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Abstract. The definition and basic properties of OH-type and OH-cotype
of operator spaces are given. We prove that every bounded linear map from
C(K) into OH-cotype q (2 ≤ q ≤ ∞) space for a compact set K satisfies
completely (q, 2)-summing property, a noncommutative analogue of absolutely
(q, 2)-summing property. At the end of this paper, we observe that “OH-cotype
2” is equivalent to the previous definition of “OH-cotype 2” of G. Pisier.

1. Introduction

Type and cotype of Banach spaces plays an important role to extend classical
results concerning Lp-spaces to more general spaces. For example, we have the
“little Grothendieck’s theorem”:

Every bounded linear map from C(K) into a Hilbert space is 2-summing

for a compact set K, which can be generalized as follows.

Every bounded linear map from C(K) into cotype q space is (q, 2)-summing

for 2 ≤ q < ∞. The aim of this paper is to give an appropriate definition of an
operator space version of type and cotype and use them to prove an operator space
version of the above theorem. For general information on p-summing operators
and (q, p)-summing operators, see [1] and [15].

As a noncommutative analogue of type and cotype of Banach spaces, the notion
of type and cotype of operator spaces was considered in many versions. G. Pisier
introduced the notion of “OH-cotype 2” in [14]. This definition is based on the
following equivalent formulation of cotype 2 of Banach spaces.
A Banach space X has cotype 2 if and only if there is a constant C > 0 such that
for all u : ln2 → X, we have

π2(u) ≤ C · l(u),

where l(u) is the l-norm of u defined by

l(u) :=
[ ∫

Ω

∥∥∥∥∥
n∑

k=1

gk(ω)uek

∥∥∥∥∥

2

X

dP (ω)
] 1

2
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for an i.i.d. gaussian variables {gk} on a probability space (Ω, P ).
By trace duality, it is equivalent to

l∗(v) ≤ Cπ2(v)

for all v : X → ln2 , where l∗(v) is the adjoint l-norm of v defined by

l∗(v) := sup{tr(vu) : l(u) ≤ 1}.

G. Pisier defined that an operator space E has “OH-cotype 2” if there exist a
constant C > 0 such that for all v : E → ln2 , we have

l∗(v) ≤ Cπ2,oh(v),

where π2,oh(v) is the (2, oh)-summing norm defined by the infimum of C > 0
satisfying

∑

k

‖uxk‖2 ≤ C2

∥∥∥∥∥
∑

k

xk ⊗ xk

∥∥∥∥∥
E⊗minE

.

For more information about (2, oh)-summing operators, see [12].
Later, M. Junge ([4]) introduced “cotype (2, R + C)” by replacing (2, oh)-

summing norm in the above definition into (2, SR+C)-summing norm in order to
prove the following.

Every bounded linear map from C(K) into Sp(l2) is completely bounded

for 1 ≤ p ≤ 2.
He showed the above by proving that Sp = Sp(l2) (1 ≤ p ≤ 2) have cotype
(2, R + C). Since Sp (1 ≤ p ≤ 2) does not have OH-cotype 2 of G. Pisier, cotype
(2, R + C) is strictly weaker than OH-cotype 2.

The definition of G. Pisier and M. Junge deal q = 2 case only. For wider
range of p and q, J. Garcia-Cuerva and J. Parcet introduced the notion of type
p (1 ≤ p ≤ 2) and cotype q (2 ≤ q ≤ ∞) of operator spaces with respect
to quantized orthonormal systems in [3] recently. The starting point of this
definition is totally different from the previous ones.

Let (Ω, P ) be a probability space and (Σ, dΣ) be a pair of an index set Σ
and a collection of natural numbers indexed by Σ, dΣ = {dσ ∈ N : σ ∈ Σ}.
The quantized Rademacher system RΣ with parameter (Σ, dΣ) is the collection
of independent random matrices rσ = (rσ

ij) : Ω → O(dσ) indexed by Σ, and
the distribution of rσ is exactly the normalized Haar measure on the orthogonal
group O(dσ). The quantized gaussian system GΣ with parameter (Σ, dΣ) is the
collection of random matrices gσ = 1√

dσ
(gσ

ij) : Ω → Mdσ indexed by Σ, where gσ
ij’s

are i.i.d. gaussian random variables. We consider the following transforms as in
the Banach space case:

FRΣ
(f)(σ) =

∫

Ω

f(ω)rσ(ω)∗dP (ω) and F−1
RΣ

(A)(ω) =
∑
σ∈Σ

dσtr(Aσrσ(ω))
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for appropriate f : Ω → C and A ∈ ∏
σ∈Σ Mdσ .

For 1 ≤ p ≤ 2 and 2 ≤ q ≤ ∞, we say that an operator space E has RΣ-type
p (resp. Banach RΣ-type p) if

sup
finite Γ⊆Σ

∥∥F−1
RΣ
⊗ IE

∥∥
cb(Lp(Γ,E),Lp′ (Ω,E))

< ∞

(resp. sup
finite Γ⊆Σ

∥∥F−1
RΣ
⊗ IE

∥∥
Lp(Γ,E)→Lp′ (Ω,E)

< ∞)

and that E has RΣ-cotype q (resp. Banach RΣ-cotype q) if

sup
finite Γ⊆Σ

‖FRΣ
⊗ IE‖cb(LΓ

q′ (Ω,E),Lq(Γ,E)) < ∞,

(resp. sup
finite Γ⊆Σ

‖FRΣ
⊗ IE‖LΓ

q′ (Ω,E)→Lq(Γ,E) < ∞)

where LΓ
q′(Ω, E) is the closed linear span of {rσ

ij : σ ∈ Γ} ⊗ E in Lq′(Ω, E) and

Lr(Γ, E) = {A ∈
∏
σ∈Γ

Mdσ ⊗ E : ‖A‖Lr(Γ,E) =
( ∑

σ∈Γ

dσ ‖Aσ‖r
Sdσ

r (E)

) 1
r

< ∞}

for 1 ≤ r < ∞ and

L∞(Γ, E) = {A ∈
∏
σ∈Γ

Mdσ ⊗ E : ‖A‖L∞(Γ,E) = sup
σ∈Γ

‖Aσ‖Sdσ∞ (E) < ∞}.

Note that Sn
r (E) is a vector-valued Schatten class defined in [13]. We define

GΣ-type p and cotype q similarly. In [2, 3] and [5], it is shown that lp and
Sp (1 ≤ p ≤ ∞) has RΣ(resp. GΣ)-type min{p, p′} and RΣ(resp. GΣ)-cotype
max{p, p′} and unlike in the Banach space case, these are ‘sharp’ in the sense
that lp and Sp do not have better (closer to 2) type and cotype. In particular, lp
and Sp (1 ≤ p ≤ 2) does not have cotype 2 in this sense. This lack of cotype 2
spaces leads us to a weaker notion of type and cotype.

In this paper, we take a similar approach as in [3] to define OH-type and
OH-cotype of operator spaces but the requirement will be somewhat weakened
enough to include commutative L1 spaces as OH-cotype 2 spaces. The reason
why we use the same terminology ‘OH-’ with the one of G. Pisier is that we have
the equivalence when q = 2. In Section 2, we will define OH-type and OH-cotype
of operator spaces and develop basic theory. We will see how OH-type and OH-
cotype is related to the type and cotype in [3]. In Section 3, we compute type
and cotype of several concrete spaces. In Section 4, applications to completely
(q, p)-summing maps are presented. This new class of mappings is defined by the
same way in [13]. At the end of this paper, we observe that that our “OH-cotype
2” is equivalent to “OH-cotype 2” of G. Pisier.

Note that all Lebesgue spaces (commutative or noncommutative) are endowed
with their natural operator space structure in the sense of G. Pisier ([13]).
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2. Complete type and cotype of operator spaces

We use the Rademacher system (resp. Gaussian system) to define type and
cotype (resp. Gaussian type and cotype) in the Banach space setting. In this
paper, we also use the same system but with different indices. Let {rij} (resp.
{gij}) be an enumeration of the classical Rademacher system {ri} on [0, 1]. (resp.
a gaussian system {gi} on a probability space (Ω, P ).) Now we define OH-type
and OH-cotype using the following transforms:

FR : f 7→
( ∫ 1

0

f(t)rij(t)dt
)∞

i,j=1
and F−1

R : (xij) 7→
∞∑

i,j=1

rij(t)xij

for appropriate f : [0, 1] → C and (xij) ∈ M∞. We define FG and F−1
G similarly

by replacing {rij} into {gij}. Note that FR and FG are complete isometries from
S2 onto Rad2 (resp. G2), the closed linear span of {rij} (resp. {gij}) in L2[0, 1].

Definition 2.1. Let E be an operator space.

(1) E is said to have OH-type p (1 ≤ p ≤ 2) if

F−1
R ⊗ IE : Sp ⊗ E → L2[0, 1]⊗ E

extends to a bounded linear map from Sp(E) into L2([0, 1], E);
(2) E is said to have OH-cotype q (2 ≤ q ≤ ∞) if

FR ⊗ IE : Rad2 ⊗ E ⊆ L2[0, 1]⊗ E → Sq ⊗ E

extends to a bounded linear map from Rad2(E) into Sq(E),

where Radr(E) refers to the closed linear span of {rij} ⊗ E in Lr([0, 1], E) for
1 ≤ r < ∞. We denote T o

p (E) and Co
q (E) for operator norms of F−1

R ⊗ IE and
FR ⊗ IE respectively. Here, ‘o’ means operator space setting as in [13]. The
definition for gaussian OH-type and gaussian OH-cotype is similar. We
use notations GT o

p (E) and GCo
q (E) in this case.

Remark 2.2. (1) Note that we do not require F−1
R ⊗ IE and FR ⊗ IE to be

completely bounded.
(2) Considering diagonals, it is trivial that every OH-type p (resp. OH-cotype

q) space has type p (resp. cotype q) as a Banach space.
(3) By the classical Khinchine’s inequality, we get equivalent definitions if we

replace L2[0, 1] into Lr[0, 1] and Rad2 into Radr for any 1 ≤ r < ∞.

We first check the trivial cases.

Proposition 2.3. Every operator space has OH-type 1 and OH-cotype ∞.

Proof. Let E be an arbitrary operator space. Observe that F−1
R factorizes as

follows:

F−1
R : S1

j1,2−→ S2

F−1
R−→ Rad2 ⊆ L2[0, 1]

i2,1−→ L1[0, 1],
4



where j1,2 and i2,1 are the corresponding formal identities. Thus, F−1
R is a com-

plete contraction from S1 into L1[0, 1], and so is

F−1
R ⊗ IE : S1(E) = S1 ⊗max E → L1[0, 1]⊗max E = L1([0, 1], E).

This implies that E has OH-type 1 by (3) of Remark 2.2.
For the cotype case, we consider the following factorization:

FR : Rad1
ϕ1,2−→ Rad2

FR−→ S2
j2,∞−→ S∞,

where ϕ1,2 and j2,∞ are the corresponding formal identities. By the classical
Khinchine’s inequality ϕ1,2 is bounded, so that we can consider its extension
ϕ̃1,2 to L1[0, 1] by the Hahn-Banach theorem. Then the maximal operator space
structure of L1[0, 1] assures that ϕ̃1,2 is completely bounded, which means that
ϕ1,2 is completely bounded. Thus, FR is a completely bounded map from Rad1

into S∞, and so is

FR ⊗ IE : Rad1 ⊗min E → S∞ ⊗min E = S∞(E).

Since L1(E) = L1 ⊗max E is embedded into L1 ⊗min E by a natural complete
contraction, we have FR ⊗ IE : Rad1(E) → S∞(E) is (completely) bounded. ¤

As in the Banach space case, gaussian OH-type and gaussian OH-cotype are
equivalent to OH-type and OH-cotype respectively.

Proposition 2.4. Let 1 ≤ p ≤ 2, 2 ≤ q ≤ ∞ and E be an operator space.

(1) E has OH-type p if and only if it has gaussian OH-type p;
(2) E has OH-cotype q if and only if it has gaussian OH-cotype q.

Proof. By the estimations in Proposition 12.11 and Theorem 12.27 in [1], they
are equivalent when E has finite cotype as a Banach space. When E has no finite
cotype, E contains isomorphic copies of ln∞’s uniformly, which means that E has
only trivial OH-type, OH-cotype, gaussian OH-type and gaussian OH-cotype. ¤

We can reformulate gaussian OH-type 2 and gaussian OH-cotype 2 in the style
of [3], which leads to a operator space version of Kwapien’s theorem.

Proposition 2.5. Let E be an operator space and GΣ be the quantized gaussian
system with parameter (Σ, dΣ). Suppose that dΣ is unbounded.

(1) E has gaussian OH-type 2 if and only if it has Banach GΣ-type 2;
(2) E has gaussian OH-cotype 2 if and only if it has Banach GΣ-cotype 2.

Proof. Let Γ be a finite subset of Σ and A(= (Aσ)) ∈ Πσ∈ΓMdσ ⊗ E. If we set
B = ⊕σ∈Γ

√
dσA

σ, then we get

F−1
GΣ

(A)(ω) =
∑
σ∈Γ

dσtr(Aσgσ(ω)) =
∑
σ∈Γ

√
dσtr(Aσ(gσ

ij(ω))) = F−1
G (B)(ω)

and

‖A‖L2(Γ,E) =
[ ∑

σ∈Γ

dσ ‖Aσ‖2
Sσ

2 (E)

] 1
2

= ‖B‖S2(E) .
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Thus, we get the desired result. ¤

By a slight modification of the proof of Theorem 5.6 in [3], we get the following
operator space version of Kwapien’s theorem. Recall that Γoh(E,F ) refers to the
collection of linear maps from E into F factorizing through a operator Hilbert
space ([13]).

Corollary 2.6. Let E be an operator space with OH-type 2 and F be an operator
space with OH-cotype 2. Then L(E, F ) = Γoh(E, F ). In particular, every operator
space with OH-type 2 and OH-cotype 2 is completely isomorphic to an operator
Hilbert space.

OH-type and OH-cotype have a duality property as in the Banach space case.
The proof is almost the same in the Banach space case so that we omit it. See
Proposition 11.10 and 13.17 in [1].

Proposition 2.7. Let E be an operator space.

(1) If E has OH-type p, then E∗ has OH-cotype p′;
(2) If E has OH-cotype p′ and is K-convex as a Banach space, then E∗ has

OH-type p.

It is interesting that we can guarantee a full duality by a Banach space prop-
erty only. The next proposition is another example that we can obtain a nice
formulation with a Banach space property only. See p.332 in [1] for the proof of
Banach space case. With slight modification of it, we can get the following.

Proposition 2.8. Let E be an operator space and F be a closed subspace of E.

(1) If E has OH-type p, then E/F has OH-type p;
(2) If E has OH-cotype q and F is K-convex as a Banach space, then E∗ has

OH-cotype q.

3. Examples

First, we compute OH-type and OH-cotype of Lebesgue spaces. We have the
same results as in the Banach space case for commutative Lebesgue spaces. How-
ever, for noncommutative spaces, we only obtain a partial similarity.

Proposition 3.1. Let (M, µ) be a measure space, 1 ≤ p < ∞ and 1
p

+ 1
p′ = 1.

(1) Lp(µ) has OH-type min{p, 2} and OH-cotype max{2, p′} and cannot have
better (closer to 2) OH-type and OH-cotype.

(2) Sp has OH-type min{p, p′} and OH-cotype max{p, p′}. Sp (1 ≤ p ≤ 2)
cannot have better OH-type and Sq (2 ≤ q < ∞) cannot have better OH-
type.

(3) L∞(µ) and S∞ cannot have nontrivial OH-type and finite OH-cotype.
6



Proof. It is trivial that L2(µ) and S2 have OH-type 2 and OH-cotype 2. Also,
L1(µ), L∞, S1 and S∞ have OH-type 1 and OH-cotype ∞. Then by the complex
interpolation, Lp(µ) and Sp has OH-type min{p, p′} and OH-cotype max{p, p′}.

For 1 ≤ p ≤ 2 and (xij) ∈ S2(Lp(µ)), we have
∥∥∥∥∥
∑
i,j

xijrij(·)
∥∥∥∥∥

L2([0,1],Lp(µ))

≤
∥∥∥∥∥
∑
i,j

xijrij(·)
∥∥∥∥∥

Lp([0,1],Lp(µ))

=
[ ∫ 1

0

∫

M

∣∣∣∣∣
∑
i,j

xij(s)rij(t)

∣∣∣∣∣

p

dµ(s)dt
] 1

p

=
[ ∫

M

∫ 1

0

∣∣∣∣∣
∑
i,j

xij(s)rij(t)

∣∣∣∣∣

p

dtdµ(s)
] 1

p

≤ Bp

[ ∫

M

( ∫ 1

0

∣∣∣∣∣
∑
i,j

xij(s)rij(t)

∣∣∣∣∣

2

dt
) p

2
dµ(s)

] 1
p

= Bp

[ ∫

M

∥∥(xk
ij)

∥∥p

S2
dµ(s)

] 1
p

= Bp ‖(xij(s))‖Lp(µ,S2) ≤ Bp ‖(xij(s))‖S2(Lp(µ)) ,

where Bp is the constant in Khinchine’s inequality such that
∥∥∥
∑

αnrn(·)
∥∥∥

Lp[0,1]
≤ Bp ‖(αn)‖l2

.

The last line is by Corollary 1.10 in [13]. Thus Lp(µ) (1 ≤ p ≤ 2) has OH-cotype
2 , and similarly we can show that Lp(µ) (2 ≤ p < ∞) has OH-type 2.

(3) and the remaining statements in (1) and (2) are trivial by Remark 2.2.
¤

Next we consider OH-type and OH-cotype of several homogeneous Hilbertian
spaces.

Theorem 3.2. R and C do not have OH-type p nor OH-cotype q for 4
3

< p ≤
2 ≤ q < 4.

Proof. Note that R and Rn, n-dimensional subspace of R spanned by first n bases,
are isometric to OH and OHn respectively. Thus, we have that

R has OH-cotype q ⇔ FR ⊗ IR : Rad2(R) → Sq(R) is bounded

⇔ FR ⊗ IR : Rad2(OH) → Sq(R) is bounded

⇔ IS2 ⊗ id : S2(OH) → Sq(R) is bounded

⇒ ISn
2
⊗ idn : Sn

2 (OHn) → Sn
q (Rn) is uniformly bounded for all n ∈ N.
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By the way, we have ‖idn : OHn → Rn‖cb = n
1
4 . Furthermore, we can obtain

cb-norm of idn at the n-th matrix level, that is,

‖IMn ⊗ idn : Mn(OHn) → Mn(Rn)‖ = n
1
4 .

Then by Lemma 1.7 of [13], we have
∥∥ISn

2
⊗ idn : Sn

2 (OHn) → Sn
2 (Rn)

∥∥ = n
1
4 .

Now, by Lemma 2.9 in [8], we have

(3.1) ‖(xij)‖Sn
2 (Rn) ≤ n

1
2
− 1

q ‖(xij)‖Sn
q (Rn) ≤ n

1
2
− 1

q Co
q (R) ‖(xij)‖Sn

2 (Rn) .

Thus, we get Co
q (R) ≥ n

1
q
− 1

4 , which means R does not have OH-cotype q for
2 ≤ q < 4. We can show that C does not have OH-cotype q for 2 ≤ q < 4
similarly. OH-type case is obtained by the duality (Proposition 2.7). ¤

Since we have completely bounded embeddings max(l2) ↪→ Φ, Φ ↪→ R ∩ C,
R ∩ C ↪→ R and R ∩ C ↪→ OH, we can estimate OH-type and OH-cotype of
max(l2), Φ and R ∩ C by the above theorem, where Φ is the operator space
spanned the operators satisfying ‘CAR’ conditions (See Section 9.3 in [10]).

Corollary 3.3. max(l2), Φ and R∩C have OH-type 2 but do not have OH-cotype
q for 2 ≤ q < 4.

By the same observation as in Theorem 3.2, we can estimate OH-cotype of
R[p] = [R, C] 1

p
and C[p] = [C,R] 1

p
.

Theorem 3.4. For p 6= 2, R[p] and C[p] do not have OH-type r nor OH-cotype
q for min{ 4p

p+2
, 4p

3p−2
} < r ≤ 2 ≤ q < max{ 4p

p+2
, 4p

3p−2
}.

Proof. Since we have
∥∥∥∥∥
∑

i

e1i ⊗ e1i

∥∥∥∥∥
K⊗minR[p]

= sup
{ ∥∥∥∥∥

∑
i

e1ize
∗
1i

∥∥∥∥∥

1
2

: ‖z‖Sp
≤ 1

}
,

z = n−
1
p In gives the following estimation:

‖IMn ⊗ idn : Mn(OHn) → Mn(Rn[p])‖ ≥ n
1
4
− 1

2p .

Combining this with (3.1), we get Co
q (R[p]) ≥ n

1
q
− 1

4
− 1

2p = n
1
q
− p+2

4p . Similarly, we

can get Co
q (C[p]) ≥ n

1
q
− p+2

4p . Since R[p] = C[p′] for the conjugate exponent p′ of

p, we also have Co
q (R[p]) ≥ n

1
q
− p′+2

4p′ = n
1
q
− 3p−2

4p . OH-type case is obtained by the
duality. ¤

Since R[p] is a subspace of Sp, we have the following as a corollary.

Corollary 3.5. For 1 ≤ p < 2, Sp does not have OH-cotype q for 2 ≤ q < 4p
3p−2

,

and for 2 ≤ p < ∞, Sp does not have OH-type r for 4p
p+2

< r ≤ 2.
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4. Completely (q, p)-summing maps and OH-cotype

As an operator space version of “absolutely p-summing operators”, G. Pisier
introduced “completely p-summing maps” in [13] as follows:
A linear map between operator spaces u : E → F is called “completely p-
summing” for 1 ≤ p < ∞ if ISp ⊗ u : Sp ⊗min E → Sp(F ) is a bounded map. We
denote πo

p(u) for the operator norm of ISp ⊗ u and Πo
p(E, F ) for the collection of

all such operators from E into F . Now we define an operator space version of
“absolutely (q, p)-summing operators” as follows.

Definition 4.1. A linear map between operator spaces u : E → F is called
“completely (q, p)-summing” for 1 ≤ p ≤ q < ∞ if

Ip,q ⊗ u : Sp ⊗min E → Sq(F )

is a bounded map, where Ip,q is the formal identity from Sp into Sq. We denote
πo

q,p(u) for the operator norm of Ip,q ⊗ u and Πo
q,p(E, F ) for the collection of all

such operators from E into F .

Remark 4.2. Note that being “completely (q, p)-summing” does not guarantee
complete boundedness if p < q unlike “completely p-summing” property.

Completely summing properties of a linear map between operator spaces are
affected by OH-cotype of the target space.

Theorem 4.3. Let E and F be operator spaces. Suppose that F has OH-cotype
q (2 ≤ q < ∞). Then we have

Πo
r(E, F ) ⊆ Πo

q,2(E,F ) and Πr(E,F ) ⊆ Πo
q,2(E, F )

for q < r < ∞.

Proof. Let E ⊆ L(H) for a Hilbert space H. For u ∈ Πo
r(E, F ) and (xij) ∈

M∞(E), we have by Theorem 5.1 of [13] that

‖(uxij)‖Sq(F ) ≤ Co
q (F )

[ ∫ 1

0

∥∥∥∥∥u(
∑
i,j

rij(t)xij)

∥∥∥∥∥

2

F

dt
] 1

2

≤ Co
q (F )πo

r(u)
[ ∫ 1

0

lim
U

∥∥∥∥∥aα(
∑
i,j

rij(t)xij)bα

∥∥∥∥∥

2

Sr(H)

dt
] 1

2

for some ultrafilter U over I and (aα)α∈I , (bα)α∈I ⊆ BS2p(H).
By Fatou’s lemma and the fact that S2(H) embeds into Sr(H), we have that

‖(uxij)‖Sq(F ) ≤ Co
q (F )πo

r(u) lim
U
‖(aαxijbα)‖S2(l2⊗H)

≤ Co
q (F )πo

r(u) ‖(xij)‖S2⊗minE .

The last line is by Theorem 5.3 in [13]. This means Πo
r(E, F ) ⊆ Πo

q,2(E,F ).
For u ∈ Πr(E, F ), we have by the same calculation in the proof of Theorem 11.13
in [1] that
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‖(uxij)‖Sq(F ) ≤ Co
q (F )

[ ∫ 1

0

∥∥∥∥∥u(
∑
i,j

rij(t)xij)

∥∥∥∥∥

2

F

dt
] 1

2

≤ BrC
o
q (F )πr(u) ‖(xij)‖S2⊗λE

≤ BrC
o
q (F )πr(u) ‖(xij)‖S2⊗minE ,

where ⊗λ refers to the injective tensor product in the category of Banach spaces.
¤

Much more can be said when E = C(K) for some compact set K.

Theorem 4.4. Let F be operator spaces with OH-cotype q (2 ≤ q < ∞). Then
we have

L(C(K), F ) ⊆ Πo
q,2(C(K), F ).

Proof. Since C(K) has the minimal operator space structure, S2 ⊗min C(K) '
C(K)(S2) isometrically. Thus, by considering diagonals, we have

Πo
q,2(C(K), F ) ⊆ Πq,2(C(K), F ).

Let r > q, then by Theorem 10.9 in [1] we have

Πo
q,2(C(K), F ) ⊆ Πq,1(C(K), F ) ⊆ Πr(C(K), F ),

which means by Lemma 11.15 in [1] that

(4.1) π2r ≤ ‖u‖ 1
2 πr(u)

1
2 ≤ ‖u‖ 1

2 πo
q,2(u)

1
2 .

Furthermore, by Theorem 4.3, we have

(4.2) πo
q,2(u) ≤ B4C

o
q (F )π2r(u).

Combining (4.1) and (4.2), we have

πo
q,2(u) ≤ B2

4C
o
q (F )2 ‖u‖ .

¤
OH-cotype conditions in Theorem 4.4 are essential. In order to give an coun-

terexample of Theorem 4.4, we consider the following factorization theorem. The
next one is one of the special cases of Theorem 5.1 in [13] and the proof takes
intermediate way between the Banach space case and [13].

Lemma 1. Let F be an operator space and u ∈ Πo
p(C(K), F ) with 1 ≤ p < ∞.

Denote πo,n
p (u) be the infimum of constants C > 0 satisfying

‖(uxij)‖Sn
p (F ) ≤ C ‖(xij)‖Sn

p⊗min C(K)

for all (xij) ∈ Sn
p ⊗ C(K). Then we have

‖(uxij)‖Sn
p (F ) ≤ πo,n

p (u) ‖(xij)‖Lp(µ,Sn
p )
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for some probability µ on K. Consequently, we have the following factorization
of u.

u : C(K)
jp−→ Lp(µ)

ũ→ F,

where jp is the formal identity and ‖IMn ⊗ ũ : Mn(Lp(µ)) → Mn(F )‖ = πo,n
p (u).

Proof. Consider the set F of all function’s on K of the form

f(a) =
∑
m

[
πo,n

p (u)p
∥∥(xm

ij (a))
∥∥p

Sn
p
−

∥∥(uxm
ij )

∥∥p

Sn
p (F )

]
,

for finite collection of {(xm
ij )} ⊆ Sn

p ⊗ C(K). Since

∥∥(xm
ij )

∥∥
Sn

p⊗min C(K)
= sup

a∈K
‖xij(a)‖Sn

p
,

we have supa∈K f(a) ≥ 0. Thus, F is a convex cone in C(K), which is disjoint
with an open convex set A = {ϕ ∈ C(K) : supa∈K ϕ(a) < 0}. Then by the Hahn-
Banach theorem there is a probability µ on K such that 〈µ, f〉 ≥ 0 > 〈µ, ϕ〉 for
all f ∈ F and ϕ ∈ A. Thus, we have for any (xm

ij ) ∈ Sn
p ⊗ C(K)

‖(uxij)‖Sn
q (F ) ≤ πo,n

p (u)
[ ∫

K

‖(xij(a))‖p
Sn

p
dµ(a)

] 1
p

= πo,n
p (u) ‖(xij)‖Lp(µ,Sn

p ) .

¤

Theorem 4.5.

L(l∞, R) = CB(l∞, R) " Πo
q,2(l∞, R)

for 2 ≤ q < 4.

Proof. The first equality comes from Corollary 4.2.8 of [4] and the fact that R
is a subspace of S1. Let un : co → R, ei 7→ λie1i, λi = 1 for 1 ≤ i ≤ n and
λi = 0 for i > n. Then un ∈ Πo

2(l
n
∞, Rn) and ‖un‖ =

√
n. By Lemma 1, there is

a probability µ on {1, 2, · · · , n} such that

un : ln∞
i2−→ ln2 (µ)

ũn−→ Rn

and πo,n
2 (un) = ‖IMn ⊗ ũn : Mn(l2(µ)) → Mn(Rn)‖ for the formal identity i2.

Note that µi = µ({i}) > 0 for all i. Now observe that

∥∥∥∥∥
n∑

i=1

µ
− 1

2
i e1i ⊗ e1i

∥∥∥∥∥
Mn⊗minRn

=

∥∥∥∥∥
n∑

i=1

µ−1
i e1ie

∗
1i

∥∥∥∥∥

1
2

=
( n∑

i=1

µ−1
i

) 1
2

11



and ∥∥∥∥∥
n∑

i=1

µ
− 1

2
i e1i ⊗ e1i

∥∥∥∥∥
Mn⊗minln2 (µ)

=

∥∥∥∥∥
n∑

i=1

e1i ⊗ e1i

∥∥∥∥∥
Mn⊗minOHn

=

∥∥∥∥∥
n∑

i=1

e1i ⊗ e1i

∥∥∥∥∥

1
2

min

= n
1
4 .

Since
( ∑n

i=1 µ−1
i

) 1
2

has minimum with the constraint
∑n

i=1 µi = 1, ui > 0 at

µ1 = · · · = µn = n−1 we have by combining the above two

(4.3)
πo,n

2 (un)

‖un‖ ≥ n
1
4 .

By the way, for any (yij) ∈ Sn
2 ⊗ ln∞ we have

‖(unyij)‖Sn
2 (Rn) ≤ n

1
2
− 1

q ‖(unyij)‖Sn
2 (Rn)

n
1
2
− 1

q πo
q,2(un) ‖(yij)‖Sn

2⊗minln∞
,

which means

(4.4) πo,n
2 (un) ≤ n

1
2
− 1

q πo
q,2(un).

By combining (4.3) and (4.4),
πo

q,2(un)

‖un‖ cannot be bounded for 2 ≤ q < 4, which

leads us to our desired result. ¤
Remark 4.6. Actually, we have πo

2(un) = n
3
4 for un in the proof of Theorem 4.5.

By (4.3), we have

n
3
4 ≤ πo,n

2 (un) ≤ πo
2(un).

For the converse inequality, consider the following factorization:

un : ln∞
i2−→ ln2 (µ)

v→ OHn

√
n·idn−→ Rn

for µ1 = · · · = µn = n−1 and v(ei) = n−
1
2 ei. Since v is a complete isometry, we

have
πo

2(un) ≤ πo
2(i2) ‖v‖cb

∥∥√n · idn

∥∥
cb

= n
3
4 .

An equivalent formulation of OH-cotype can be drawn with the help of (q, p)-
summing property.

Theorem 4.7. Let E be an operator space. E has (gaussian) OH-cotype q (2 ≤
q < ∞) if and only if there exist a constant C > 0 such that

πo
q,2(u) ≤ C · l(u)

for every u : ln2 → E and n ∈ N. When E has (gaussian) OH-cotype q, GCo
q (E)

is equal to the infimum of such C.
12



Proof. (⇒) Let u : ln2 → E and (xij) ∈ Sq(l
n
2 ). If we set v : S2 → ln2 , eij 7→ xij,

then we have ‖v‖ = ‖v‖cb = ‖(xij)‖S2⊗minln2
. Now we have by (12.5) in [15]

‖(uxij)‖Sq(E) = ‖(uveij)‖Sq(E) ≤ GCo
q (E)

∥∥∥∥∥
∑
i,j

gij(·)uveij

∥∥∥∥∥
L2(Ω,E)

= GCo
q (E)l(uv)

≤ GCo
q (E)l(u) ‖v‖

= GCo
q (E)l(u) ‖(xij)‖S2⊗minln2

.

(⇐) For any (xij) ∈ Sq(E), we consider u : S2 → E, eij 7→ xij. Then we have

‖(xij)‖Sq(E) ≤ πo
q,2 ‖(eij)‖S2⊗minE

≤ C · l(u) = C

∥∥∥∥∥
∑
i,j

gij(·)uveij

∥∥∥∥∥
L2(Ω,E)

.

Thus, E has gaussian OH-cotype q with GCo
q (E) ≤ C.

¤
We close this paper by checking that the OH-cotype 2 in this paper coincide

with the OH-cotype 2 of G. Pisier. It can be achieved by the following lemma
about trace duality of πo

2-norm.

Lemma 2. For any operator space E and operators u : ln2 → E and v : E → ln2 ,
we have

|tr(vu)| ≤ πo
2(v)πo

2(u).

Proof. Let ln2 ⊆ L(H) for a Hilbert space H. By Proposition 6.1 in [13], there
are V : L(H) → OH(I) and T : OH(I) → E such that u = TV |ln2 with πo

2(V ) ≤
πo

2(u) and ‖T‖cb ≤ 1. Then we have

vu : ln2
V |ln2−→ OH(I)

T→ E
v→ ln2

and by Proposition 6.3 in [13]

‖vT‖HS = πo
2(vT ) ≤ ‖T‖cb πo

2(v).

Thus, we have

|tr(vu)| ≤ ‖vT‖HS

∥∥V |ln2
∥∥

HS

= ‖vT‖HS πo
2(V |ln2 )

≤ ‖vT‖HS πo
2(V ) ≤ πo

2(v)πo
2(u).

¤
Corollary 4.8. The OH-cotype 2 in this paper coincide with the OH-cotype 2 of
G. Pisier.

13



Proof. By Proposition 6.2 in [13], we have πo
2(v) = π2,oh(v) for any v : E → ln2 .

Thus we get the desired conclusion by Lemma 2 and Theorem 4.7. ¤
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