condition
meshes on each edge of the adjacent subdomains should be comparable in

order that the preconditioner ﬁBI}V yields the FETI-DP method with opti-
mal condition number bound, as it was proved in [2]. However, in the cases

of ]3}}2

and F [}‘1,[, with v = 10, the CG algorithm finds the approximation

solution of which error attains discretization level within a few iterations. In
Table 5, the iteration numbers are equal as well as the estimated condition
numbers. We also observe that the CG iteration number of F' [z‘l,v is getting

smaller as v is getting larger. When v = %, the CG iteration number is
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somewhat large even though it is smaller than the case without a precon-
ditioner. However, the iteration number decreases drastically when v = 1,
and it becomes equal to the results of F’ IQ}J when vy = 10.

4.3. Heuristic Comparison of f;{i and f‘f&,v with 7 = co. Recall the
diagonal scaling matrix D, in (3.2) and F [}‘1,[, in (3.3). For more specific
explain, we assume that Ql‘h‘ij is a nonmortar side and Qj’rij is a mortar
side for I';; = 08 N 0Q; # 0, which implies that p; < pj. Then, for the
nodal points on Q¢|pij, the elements of D;, and D;, are determined as

%
G = b G = .
pi+p]” T o]+ e
respectively. Hence
Ci_l—>oo, g‘j_l—>1 as y — 00. (4.2)

Therefore the effect of the matrix DJ_T1 can be ignored when ~ is large. We

may write
~ L~ - - D1 0 Et
sos=( 5 (% ) ()
where the subscripts s and m denote submatrices on nonmortar sides and
mortar sides, respectively. From (4.2), it holds that
B,D.'B! — §T78D;Sl§fq7s as y — 00. (4.3)

Similarly, we obtain
~ _ ~ -1 ~
B0 = (Bry Bew) (75 ot ) = (BraDil 0) asy ool
r ) ) 0 Dr,m 8.5

(4.4)
Therefore, from (4.3) and (4.4), it follows that

~ ~ B-1 ~
F[}II/V — <B;§ O) Srr <B673> = F}Ei as y — 00.

This is a distinguished feature of the preconditioner ﬁ}?i
In the aspect of the cost of calculation, ng is somewhat better than

F 1;11/1/ because F [;}J does not require the information of mortar sides at all,
and also it does not use the matrix D,..

5. CONCLUSION

In this paper, we have compared four preconditioners. Among them, two
were originally developed for matching grids and the other two were de-
veloped for FETI-DP methods on nonmatching grids. However, we have
not applied all preconditioners for all numerical experiments because some
preconditioners become identical for some cases. In particular, the precon-
ditioner introduced by Kim and Lee has a distinguished feature. It just
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uses the flux information of the nonmortar side. We have observed that the
preconditioner F 55[/ introduced by Dryja and Widlund works effectively for
all experiments except noncomparably nonmatching grids and good perfor-
mance results of the preconditioner F I;i which was introduced by Kim and
Lee. Furthermore, we have observed that its efficiency catch up with that of
F[}II/V when we consider the elliptic problem of which coefficients have jumps
across the subdomain boundaries on noncomparably nonmatching grids. In
this case, the performances of F I;i and F [;‘1,[, with v = 10 are almost same.

In fact, F I;E is the limit form of F' I}‘I,V as -y approaches o0, Considefing
the cost of the calculation to implement the preconditioners F' 1;114/ and F' I}i,

we have somewhat better result for F' I;}J because it does not require to im-
plement the information of mortar sides at all, and does not require the
diagonal scaling matrix.

In practice, it is useful to allow noncomparably nonmatching grids across
subdomain boundaries because many elliptic problems appearing in the real
world have nonconstant coefficients and we have to deal with this problem
numerically by putting the coefficients constant on each subdomain inde-
pendently. Considering this fact, it seems that that the preconditioner F I}}J
is the most useful preconditioner in a practical sense.
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