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generators. We then present new equivalent conditions for the exis-

tence of the oblique projection between two finitely generated shift-

invariant subspaces, thereby providing a constructive method to gen-

erate oblique dual frames. This result is a generalization of a result of

Aldroubi and is closely related with the biorthogonality of two frame

multiresolution analyses. Finally, we illustrate our results by exam-

ples.

AMS 2000 Subject Classification: 42C15, 42C40, 15A09.

Key Words: Shift-invariant space, Angle between subspaces, Tighti-

zation, Oblique projection, Multiresolution analysis, Pseudo-inverse.

1 Introduction

Throughout this articleH denotes a separable Hilbert space over the complex

field C. The purpose of this article is to analyze the concept of the infimum

cosine angle R(U, V ) between two closed subspaces U and V of H which is

defined as follows [1, 43]:

R(U, V ) := inf
u∈U\{0}

‖PV u‖
‖u‖ ,

where PV denotes the orthogonal projection onto V . The arc-cosine value

of R(U, V ) is usually interpreted as the ‘largest angle’ between U and V

[43]. If we take the supremum, instead of the infimum, of the right-hand

side of the above equation we have the so-called supremum cosine angle

S(U, V ) of U and V , and the two angles are related by the following relation:

R(U, V ) = (1 − S(U, V ⊥)2)1/2 [43]. Similar to R(U, V ), the arc-cosine value
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of S(U, V ) is interpreted as the ‘smallest angle’ between U and V [43]. We

use the convention that R(U, V ) = 1 if U is trivial for the obvious reason.

Note also that if U is not trivial and V is trivial, then R(U, V ) = 0. See

[1, 43] for the geometric meaning of this concept and its applications to

signal processing, and see [2, 9, 10, 29, 30] for its applications to the theory

of wavelets. Even though R(U, V ) = R(V ⊥, U⊥), R(U, V ) 6= R(V, U) in

general, whereas S(U, V ) = S(V, U) [9, 43]. As will be mentioned, R(U, V )

is closely related with the biorthogonality of two multiresolution analyses,

and the perturbation of frames in shift-invariant subspaces. In this article

we concentrate on the infimum cosine angle, and postpone the discussion

of the supremum cosine angle to the forthcoming paper [32], in which the

connection between S(U, V ) and the closedness of the sum U +V is analyzed

[32].

We now explain the motivation for investigating the infimum cosine an-

gle. First, the infimum cosine angle between two finitely generated shift-

invariant subspaces of L2(Rd) is closely related with the biorthogonality of

two multiresolution analyses [1, 2, 9, 29, 30, 42]. The infimum cosine angle,

however, in the cited papers is considered under various restrictive conditions

on the generating sets of the shift-invariant subspaces. See Section 4 for the

definition of the shift-invariant subspace of L2(Rd). More specifically, the

authors in the cited papers consider either the case where the shifts (i.e.,

(multi-)integer translates) of the multiple generating sets form Riesz bases

for the shift-invariant spaces and the cardinalities of the multiple generating

sets coincide [1, 9, 42] or the case where the generating sets are singletons

[2, 29, 30, 44]. Therefore, the results in the existing literature are insufficient
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to deal with the case where the shifts of the multiple generating sets form

frames for the shift-invariant spaces or the one where the cardinalities of the

generating sets are different. Notice that the latter cases occur if we consider

frame multiresolution analyses [3, 4, 14, 18, 20, 22, 30, 31, 33, 34, 37, 38]. In

this article, we consider the infimum cosine angle between two finitely gen-

erated shift-invariant subspaces under no assumption on the generating sets

(Theorem 4.7). Therefore, our results can be applied to the more general

form of the biorthogonal multiresolution analyses.

Secondly, we mention that the connection between the infimum cosine

angle and the perturbation of frames in shift-invariant subspaces will be

discussed in a recent paper by Christensen and the authors [16].

Even though many of our results in this article can be generalized to

infinitely generated shift-invariant subspaces, we restrict our attention to

finitely generated shift-invariant spaces for the following reasons. In the

conventional theory of multiresolution analysis, the central space is a finitely

generated shift-invariant space. Moreover, if the central space is not regular,

(see Section 4 for the definition), then there is no generating set for the space

such that the shifts of the generating set form a Riesz basis [39]. On the other

hand, for any finitely generated shift-invariant subspaces, there always exists

a finite generating set whose shifts form a frame for the space [8, 39]. Now, we

have at least two methods to analyze a shift-invariant space: the Gramian

approach or the dual Gramian approach [19, 39, 40, 41]. It is generally

believed that Gramian analysis is suitable for the analysis of a Riesz basis

while the dual Gramian analysis is suitable for the analysis of a frame [39].

The main reason is that there is no good characterization of a shift-invariant
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frame via Gramians if the shift-invariant space is infinitely generated. On

the other hand, there is a nice characterization of a shift-invariant frame via

Gramian if the shift-invariant space is finitely generated [39, Theorem 2.3.6]

(see also Proposition 4.6). Moreover, if a shift-invariant space is finitely

generated, then the Gramian is a finite matrix while the dual Gramian is an

infinite matrix. Therefore, if we consider only the finitely generated shift-

invariant spaces, then the angle is given by means of finite matrices which

are easier to deal with than with the infinite matrices (Theorem 4.7).

The rest of this article is organized in the following manner: The prelimi-

nary discussions on the pseudo-inverses and frames are given in Section 2 for

the sake of completeness. Then, the infimum cosine angle between two finite

dimensional spaces is calculated in Section 3 (Theorem 3.8). The method of

the proofs in this section indicates that the language and theory of frames is

useful for the finite dimensional spaces even though a finite frame for a finite

dimensional space is just a spanning set. Theorem 3.8 is applied to give a

concrete closed formula for the angle between two finitely generated shift-

invariant spaces (Theorem 4.7) without any assumptions on the generating

sets. Finally, we illustrate our results with examples.

2 Preliminary discussions

In this section we review some concepts that will be used later and fix some

standing assumptions throughout this article.

First, we fix some notations that will be used throughout this article:

Recall that H always denotes a separable Hilbert space over the complex
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field C. For a closed subspace S of H, PS denotes the orthogonal projection

onto S, unless stated otherwise explicitly. If H is a closed subspace of a

Hilbert space, then IH is the identity operator on H. Suppose that f is a

function from D to C and that E is a subset of D. We write f |E for the

restriction of f on E. For a Lebesgue measurable subset A of Rd, |A| denotes

its Lebesgue measure. All set equalities and containments between subsets

of Rd are assumed to be hold almost everywhere with occasional exceptions

which are clear from the context. Finally, if M is a matrix, then M t denotes

its transpose, and the adjoint of a matrix or an operator T is denoted by T ∗.

We now present well-known basic facts about the pseudo-inverse (or

generalized inverse or Moore-Penrose inverse) for the sake of completeness

[5, 7, 12, 23]. Let H1 and H2 be Hilbert spaces over C, and X : H1 → H2

a bounded linear operator with closed range. For each b ∈ H2, {a ∈ H1 :

Xa = Pran Xb} is a closed convex subset of H1. Hence it contains a unique

element a of minimal norm. We let X†b := a. It is known that the map:

X† : H2 → H1 is a bounded linear operator, called the pseudo-inverse of X

[23]. We introduce two results which will be used frequently in this article.

Proposition 2.1 ([23]) Suppose H1 and H2 are separable Hilbert spaces

over C. Let X : H1 → H2 be a bounded linear operator with closed range.

Then the following assertions hold:

(1) ran X† = ran X∗;

(2) XX† = Pran X ;

(3) X†X = Pran X† = Pran X∗.
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Proof. (1) is a part of Theorem 2.1.2 of [23]; and (2) and (3) are parts of

Theorem 2.2.2 of [23]. ¤
The following is Theorem 3.1 of [7].

Proposition 2.2 ([7]) Let H1,H2,H3 be separable Hilbert spaces over C

and X : H2 → H3, Y : H1 → H2 be bounded linear operators with closed

range. Then (XY )† = Y †X† if and only if

(i) ran XY is closed;

(ii) ran X∗ is invariant under Y Y ∗;

(iii) ran X∗ ∩ ker Y ∗ is invariant under X∗X.

We now review briefly those parts of the theory of frames which will

be used later. Let {fi : i ∈ I} be a sequence in H, where I is an at most

countable, i.e., finite or countably infinite, index set. We say that {fi : i ∈ I}
is a frame for H if there exist positive constants A and B such that

A‖f‖2 ≤
∑
i∈I

| 〈f, fi〉 |2 ≤ B‖f‖2

for any f ∈ H. A and B are called lower and upper frame bounds, re-

spectively. The infimum of upper frame bounds is said to be the optimal

upper frame bound and the supremum of lower frame bounds is said to be

the optimal lower frame bound, and they are upper and lower frame bounds

also. If the optimal frame bounds coincide we say that the frame is a tight

frame. Suppose that {fi : i ∈ I} is a frame for H with frame bounds A

and B. Define T : `2(I) → H via Tc :=
∑

i∈I cifi, where c := (ci)i∈I . It

is known that T , usually called the pre-frame operator, is an onto bounded
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linear operator [12, 27]. Moreover, ‖T‖ ≤ B1/2. Actually, the converse to

this result also holds: {fi : i ∈ I} is a frame for its closed linear span if

and only if the pre-frame operator T is a bounded linear operator onto the

closed linear span. ([12, Corollary 4.3], [27, Theorem 2.1]). This proves the

following simple fact that will be used repeatedly in this article: A finite se-

quence is always a frame for its linear span. Now, a direct calculation shows

that T ∗f = (〈f, fi〉)i∈I . The operator S := TT ∗, called the frame operator, is

known to be a strictly positive (and hence self-adjoint) bounded linear opera-

tor with a bounded inverse [24]. More precisely, we have Sf =
∑

i∈I 〈f, fi〉 fi

and AIH ≤ S ≤ BIH. This implies that if the frame is a tight frame with

frame bound A, then S = AIH. We need the following fact about the optimal

frame bounds which is Proposition 3.4 of [12]. See also Section 1.3 of [39].

Proposition 2.3 ([12, 39]) Suppose that {fi : i ∈ I} is a frame for H,

and that T and S are the pre-frame operator and the frame operator with

respect to the frame, respectively. Then, the optimal lower frame bound is

‖S−1‖−1 = ‖T †‖−2, and the optimal upper frame bound is ‖S‖ = ‖T‖2.

We say that {fi : i ∈ I} is a Riesz basis for H with Riesz bounds A and

B if it is complete and there exist positive constants A and B such that for

any (ci)i∈I ∈ `2(I)

A
∑
i∈I

|ci|2 ≤ ‖
∑
i∈I

cifi‖2 ≤ B
∑
i∈I

|ci|2.

We refer to [13, 17, 21, 24, 25, 45] for the basic properties of Riesz bases and

frames of a separable Hilbert space. In particular, it is shown there that a

Riesz basis is a frame. Note also that if I is a finite set, then a Riesz basis
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is just an ordinary basis treated in Linear Algebra, and a frame is just a

spanning set.

Finally, we use the following standard result frequently throughout this

article.

Proposition 2.4 ([11]) Suppose that T is a bounded linear operator from

a separable Hilbert space H1 to another one H2. T is bounded below, i.e.,

there exists c > 0 such that ‖Tx‖ ≥ c‖x‖ for each x ∈ H1, if and only if

T ∗ is onto. In particular, if H1 and H2 are finite dimensional, then T is

one-to-one if and only if T ∗ is onto.

3 Infimum cosine angle between two finite di-

mensional subspaces

In this section we calculate the infimum cosine angle between two finite di-

mensional spaces via the spanning sets of the spaces. The method of the

proofs in this section shows that, even in a finite dimensional space in which

a frame is just a spanning set, the theory of frames is useful to unravel some

structures of the space. Most of the results in this section hold only for finite

dimensional cases. For example, see the comments after the proof of Lemma

3.5.

Throughout the rest of this section we assume the following: Let {uj}m
j=1

and {vi}n
i=1 be finite sequences of H. Let U := span{uj}m

j=1, and V :=

span{vi}n
i=1. As noted in Section 2, a finite sequence is a frame for its linear

span. Therefore, {uj}m
j=1 is a frame for U with frame bounds, say, AU and

BU , and {vi}n
i=1 is a frame V with frame bounds, say, AV and BV .
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Let TU : Cm → U and TV : Cn → V be the pre-frame operators of

{uj}m
j=1 and {vi}n

i=1, respectively. Also let SU : U → U and SV : V → V

be the frame operators of {uj}m
j=1 and {vi}n

i=1, respectively, G := GU,V :

Cm → Cn be the mixed Gramian of the frames {uj}m
j=1 and {vi}n

i=1 such

that Gij := 〈uj, vi〉 , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and let GU : Cm → Cm be the

Gramian of {uj}m
j=1 such that (GU)ij := 〈uj, ui〉 , 1 ≤ i, j ≤ m. The Gramian

GV : Cn → Cn of {vi}n
i=1 is defined similarly. Note that our definition of

Gramians and mixed Gramians are slightly different from the ones in [39].

We adopt the above definitions since we find them a little more convenient

in our situations (for example, as in Lemma 3.1). The negligible digression

from the usual definitions, however, does not cause any problems for reading

the existing literature. Finally, let P := PV |U : U → V be the restriction of

PV on U throughout this section. We observe that P ∗ = (PV |U)∗ = PU |V .

Lemma 3.1 Let G := GU,V : Cm → Cn be the mixed Gramian of the frames

{uj}m
j=1 of U and {vi}n

i=1 of V . Then

G = T ∗
V PTU . (3.1)

In particular, GU = T ∗
UTU , GV = T ∗

V TV , rank GU = dim U , rank GV =

dim V , and rank G = rank P .
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Proof. For α := (α1, α2, · · · , αm)t ∈ Cm,

T ∗
V PTUα = T ∗

V P (
m∑

j=1

αjuj) = T ∗
V (

m∑
j=1

αjPuj)

=

(〈
m∑

j=1

αjPuj, vi

〉)n

i=1

= (
m∑

j=1

αj 〈Puj, vi〉)n
i=1

= (
m∑

j=1

αj 〈PV uj, vi〉)n
i=1 = (

m∑
j=1

αj 〈uj, PV vi〉)n
i=1

= (
m∑

j=1

αj 〈uj, vi〉)n
i=1 = Gα.

This proves (3.1). In particular, GU = T ∗
U(PU |U)TU = T ∗

UTU . Similarly,

GV = T ∗
V TV . Since TU and TV are onto, T ∗

U and T ∗
V are one-to-one. This

shows that the rank conditions hold. ¤
We need the following fact which is Theorem 1.6 of [5] (see also [12,

Lemma 2.4]) combined with Corollary 2.3 of [12].

Proposition 3.2 ([5, 12]) If T is a bounded linear operator with closed

range, then (T †)∗ = (T ∗)†, and (T ∗T )† = T †(T ∗)† = T †(T †)∗.

Lemma 3.3 If {uj}n
j=1 is a frame for the closed subspace U of H, then the

optimal lower frame bound is ‖G†
U‖−1 and the optimal upper frame bound is

‖GU‖, where GU is the Gramian with respect to the frame.

Proof. We have GU = T ∗
UTU by Lemma 3.1. Hence, ‖GU‖ = ‖TU‖2 is the

optimal upper frame bound by Proposition 2.3. Since G†
U = T †

U(T †
U)∗ by

Proposition 3.2, ‖G†
U‖ = ‖T †

U‖2. This completes the proof by Proposition

2.3. ¤
We now calculate the pseudo-inverse of the mixed Gramian G := GU,V in

some special cases.
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Lemma 3.4 If P := PV |U is one-to-one and ran P is invariant under SV ,

then

G† = T †
UP †(T ∗

V )† = T †
UP †(T †

V )∗. (3.2)

In particular, (3.2) holds if either P is invertible (in this case P † = P−1) or

P is one-to-one and {vi}n
i=1 is a tight frame for V .

Proof. Recall that G = T ∗
V PTU by Lemma 3.1. Let X := T ∗

V , and Y :=

PTU . We check Conditions (i), (ii), (iii) of Proposition 2.2. Since ran X

and ran Y are finite dimensional, they are closed. Moreover, ran XY is also

finite dimensional, hence closed. Since ran X∗ = ran TV = V , ran X∗ is

invariant under Y Y ∗. Since ker Y ∗ is a subspace of V = ran X∗ and since

Y ∗ = T ∗
UP ∗, ran X∗ ∩ ker Y ∗ = ker Y ∗ = ker(T ∗

UP ∗). Since TU is onto, T ∗
U is

one-to-one. Hence, ker(T ∗
UP ∗) = ker P ∗ = (ran P )⊥. Now, ran X∗ ∩ ker Y ∗ =

(ran P )⊥ is invariant under X∗X = TV T ∗
V = SV since ran P is assumed

to be invariant under the self-adjoint operator SV ([11, Proposition 3.7]).

We have, by Propositions 2.2 and 3.2, G† = (PTU)†(T ∗
V )† = (PTU)†(T †

V )∗.

We now apply Proposition 2.2 once again with X := P and Y := TU this

time. X, Y and XY have closed range since they are finite dimensional

operators. Since P is one-to-one, P ∗ is onto. Therefore, ran X∗ = ran P ∗ = U

is invariant under Y Y ∗. Since TU is onto, ker Y ∗ = ker T ∗
U = {0}. Hence,

ran X∗ ∩ ker Y ∗ = {0}, which is invariant under X∗X. This shows that

(PTU)† = T †
UP † by Proposition 2.2 again. Therefore, we have shown (3.2):

G† = T †
UP †(T ∗

V )† = T †
UP †(T †

V )∗. If P is invertible, then clearly P is one-to-

one and ran P = V is invariant under SV . On the other hand, if {vi}n
i=1

is a tight frame for V , then SV is a constant times IV . Therefore, ran P ,

whatever it is, is invariant under SV . In either case, (3.2) follows. ¤

12



We give three examples to show that the injectivity of P and the invari-

ance of ran P under SV are independent conditions in Lemma 3.4. In the

examples, each space is a subspace of C2, and all calculations are preformed

with respect to the standard orthonormal basis of C2. Also, the calculations

of the pseudo-inverses can be done by resorting to the definition. In the first

example, P is one-to-one, ran P is not invariant under SV , and (3.2) does not

hold. In the second example, P is not one-to-one, ran P is invariant under

SV , and (3.2) does not hold. In the final example, P is not one-to-one, ran P

is invariant under SV , but (3.2) does hold. This implies that the conditions

in Lemma 3.4 is not necessary for (3.2) to hold.

First, let H = C2, U := span{u1 := (1, 2)t}, and V := span{v1 :=

(0, 1)t, v2 := (1, 1)t} = C2. Then PV is the identity map of C2 and so

P = PV |U = IU . Hence, P is one-to-one and ran P = U . A direct calcu-

lation shows that

SV =


1 1

1 2


 .

Obviously, U is not invariant under SV . Now, G : C → C2 and G =
(
2
3

)
.

Therefore, G† : C2 → C is G†(x
y

)
= 2x+3y

13
. Since TU : C→ U and TUz =

(
z
2z

)
,

T †
U

(
z
2z

)
= z for each complex number z. Likewise

T †
V =


−1 1

1 0




since TV : C2 → C2 and

TV =


0 1

1 1


 .

Hence, (T †
V )∗ = T †

V . Note P
(

z
2z

)
=

(
z
2z

)
for each complex number z. There-
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fore, P †(x
y

)
= x+2y

5

(
1
2

)
. Finally,

T †
UP †(T †

V )∗
(

x

y

)
=

x + y

5
6= G†

(
x

y

)
=

2x + 3y

13
.

On the other hand, let U := span{u1 := (1, 0)t, u2 := (1, 1)t} = C2 =:

H, and V := span{v1 := (1, 2)t}. Then SV : V → V is represented by

SV

(
z
2z

)
= 5

(
z
2z

)
. Now, P = PV |U = PV : C2 → V is clearly not one-to-one,

and ran P = V is invariant under SV . Note that P
(

x
y

)
= x+2y

5

(
1
2

)
. Since P is

onto, P †( z
2z

)
=

(
x
y

)
if

(
z

2z

)
= P

(
x

y

)
=

x + 2y

5

(
1

2

)

and x2 +y2 is minimized. A simple calculus shows P †( z
2z

)
=

(
z
2z

)
. The mixed

Gramian G : C2 → C is given by G =
(
1 3

)
. Since G is onto, G†z =

(
x
y

)

if G
(

x
y

)
= x + 3y = z and x2 + y2 is minimized. We can easily check that

G†z = z
10

(
1
3

)
. We also note that

TU =


1 1

0 1


 and T †

U =


1 −1

0 1


 .

Since TV : C → V is given by TV z =
(

z
2z

)
and is invertible, T †

V

(
z
2z

)
=

z. Note that (T †
V )∗z =

(
x
2x

)
for some x ∈ C. Hence,

〈
(T †

V )∗z,
(

w
2w

)〉
C2

=〈
z, T †

V

(
w
2w

)〉
C

= 〈z, w〉C = zw for each w ∈ C if and only if (T †
V )∗z =

(1/5)
(

z
2z

)
. Now,

G†z =
z

10


1

3


 6= T †

UP †(T †
V )∗z =

z

5


−1

2


 .

Finally, let U := span{u1 := (1, 0)t, u2 := (0, 1)t} = C2 =: H, V :=

span{v1 := (1, 0)t}. It is easy to see that G†z =
(

z
0

)
= T †

UP †(T †
V )∗z since
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(T †
V )∗z =

(
z
0

)
, P †(z

0

)
=

(
z
0

)
and T †

U

(
z
0

)
=

(
z
0

)
. However, P is not one-to-one,

even though ran P is invariant under SV .

The following lemma gives a formula for the infimum cosine angle R(U, V )

in terms of the pseudo-inverse of P := PV |U .

Lemma 3.5 Suppose that U is not trivial. Then

R(U, V ) =





0, if P is not one-to-one,

‖P †‖−1, if P is one-to-one.
(3.3)

In particular, R(U, V ) > 0 if and only if P is one-to-one.

Proof. If P is not one-to-one, there is u ∈ U \ {0} such that Pu = 0.

Therefore R(U, V ) = 0. Now suppose that P is one-to-one. Then, P ∗ is

onto. Therefore, P †P = Pran P ∗ = IU by (3) of Proposition 2.1. It is easy to

see that (ran P )⊥ ⊂ ker P † from the definition of the pseudo-inverse (see [23,

p. 52]). For any v ∈ V \ ker P †, there exist u ∈ U \ {0} and w ∈ V ª ran P

such that v = Pu + w. Since P is one-to-one, Pu 6= 0. Therefore, we have

‖P †v‖2

‖v‖2
=
‖P †Pu + P †w‖2

‖Pu‖2 + ‖w‖2
=

‖P †Pu‖2

‖Pu‖2 + ‖w‖2
≤ ‖P †Pu‖2

‖Pu‖2
≤ ‖P †‖2.

This implies that

‖P †‖ = sup
u∈U\{0}

‖P †Pu‖
‖Pu‖ .

Recall that P †Pu = u since P is one-to-one. Now, we have

R(U, V ) = inf
u∈U\{0}

‖Pu‖
‖u‖

= inf
u∈U\{0}

‖Pu‖
‖P †Pu‖

=

(
sup

u∈U\{0}

‖P †Pu‖
‖Pu‖

)−1

= ‖P †‖−1.
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This proves (3.3). If P is one-to-one, then, by the second case in (3.3),

R(U, V ) = ‖P †‖−1 > 0 since ‖P †‖ < ∞. If P is not one-to-one, then

R(U, V ) = 0 by the first case in (3.5) again. ¤
We mention that the formula (3.3) holds only for the finite dimensional

cases. To see this we construct two infinite dimensional subspaces U and

V of H such that R(U, V ) = 0 and that P = PV |U is one-to-one. Once

these spaces are constructed, then (3.3) cannot hold since P † is a bounded

operator. Let {e1, e2, · · · } be an orthonormal basis of H. Let

U := span

{
e2 +

1

3
e3, e4 +

1

5
e5, e6 +

1

7
e7, · · ·

}

V := span

{
e1 +

1

2
e2, e3 +

1

4
e4, e5 +

1

6
e6, · · ·

}
.

Define, for n = 1, 2, · · · ,

un := e2n + 1
2n+1

e2n+1, ũn :=
un

‖un‖ =
e2n + 1

2n+1
e2n+1√

1 +
(

1
2n+1

)2
,

vn := e2n−1 + 1
2n

e2n, ṽn :=
vn

‖vn‖ =
e2n−1 + 1

2n
e2n√

1 +
(

1
2n

)2
.

Note that {ũn}∞n=1 and {ṽn}∞n=1 are orthonormal bases for U and V , respec-

tively. Direct calculations show that:

〈ũn, ṽn〉 =
1
2n√

1 +
(

1
2n+1

)2
√

1 +
(

1
2n

)2
;

〈ũn, ṽn+1〉 =
1

2n+1√
1 +

(
1

2n+1

)2
√

1 +
(

1
2n+2

)2
;

〈ũn, ṽk〉 = 0 if k 6= n nor k 6= n + 1.

Now, ‖PV ũn‖2 = | 〈ũn, ṽn〉 |2 + | 〈ũn, ṽn+1〉 |2 ≤ 1/(2n)2 + 1/(2n + 1)2 → 0

as n → ∞. This shows that R(U, V ) = 0. On the other hand, let u :=
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∑∞
n=1 αnũn with

∑∞
n=1 |αn|2 < ∞. Suppose that Pu = 0. Then, | 〈u, ṽk〉 |2 =

0 for each k = 1, 2, · · · . For k = 1, | 〈u, ṽ1〉 |2 = |α1 〈ũ1, ṽ1〉 |2. Hence α1 = 0.

For k = 2, | 〈u, ṽ2〉 |2 = |α1 〈ũ1, ṽ2〉 + α2 〈ũ2, ṽ2〉 |2 = |α2 〈ũ2, ṽ2〉 |2. Therefore

α2 = 0. In this way, we see that αk = 0 for each k = 1, 2, 3, · · · . Hence u = 0,

which shows that P is one-to-one.

Lemma 3.6 Suppose that one of the following two conditions holds:

(1) 0 < rank G = dim U = dim V ;

(2) 0 < rank G = dim U < dim V and ran P is invariant under SV .

Then

R(U, V ) = ‖G1/2
U G†G1/2

V ‖−1. (3.4)

Proof. In either case, we note that TU is onto, T ∗
V is one-to-one, and dim U =

rank G. By Lemma 3.1, we have

dim dom P = dim U = rank G = rank(T ∗
V PTU) = rank(PTU) = rank P.

This implies that P is one-to-one. If Condition (1) holds, then ran P = V

and it is invariant under SV . Therefore, in either case, G† = T †
UP †(T ∗

V )† by

Lemma 3.4. Proposition 2.1 implies that (T ∗
V )†T ∗

V = IV , and TUT †
U = IU .

Lemma 3.4 then implies that

TUG†T ∗
V = (TUT †

U)P †((T ∗
V )†T ∗

V ) = IUP †IV = P †.

Note that GU = T ∗
UTU and GV = T ∗

V TV by Lemma 3.1. By Lemma 3.5, we
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finally compute R(U, V ) as follows:

R(U, V ) = ‖P †‖−1

= ‖P †(P †)∗‖−1/2

= ‖TUG†T ∗
V TV (G†)∗T ∗

U‖−1/2

= ‖TUG†GV (G†)∗T ∗
U‖−1/2

= ‖TUG†G1/2
V G

1/2
V (G†)∗T ∗

U‖−1/2

= ‖TUG†G1/2
V ‖−1

= ‖G1/2
V (G†)∗T ∗

UTUG†G1/2
V ‖−1/2

= ‖G1/2
V (G†)∗GUG†G1/2

V ‖−1/2

= ‖G1/2
V (G†)∗G1/2

U G
1/2
U G†G1/2

V ‖−1/2

= ‖G1/2
U G†G1/2

V ‖−1,

where we have used ‖X‖ = ‖XX∗‖1/2 = ‖X∗X‖1/2 several times. ¤
Without the assumptions of the invariance of ran P under SV in the sec-

ond case in Lemma 3.6, R(U, V ) is given as in the following lemma.

Lemma 3.7 If 0 < rank G = dim U < dim V , then

R(U, V ) = ‖G1/2
U ((G†

V )1/2G)†|(ker TV )⊥‖−1. (3.5)

Proof. We ‘tightize’ the frame {vj}n
j=1 for V : For i = 1, 2, · · · , n, define

ṽi =
n∑

j=1

((G†
V )1/2)ijvj ∈ V. (3.6)

We claim that {ṽj}n
j=1 is a tight frame for V with frame bound 1. Clearly,

{ṽj}n
j=1 is a frame for its linear span which is a subspace of V . Let GṼ denote
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the Gramian of {ṽ1, ṽ2, · · · , ṽn}. We show that GṼ = (G†
V )1/2GV (G†

V )1/2.

Temporarily, let M := (G†
V )1/2. Then,

(GṼ )ij = 〈ṽj, ṽi〉

=

〈
n∑

k=1

Mjkvk,

n∑

l=1

Milvl

〉

=
n∑

l,k=1

M il 〈vk, vl〉Mjk

=
n∑

l,k=1

M il(GV )lkMjk

= (MGV M t)ij

= ((G†
V )1/2GV (G†

V )1/2)ij.

The last equality follows from the fact that (G†
V )1/2 is positive semi-definite

(hence self-adjoint) since GV is positive semi-definite. The positive semi-

definite matrix GV has the spectral decomposition GV = QDQ∗, where Q

is a unitary matrix and D := diag(λ1, λ2, · · · , λn) is the diagonal matrix

with the (non-negative) eigenvalues λ′is of GV as its diagonal entries. For,

i = 1, 2, · · · , n, define

µi :=





1/λi, if λi 6= 0,

0, if λi = 0,

D1 := diag(µ1, µ2, · · · , µn), and D2 := diag(µ
1/2
1 , µ

1/2
2 , · · · , µ

1/2
n ). Then,

G†
V = QD1Q

∗ and (G†
V )1/2 = QD2Q

∗ (3.7)
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[23]. Hence,

GṼ = (G†
V )1/2GV (G†

V )1/2

= UDD2
2U

∗ = UDD1U
∗ = UDU∗UD1U

∗ = GV (G†
V )

= Pran GV
= Pran T ∗V TV

= Pran T ∗V = P(ker TV )⊥ , (3.8)

where we have used Proposition 2.1 (2) in the sixth equality, and the surjec-

tivity of TV in the penultimate equality. Therefore,

dim span{ṽ1, ṽ2, · · · , ṽn} = rank GṼ = rank GV = dim V,

where the first equality holds by Lemma 3.1 and the second one by the sixth

equality in (3.8). This shows that {ṽ1, ṽ2, · · · , ṽn} is a frame for V . Since

{ṽ1, ṽ2, · · · , ṽn} is a frame for a non-trivial space V , GṼ 6= 0. Since the

eigenvalues of GṼ are zero or one by the third equality in (3.8), ‖GṼ ‖ =

‖G†
Ṽ
‖ = 1. Lemma 3.3 implies that {ṽ1, ṽ2, · · · , ṽn} is a tight frame with

frame bound 1 for V .

Therefore, we have SṼ = IV ; so ran P is invariant under SṼ . A calculation

similar to the one at the beginning of the proof shows that GU,Ṽ = (G†
V )1/2G.

We are now able to apply Lemma 3.6 to conclude that

R(U, V ) = ‖G1/2
U ((G†

V )1/2G)†G1/2

Ṽ
‖−1.

Since GṼ is an orthogonal projection, G
1/2

Ṽ
= GṼ . By (3.8) we have

R(U, V ) = ‖G1/2
U ((G†

V )1/2G)†|(ker TV )⊥‖−1.

This completes the proof. ¤
The following, which generalizes Equation (1.3) of [9], is the main result

in this section.
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Theorem 3.8 Let U and V be finite dimensional subspaces of a separa-

ble complex Hilbert space H. Suppose that U = span{u1, u2, · · · , um}, V =

span{v1, v2, · · · , vn}. Let GU , GV , G, TV and SV be as in the paragraph pre-

ceding Lemma 3.1. Then,

R(U, V ) (3.9)

=





1, if U = {0};
‖G1/2

U G†G1/2
V ‖−1, if 0 < rank G = dim U = dim V or

if 0 < rank G = dim U < dim V

and ran P is invariant under SV ;

‖G1/2
U ((G†

V )1/2G)†|(ker TV )⊥‖−1, if 0 < rank G = dim U < dim V

and ran P is not invariant under SV ;

0, otherwise.

Proof. We only need to consider the following cases: rank G 6= dim U > 0

or dim V < dim U . In either case, we show that P is not one-to-one; so

R(U, V ) = 0 by Lemma 3.5. In the first case, note that

rank P = rank(T ∗
V PTU) = rank G 6= dim U = dim dom P,

where we have used Lemma 3.1 and the fact that T ∗
V is one-to-one and that

TU is onto. Hence P is not one-to-one. In the second case, dim dom P =

dim U > dim V = dim co-dom P . Hence P is not one-to-one. ¤
We now consider the conditions in order to have R(U, V ) = R(V, U).

Lemma 3.9 Suppose that R(U, V ) > 0. Then the following assertions are

equivalent:

(1) R(U, V ) = R(V, U);
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(2) R(V, U) > 0;

(3) 0 < dim U = dim V ;

(4) 0 < rank GU = rank GV .

Proof. The implication from (1) to (2) is trivial. Suppose that R(U, V ) > 0

and that R(V, U) > 0. Then neither U nor V is trivial. Now, Lemma 3.5

implies that PV |U and PU |V are both one-to-one. Therefore 0 < dim U =

dim V . This shows that (2) implies (3). Suppose that R(U, V ) > 0 and that

0 < dim U = dim V . By Lemma 3.5 PV |U is one-to-one and onto. Hence

PU |V = (PV |U)∗ is also one-to-one and onto. Hence R(V, U) > 0 by Lemma

3.5 once again. Finally, (3) and (4) are equivalent by Lemma 3.1. ¤

Proposition 3.10 The following assertions hold:

(1) If dim U = dim V , then R(U, V ) = R(V, U);

(2) If R(U, V ) = R(V, U), then either R(U, V ) = R(V, U) = 0 or 0 <

dim U = dim V ;

(3) If R(U, V ) > 0 and R(V, U) > 0, then R(U, V ) = R(V, U) and 0 <

dim U = dim V .

Proof. Suppose that 0 = dim U = dim V . Then R(U, V ) = R(V, U) = 1 by

convention. Now suppose that 0 < dim U = dim V . If PV |U is one-to-one,

then R(U, V ) > 0 by Lemma 3.5, and hence R(U, V ) = R(V, U) by Lemma

3.9. Now, if PV |U is not one-to-one, then it is not onto either since its domain

U and co-domain V are of the same dimension. Therefore, PU |V = (PV |U)∗

is nether one-to-one nor onto. Hence R(U, V ) = R(V, U) = 0 by Lemma
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3.5. This proves (1). Now suppose that 0 < R(U, V ) = R(V, U). Then,

0 < dim U = dim V by Lemma 3.9. This proves (2). Finally, (3) follows by

Lemma 3.9. ¤
That the converse of the first assertion of Proposition 3.10 does not hold

can be seen by noting that R(U, V ) = R(V, U) = 0 if U and V are mutually

orthogonal.

We end this section with a lemma which is needed in Section 5

Lemma 3.11 If P is invertible, then

(
(G†

V )1/2G(G†
U)1/2

)†
= G

1/2
U G†G1/2

V . (3.10)

Proof. Let X := (G†
V )1/2 and Y := G(G†

U)1/2. Observe, by an applica-

tion of the spectral theorem, that if M is a positive semi-definite matrix,

then ran M = ran M † = ran M1/2 = (ran M †)1/2 and ker M = ker M † =

ker M1/2 = ker(M †)1/2. Since X is positive semi-definite and TV is onto,

ran X∗ = ran(G†
V )1/2 = ran G†

V = ran T ∗
V TV = ran T ∗

V . We note that

Y Y ∗ = G(G†
U)1/2(G†

U)1/2G∗

= GG†
UG∗

= T ∗
V PTU(T ∗

UTU)†T ∗
UP ∗TV ;

And hence ran Y Y ∗ ⊂ ran T ∗
V . Therefore ran X∗ = ran T ∗

V is invariant under
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Y Y ∗. On the other hand,

ker Y ∗ = ker(G(G†
U)1/2)∗

= ker(G†
U)1/2G∗

= ker G†
UG∗ (above observation)

= ker T †
U(T ∗

U)†T ∗
UP ∗TV (Lemma 3.2, Lemma 3.1)

= ker T †
UPran TU

P ∗TV (Proposition 2.1)

= ker T †
UP ∗TV (ran TU = ran P ∗)

= ker TV . (T †
U and P ∗ are one-to-one)

Therefore, ran X∗ ∩ ker Y Y ∗ = ran T ∗
V ∩ ker TV = {0}, which is trivially

invariant under X∗X. We have, by Proposition 2.2,

((G†
V )1/2G(G†

U)1/2)† = (G(G†
U)1/2)†((G†

V )1/2)† = (G(G†
U)1/2)†G1/2

V . (3.11)

Now let X := G and Y := (G†
U)1/2. It is routine to check that ran X∗ =

ran T ∗
U and that Y Y ∗ = T †

U(T ∗
U)†. Hence ran Y Y ∗ ⊂ ran T †

U = ran T ∗
U =

ran X∗. This shows that ran X∗ is invariant under Y Y ∗. On the other hand,

by the observation we made and by the fact that T ∗
U is one-to-one, ker Y ∗ =

ker GU = ker T ∗
UTU = ker TU . This shows that ran X∗ ∩ ker Y ∗ = ran T ∗

U ∩
ker TU = {0}, which is trivially invariant under X∗X. By Proposition 2.2 we

have

(G(G†
U)1/2)† = ((G†

U)1/2)†G† = G
1/2
U G†. (3.12)

Now, the lemma follows from (3.11) and (3.12). ¤
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4 Applications to shift-invariant spaces

In this section we apply Theorem 3.8 to shift-invariant subspaces of L2(Rd).

First, we review the basic theory of shift-invariant spaces briefly. All of

the results on the theory of shift-invariant spaces we use are contained in

[6, 8, 9, 26, 28, 39].

For y ∈ Rd, define the translation operator Ty : L2(Rd) → L2(Rd) via

(Tyf)(x) := f(x− y). A subspace S ⊂ L2(Rd) is said to be a shift-invariant

subspace of L2(Rd) if it is closed and is invariant under each (multi-)integer

translation operator Tk, k ∈ Zd. For f ∈ L2(Rd), x ∈ Td, we let

f̂||x := (f̂(x + k))k∈Zd ,

which belongs to `2(Zd) for almost every x ∈ Td := [0, 1]d. Here ∧ denotes

the Fourier transform defined by

f̂(x) :=

∫

Rd

f(t)−2πix·t dt

for f ∈ L1(Rd) ∩ L2(Rd), and extended to be a unitary operator on L2(Rd)

by the Plancherel theorem. For a shift-invariant subspace S and x ∈ Td we

let

Ŝ||x := {f̂||x : f ∈ S}.

It is known that Ŝ||x, called the fiber of S at x, is a closed subspace of `2(Zd)

for almost every x ∈ Td. The spectrum σ(S) of S is defined to be

σ(S) := {x ∈ Td : Ŝ||x 6= {0}}.

If there exists n ∈ N such that dim Ŝ||x = n for almost every x ∈ T, we say

that S is regular. If Φ is a subset of L2(Rd), then we let

S(Φ) := span{Tkϕ : k ∈ Zd, ϕ ∈ Φ},
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which is clearly a shift-invariant subspace. We then say that S(Φ) is a shift-

invariant space generated by Φ. In case Φ is finite, we say that it is finitely

generated. The length of a shift-invariant subspace S is defined to be

len S := min{#Φ : S = S(Φ)}.

It is shown in [6, Theorem 3.5] that len S = ess-sup{dim Ŝ||x : x ∈ Td}. It is

known that a shift-invariant subspace of L2(Rd) has a generating set whose

cardinality is at most countable. Moreover, it is shown in [6] that S is regular

if and only if there exists a finite subset Φ of S such that {Tkϕ : k ∈ Zd, ϕ ∈
Φ} is a Riesz basis for S. The following proposition is sometimes called the

fundamental theorem of shift-invariant spaces [8, Proposition 1.5]. The proof

of (the strong form of) the theorem can be found in [6, 8, 26, 28].

Proposition 4.1 ([6, 8, 26, 28]) For Φ ⊂ L2(Rd), (S(Φ))∧||x = spanΦ̂||x,

and f ∈ L2(Rd) is an element of S(Φ) if and only if f̂||x ∈ (S(Φ))∧||x a.e.

x ∈ Td.

The so-called fiber principle is roughly stated as follows: A property holds

for a shift-invariant space S if and only if it holds for each fiber space of S

in a uniform way. It is best understood by looking at examples. Hence we

introduce some examples of the fiber principle which will be used later in

proving our main results in this section.

The following is Proposition 2.10 of [9], slightly modified for our purposes.

Proposition 4.2 ([9]) If U and V are shift-invariant subspaces of L2(Rd),

then

R(U, V ) =





ess-infx∈σ(U) R(Û||x, V̂||x), if |σ(U)| > 0,

1, if |σ(U)| = 0.
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Combining Propositions 3.10 and 4.2 yields the following corollaries. We

mention that (1) of Corollary 4.3 is Corollary 2.12 in [9].

Corollary 4.3 If U and V are finitely generated shift-invariant subspaces of

L2(Rd), then the following assertions hold:

(1) If dim Û||x = dim V̂||x a.e., then R(U, V ) = R(V, U);

(2) If R(U, V ) > 0 and R(V, U) > 0, then R(U, V ) = R(V, U) and dim Û||x =

dim V̂||x a.e., in particular, σ(U) = σ(V ).

The following is Theorem 2.3 of [8].

Proposition 4.4 ([8]) Suppose that Φ ⊂ L2(Rd) is at most countable. Then

{Tkϕ : k ∈ Zd, ϕ ∈ Φ} is a frame/Riesz basis for S(Φ) with frame/Riesz

bounds A and B if and only if, for almost every x ∈ Td, {ϕ̂||x : ϕ ∈ Φ} is a

frame/Riesz basis for (S(Φ))∧||x with frame/Riesz bounds A and B.

The readers are now convinced that if one is to analyze a shift-invariant

subspace, then it probably is best to analyze the fiber spaces separately

and then to patch up the fiber-wise analyses together to produce a result

on the original shift-invariant space. There is an elegant theory, called the

Gramian/dual Gramian analysis, which somehow formalizes this method [6,

8, 40, 41]. The following is an example. First, we need some definitions.

Let Φ := {ϕ1, ϕ2, · · · , ϕm}, Ψ := {ψ1, ψ2, · · · , ψn} ⊂ L2(Rd), and let

U := S(Φ), V := S(Ψ). The m×m matrix

GΦ(x) :=
(〈

ϕ̂j ||x, ϕ̂i||x
〉)

1≤i,j≤m
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is called the Gramian of Φ at x ∈ Td. The n× n Gramian of Ψ at x, which

is denoted by GΨ(x), is defined similarly. Finally, let the n×m matrix

G(x) := GΦ,Ψ(x) :=
(〈

ϕ̂j ||x, ψ̂i||x
〉)

1≤i≤n,1≤j≤m
, x ∈ Td,

is called the mixed Gramian of Φ and Ψ at x. Note that, according to

Proposition 4.1, GΦ(x) is just the Gramian of the frame (being a finite

spanning set) Φ̂||x for Û||x, and that GΨ(x) is the Gramian of the frame

Ψ̂||x for V̂||x, and that G(x) is the mixed Gramian of Φ̂||x and Ψ̂||x. Let

TΦ(x) : Cm → Û||x, SΦ(x) : Û||x → Û||x be the pre-frame operator and the

frame operator of Φ̂||x, respectively. The pre-frame operator TΨ(x) and the

frame operator SΨ(x) are defined similarly. Finally, let P (x) := PV̂||x
|Û||x

be the restriction to Û||x of the orthogonal projection of `2(Zd) onto V̂||x

throughout the rest of this article.

Combining Proposition 4.2 and Lemma 3.9 yields the following corollaries.

Corollary 4.5 Let U := S(Φ) and V := S(Ψ) be finitely generated shift-

invariant subspaces of L2(Rd) Suppose that R(U, V ) > 0. Then the following

assertions are equivalent:

(1) R(U, V ) = R(V, U);

(2) R(V, U) > 0;

(3) 0 < dim Û||x = dim V̂||x a.e;

(4) 0 < rank GΦ(x) = rank GΨ(x).

The proof of the following proposition is found in [39, Theorem 2.3.6].
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Proposition 4.6 ([39]) Suppose that Φ is finite. Let λ(x), λ+(x) and Λ(x)

denote the smallest eigenvalue, the smallest positive eigenvalue and the largest

eigenvalue of GΦ(x). {Tkϕ : k ∈ Zd, ϕ ∈ Φ} is a Riesz basis for S(Φ) with

Riesz bounds A and B if and only if

A ≤ λ(x) ≤ Λ(x) ≤ B

for almost every x ∈ Td. It is a frame for S(Φ) with frame bounds A and B

if and only if

A ≤ λ+(x) ≤ Λ(x) ≤ B

for almost every x ∈ σ(S(Φ)).

Combining Theorem 3.8 and Proposition 4.2 yields the following theorem

on the infimum cosine angle between two finitely generated shift-invariant

spaces.

Theorem 4.7 Let Φ := {ϕ1, ϕ2, · · · , ϕm}, Ψ := {ψ1, ψ2, · · · , ψn} ⊂ L2(Rd),

and let U := S(Φ), V := S(Ψ). Define

Γ := {x ∈ σ(U) : rank G(x) = dim Û||x ≤ dim V̂||x}.

Then the following holds;

(1) If |σ(U)| = 0, then R(U, V ) = 1.

(2) If |σ(U)| > 0 and Γ 6= σ(U), then R(U, V ) = 0.

(3) If |σ(U)| > 0 and Γ = σ(U), then

R(U, V ) = min{ ess-infx∈Γ1∪Γ2 ‖GΦ(x)1/2G(x)†GΨ(x)1/2‖−1,

ess-infx∈Γ3 ‖GΦ(x)1/2((GΨ(x)†)1/2G(x))†|(ker TΨ(x))⊥‖−1},
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where

Γ1 := {x ∈ σ(U) : rank G(x) = dim Û||x = dim V̂||x},
Γ2 := {x ∈ σ(U) : rank G(x) = dim Û||x < dim V̂||x,

ran P (x) is invariant under SΨ(x)},
Γ3 := {x ∈ σ(U) : rank G(x) = dim Û||x < dim V̂||x,

ran P (x) is not invariant under SΨ(x)},

Proof. Statement (1) holds since U is trivial if |σ(U)| = 0. If |σ(U)| > 0

and Γ 6= σ(U), then there exists a subset of σ(U) having a positive Lebesgue

measure such that, for each point of the subset, R(Û||x, V̂||x) = 0 by Theo-

rem 3.8. Now R(U, V ) = 0 by Proposition 4.2. This proves Statement (2).

Statement (3) follows similarly from Theorem 3.8 and Proposition 4.2. ¤
We now give applications of Theorem 4.7 to the existence problems of

the oblique projection if we are given two finitely generated shift-invariant

subspaces of L2(Rd). First, let us recall the definition of the oblique projec-

tion [1, 42]. Let U and V be closed subspaces of H. If H = U u V ⊥, i.e.,

H = U + V ⊥ and U ∩ V ⊥ = {0}, then we can define the oblique projection

PU⊥V of H on U along V ⊥ [1]. That is, for any f ∈ H there exist unique

u ∈ U and v⊥ ∈ V ⊥ such that f = u + v⊥. We define PU⊥V f := u. This

concept is closely related with that of the infimum cosine angle between U

and V by the following proposition, which is Theorem 2.3 of [42].

Proposition 4.8 ([42]) Let U and V be closed subspaces of H. The follow-

ing conditions are equivalent:

(1) H = U u V ⊥;
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(2) H = U⊥ u V ;

(3) There exist Riesz bases {ui}i∈I and {vi}i∈I for U and V , respectively,

such that {ui}i∈I is biorthogonal to {vi}i∈I ;

(4) R(U, V ) > 0 and R(V, U) > 0.

Theorem 4.7 combined with Proposition 4.8 gives us Theorem 4.10 below,

which is an extension of L2(R)-version of Theorem 3.1 of [1] (cf. Corollary

4.11). The following lemma is also needed.

Lemma 4.9 Suppose that U and V are, not necessarily finitely generated,

shift-invariant subspaces of L2(Rd). If L2(Rd) = U u V ⊥, then dim Û||x =

dim V̂||x for almost every x ∈ Td. In particular, σ(U) = σ(V ).

Proof. Since V is shift-invariant, so is V ⊥ ([6]). Note that (L2(Rd))∧||x =

`2(Zd) for almost every x ∈ Td. Now we have `2(Zd) = Û||x u (V ⊥)∧||x for

almost every x by an argument similar to the proof of Lemma 3.7 of [30].

This implies that the oblique projection Πx of `2(Zd) on Û||x along (V ⊥)∧||x

is well-defined almost everywhere. Hence, `2(Zd)/ker Πx = `2(Zd)/(V ⊥)∧||x is

isomorphic to ran Πx = Û||x. Now `2(Zd)/(V ⊥)∧||x is obviously isomorphic to

((V ⊥)∧||x)
⊥. The point-wise projection property of a shift-invariant space ([6,

Result 3.7] or [8, Lemma 1.4]) implies that ((V ⊥)∧||x)
⊥ = V̂||x. Hence Û||x is

isomorphic to V̂||x for almost every x. In particular, they are of the same

dimension for almost every x. ¤
We postpone the proof of the equivalence of (5) in Theorem 4.10 and in

Corollary 4.11 to other conditions in Theorem 4.10 and in Corollary 4.11,

respectively, to the next section for the readability of the article since it is
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slightly long and contains constructive nature which we would like to eluci-

date further.

Theorem 4.10 Let Φ := {ϕ1, ϕ2, · · · , ϕm}, Ψ := {ψ1, ψ2, · · · , ψn} ⊂ L2(Rd),

and let U := S(Φ), V := S(Ψ). Then the following assertions are equivalent:

(1) L2(Rd) = U u V ⊥;

(2) L2(Rd) = V u U⊥;

(3) R(U, V ) > 0 and R(V, U) > 0;

(4) rank G(x) = dim Û||x = dim V̂||x a.e. x ∈ Td; and there exists a positive

constant C such that ‖GΦ(x)1/2G(x)†GΨ(x)1/2‖ ≤ C a.e. x ∈ σ(U),

where we recall that G(x) denotes the mixed Gramian of Φ and Ψ at x;

(5) There exist Φ̃ := {ϕ̃1, ϕ̃2, · · · , ϕ̃r}, Ψ̃ := {ψ̃1, ψ̃2, · · · , ψ̃r} such that:

(i) {Tkϕ̃i : k ∈ Zd, 1 ≤ i ≤ r} and {Tkψ̃i : k ∈ Zd, 1 ≤ i ≤ r} are

frames for U and V , respectively;

(ii) They are ‘oblique’-dual (see [15]) in the sense that for each f ∈ U

and g ∈ V

f =
r∑

i=1

∑

k∈Zd

〈
f, Tkψ̃i

〉
Tkϕ̃i, and

g =
r∑

i=1

∑

k∈Zd

〈g, Tkϕ̃i〉Tkψ̃i.

If, in addition, {Tkϕj : k ∈ Zd, 1 ≤ j ≤ m} and {Tkψi : k ∈ Zd, 1 ≤ i ≤ n}
are frames for U and V , respectively, then the above conditions are equivalent

to the following condition.
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(6) rank G(x) = dim Û||x = dim V̂||x for almost every x ∈ Td; and there

exists a positive constant C such that ‖G(x)†‖ ≤ C for almost every

x ∈ σ(U).

Moreover, if any one of the above conditions hold, then σ(U) = σ(V ) and

R(U, V ) = R(V, U) (4.1)

=





1, if U = {0};
ess-infx∈σ(U) ‖GΦ(x)1/2G(x)†GΨ(x)1/2‖−1, if U 6= {0}.

Proof. The equivalences of Conditions (1) (2) and (3) are established in

Proposition 4.8.

(1) ⇒ (4): By Lemma 4.9, σ(U) = σ(V ). Hence, if σ(U) is of Lebesgue

measure zero, then so is σ(V ). This implies that U and V are trivial. In this

case, condition (4) holds trivially. Now, suppose that σ(U) and σ(V ) are of

the same positive Lebesgue measure. Then Case (1) of Theorem 4.7 cannot

hold. Case (2) of Theorem 4.7 cannot hold either since (1) is equivalent to (3).

Therefore, Case (3) of Theorem 4.7 holds. Moreover, by Lemma 4.9, Γ2 and

Γ3 in Theorem 4.7 are of Lebesgue measure zero. That is, σ(U) = Γ = Γ1.

This proves that Condition (4) and the second equality in (4.1) hold by

Theorem 4.7 (3).

(4) ⇒ (3): (4) implies that σ(U) = σ(V ). If σ(U) is of Lebesgue measure

zero, then U and V are trivial. So R(U, V ) = R(V, U) = 1. Suppose that

σ(U) = σ(V ) are of positive Lebesgue measure. In this case, Γ2 and Γ3

in Theorem 4.7 are of Lebesgue measure zero and R(U, V ) is given by the

expression on the last line of (4.1). This implies that R(U, V ) > 0. Then,

R(V, U) = R(U, V ) > 0 by Corollary 4.3 (1).
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The last paragraph also shows that if (4) holds, then R(U, V ) = R(V, U)

and (4.1) is valid. This proves the equivalence of Conditions (1) to (4) and

the validity of (4.1).

Now, suppose that {Tkϕj : k ∈ Zd, 1 ≤ j ≤ m} and {Tkψi : k ∈ Zd, 1 ≤
i ≤ n} are frames for U and V , respectively. Then, Propositions 4.4 and 2.3

imply that there exist positive constants A and B such that, for almost every

x ∈ Td,

A ≤ min{‖TΦ(x)†‖−1, ‖TΨ(x)†‖−1}, (4.2)

and

max{‖TΦ(x)‖, ‖TΨ(x)‖} ≤ B. (4.3)

(6) ⇒ (4): By Lemma 3.1, ‖GΦ(x)‖ = ‖TΦ(x)∗TΦ(x)‖ ≤ B2 and ‖GΨ(x)‖ =

‖TΨ(x)∗TΨ(x)‖ ≤ B2 for almost every x ∈ Td. This implies (4).

(3) ⇒ (6): Corollary 4.3 (2) implies that dim Û||x = dim V̂||x for almost every

x ∈ Td, and that σ(U) = σ(V ). If x ∈ Td \ σ(U), then obviously, G(x) = 0,

and hence G(x)† = 0. Therefore, 0 = rank G(x) = dim Û||x = dim V̂||x, and

‖G(x)†‖ = 0. Now, suppose that σ(U) is of positive Lebesgue measure.

By Proposition 4.2 we see that there exists a positive constant c such that

c ≤ R(Û||x, V̂||x) for almost every x ∈ Td. Then, for any u ∈ Û||x, we have

c‖u‖ ≤ ‖P (x)u‖, where P (x) := PV̂||x
|Û||x as before. This shows that P (x) is

one-to-one. It is onto since dim Û||x = dim V̂||x by Lemma 4.9. It is now easy

to see that ‖P (x)−1‖ ≤ c−1 for almost every x ∈ σ(U). Hence the norm of

G(x)† is bounded uniformly by Lemma 3.4 and (4.2). Recall that

GΦ,Ψ(x) = TΨ(x)∗P (x)TΦ(x).

Since TΦ(x) is onto, ran TΦ(x) = Û||x = dom P (x). Since P (x) is also onto,
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ran P (x)TΦ(x) = ran P (x) = V̂||x = dom TΨ(x)∗. Hence rank GΦ,Ψ(x) =

rank TΨ(x)∗. Now rank TΨ(x)∗ = rank TΨ(x) = dim V̂||x since TΨ(x) is onto

and since ran TΨ(x) = V̂||x. Hence rank G(x) = dim V̂||x = dim Û||x. ¤
The following corollary is a special case of one of the main results of

Aldroubi [1]. He considers the subspace of a general separable Hilbert space

H of the form
{

r∑
i=1

∑

j∈Z
ci(j)O

jϕi : ci ∈ `2(Z), 1 ≤ i ≤ r

}
,

where ϕi ∈ H, 1 ≤ i ≤ r and O is a unitary operator on H. If we let

H := L2(R) and O := T1, then Theorem 3.1 of [1] reduces to an L2(R)-

version of the following corollary.

Corollary 4.11 Let Φ := {ϕ1, ϕ2, · · · , ϕn}, Ψ := {ψ1, ψ2, · · · , ψn} ⊂ L2(Rd),

and let U := S(Φ), V := S(Ψ). Suppose that {Tkϕj : k ∈ Zd, 1 ≤ j ≤ n} and

{Tkψi : k ∈ Zd, 1 ≤ i ≤ n} are Riesz bases for U and V , respectively. Then

the following assertions are equivalent:

(1) L2(Rd) = U u V ⊥;

(2) L2(Rd) = V u U⊥;

(3) R(U, V ) > 0 and R(V, U) > 0;

(4) G(x) is invertible for almost every x ∈ Td; and there exists a positive

real number C such that ‖G(x)−1‖ ≤ C for almost every x ∈ Td;

(5) There exists Ψ̃ := {ψ̃1, ψ̃2, · · · , ψ̃n} such that:

(i) {Tkψ̃i : k ∈ Zd, 1 ≤ i ≤ n} is a Riesz basis for V ;
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(ii)
〈
Tkϕi, Tlψ̃j

〉
= δklδij.

If any one of the above conditions is satisfied, then

R(U, V ) = R(V, U) = ess-infx∈Td ‖GΦ(x)1/2G(x)−1GΨ(x)1/2‖−1.

Proof. We recall that a Riesz basis is a frame. Note that Proposition 4.6 im-

plies that the Gramians GΦ(x) and GΨ(x) are invertible almost everywhere.

Moreover, Proposition 4.4 implies that dim Û||x = dim V̂||x = n almost every-

where, since a finite Riesz basis is a basis in the sense of Linear Algebra.

(1)⇒ (4): Condition (6) of Theorem 4.10 implies that rank G(x) = n. There-

fore G(x) is invertible almost everywhere, and G(x)−1 = G(x)†. The proof

is complete by Condition (6) of Theorem 4.10.

(4) ⇒ (1): This follows from the equivalence of (1) and (6) of Theorem 4.10.

¤

5 Tightization and dualization

In this section we give the remaining implications in Theorem 4.10 and Corol-

lary 4.11, thereby generalizing many of the results on singly generated shift-

invariant spaces in [15] to finitely generated shift-invariant spaces.

We first present a lemma which generalizes the well-known orthonormal-

ization technique attributed to Meyer [36]. The proof of the following lemma

is already lurking in the proof of Lemma 3.7. Notice the similarity of (3.6)

and (5.1). The following lemma provides a process to construct the genera-

tors of a tight frame from the generators of a shift invariant subspace.
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Lemma 5.1 Let F := {f1, f2, · · · , fr} ⊂ L2(Rd). Define F̃ := {f̃1, f̃2, · · · , f̃r}
via a ‘tightization’ process:

ˆ̃fi(x) :=
r∑

j=1

((GF (x)†)1/2)ij f̂j(x), (5.1)

where GF (x) is the Gramian of F at x. Then F̃ ⊂ L2(Rd) and {Tkf̃i : k ∈
Zd, 1 ≤ i ≤ r} is a tight frame for S(F ).

Proof. Since GF (x) is positive semi-definite for a.e. x ∈ Td, there ex-

ist a unitary matrix Q(x) and a diagonal matrix D(x) such that G(x) =

Q(x)D(x)Q(x)∗, where the diagonal entries of D(x) is the (non-negative)

eigenvalues of GF (x). Moreover, by [39, Lemma 2.3.5], we may assume that

the entries of U(x) and D(x) are measurable 1-(multi)-periodic functions.

Then, so are the entries of GF (x)† and (GF (x)†)1/2 (see (3.7)). We now show

that f̃i ∈ L2(Rd) for each i. First, note that, for a.e. x ∈ Td.

ˆ̃fi||x :=
r∑

j=1

((GF (x)†)1/2)ij
ˆ̃fj ||x,

which is a well-defined element of `2(Zd). A direct calculation shows that

∥∥∥ ˆ̃fi||x
∥∥∥

2

`2(Zd)
= ((GF (x)†)1/2GF (x)(GF (x)†)1/2)ii = 0 or 1.

This implies that ‖ ˆ̃fi‖2
L2(Rd)

=
∫
Td ‖ ˆ̃fi||x‖2

`2(Zd)
dx ≤ 1. Now, to show that

{Tkf̃i : k ∈ Zd, 1 ≤ i ≤ r} is a frame for S(F̃ ), we only need to show that

the eigenvalues of GF̃ (x) are 1 or 0 a.e. x ∈ Td by Proposition 4.6. It is

straight-forward to see that

GF̃ (x) = (GF (x)†)1/2GF (x)(GF (x)†)1/2 = GF (x)†GF (x) (5.2)
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Hence the above eigenvalue condition follows. It remains to show that

S(F̃ ) = S(F ). Obviously, (S(F̃ ))∧||x ⊂ (S(F ))∧||x a.e. Moreover,

dim(S(F̃ ))∧||x = rank GF̃ (x) = rank GF (x) = dim(S(F ))∧||x

a.e. by (5.2). This shows that (S(F̃ ))∧||x = (S(F ))∧||x a.e. Hence S(F̃ ) = S(F )

by Proposition 4.1. ¤
The proof of the following lemma is almost standard. We include it for

the sake of completeness.

Lemma 5.2 Let U and V be S(Φ) and S(Ψ), respectively, where Φ :=

{ϕj}r
j=1 and Ψ := {ψj}r

j=1; and GΦ(x), GΨ(x), G(x) := GΦ,Ψ(x) be the rel-

evant Gramians or mixed Gramians at x ∈ Td. Assume that {Tkϕj : k ∈
Zd, 1 ≤ j ≤ r} and {Tkψj : k ∈ Zd, 1 ≤ j ≤ r} are Bessel sequences. Then,

the following assertions are equivalent:

(1) For each f ∈ U ,

f =
r∑

j=1

∑

k∈Zd

〈f, Tkψj〉Tkϕj; (5.3)

(2) ϕ̂i||x =
∑r

j=1

〈
ϕ̂i||x, ψ̂j ||x

〉
`2(Zd)

ϕ̂j ||x for a.e. x ∈ Td and for each i =

1, 2, · · · , r;

(3) GΦ(x)G(x) = GΦ(x) a.e. x ∈ Td.

Proof. The Bessel condition implies that, for each j = 1, 2, · · · , r, the func-

tion that maps x ∈ Td to ||ψ̂j ||x||`2(Zd) is in L∞(Td) by Proposition 4.6. Hence,

for each f ∈ L2(Rd) and each j = 1, 2, · · · , r, the function that maps x ∈ Td
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to
〈
f̂||x, ψ̂j ||x

〉
`2(Zd)

is in L2(Rd). If we take the Fourier transform of the both

sides of (5.3), then

f̂(x) =
r∑

j=1

∑

k∈Zd

〈f, Tkψj〉 e−2πik·xϕ̂i(x)

=
r∑

j=1

∑

k∈Zd

(∫

Rd

f̂(t)ψ̂j(t)e
2πik·t dt

)
e−2πik·xϕ̂i(x)

=
r∑

j=1

∑

k∈Zd

(∫

Td

∑

l∈Zd

f̂(t + l)ψ̂j(t + l)e2πik·t dt

)
e−2πik·xϕ̂i(x)

=
r∑

j=1

〈
f̂||x, ψ̂j ||x

〉
`2(Zd)

ϕ̂j(x),

where the Parseval’s theorem is used in the lase equality. Therefore, (5.3) is

equivalent to the following equation:

f̂(x) =
r∑

j=1

〈
f̂||x, ψ̂j ||x

〉
`2(Zd)

ϕ̂j(x) for a.e. x ∈ Rd. (5.4)

This shows that (1) implies (2) since ϕi ∈ U and the function that maps

x ∈ Rd to
〈
ϕ̂i||x, ψ̂j ||x

〉
is 1-periodic.

On the other hand, suppose that (2) holds. Then, for a.e. x ∈ Rd and for

each i = 1, 2, · · · , r,

ϕ̂i(x) =
r∑

j=1

〈
ϕ̂i||x, ψ̂j ||x

〉
`2(Zd)

ϕ̂j(x).

Therefore, for a.e. x ∈ Rd, for each l = 1, 2, · · · , r, and for k ∈ Zd

e−2πik·xϕ̂l(x) =
r∑

j=1

〈
e−2πik·xϕ̂l||x, ψ̂j ||x

〉
`2(Zd)

ϕ̂j(x),

which is equivalent to

Tkϕl =
r∑

j=1

∑

m∈Zd

〈Tkϕl, Tmψj〉Tmϕj.
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This shows that (5.3) holds for each linear combinations of {Tkϕi, k ∈ Zd, i =

1, 2, · · · , r}. It is easy to see that the right-hand side of (5.3) defines a

bounded linear operator. Hence (1) holds by continuity.

The equivalence of (2) and (3) is seen by direct calculations. ¤

The following lemma shows how to construct the generators of the oblique

dual frame under appropriate conditions.

Lemma 5.3 Under the hypotheses of Lemma 5.2, suppose also that:

(i) dim Û||x = rank G(x) a.e.;

(ii) there exists a positive constant C such that ||G(x)†|| ≤ C a.e. x ∈ σ(U).

Define Ψ̃ := {ψ̃1, ψ̃2, · · · , ψ̃r} via a ‘dualization’ process:

ˆ̃ψi||x :=





∑r
j=1 G(x)†ijψ̂j ||x, if x ∈ σ(U),

0, otherwise.
(5.5)

Then {Tkψ̃i : k ∈ Z, 1 ≤ i ≤ r} is a Bessel sequence and for each f ∈ U

f =
r∑

i=1

∑

k∈Z

〈
f, Tkψ̃i

〉
Tkϕi.

Proof. A direct calculation shows that: GΨ̃(x) = G(x)†GΨ(x)(G(x)†)∗ if

x ∈ σ(U); GΨ̃(x) = 0 if x ∈ Td \ σ(U). Now, ‖GΨ̃(x)‖ is bounded above

a.e. by (i) and Proposition 4.6. Hence {Tkψ̃i : k ∈ Z, 1 ≤ i ≤ r} is a

Bessel sequence, again, by Proposition 4.6. If we show that GΦ(x)GΦ,Ψ̃(x) =

GΦ(x) a.e., then the lemma follows from Lemma 5.2. It is routine to check

that GΦ,Ψ̃(x) = G(x)†G(x) a.e. Recall that G(x) = TΨ(x)∗P (x)TΦ(x) and

rank G(x) = rank P (x) by Lemma 3.1, where TΨ(x) and TΦ(x) are the
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pre-frame operators and P (x) = PV̂||x
|Û||x . In particular, (i) implies that

dim(dom P (x)) = dim Û||x = rank G(x) = rank P (x) a.e. Therefore P (x) is

one-to-one a.e. Let X := TΨ(x)P (x) and Y := TΦ(x). Since P (x)∗ and

TΨ(x) are onto, ran X∗ = ran P (x)∗TΨ(x) = Û||x = dom Y Y ∗. On the

other hand, ker Y ∗ = ker TΦ(x)∗ is trivial since TΦ(x) is onto. Therefore,

G(x)† = TΦ(x)†(TΨ(x)∗P (x))† by Proposition 2.2. Now,

GΦ(x)GΦ,Ψ̃(x) = GΦ(x)G(x)†G(x)

= (TΦ(x)∗TΦ(x))TΦ(x)†(TΨ(x)∗P (x))†TΨ(x)∗P (x)TΦ(x)

= TΦ(x)∗(TΦ(x)TΦ(x)†)((TΨ(x)∗P (x))†TΨ(x)∗P (x))TΦ(x)

= TΦ(x)∗Pran TΦ(x)Pran(TΨ(x)∗P (x))∗TΦ(x)

= TΦ(x)∗Pran TΦ(x)Pran P (x)∗TΨ(x)TΦ(x)

= TΦ(x)∗PÛ||x
PÛ||x

TΦ(x)

= TΦ(x)∗TΦ(x) = GΦ(x),

where Lemma 3.1, Proposition 2.1 and the surjectivity of TΦ(x), TΨ(x) and

P (x)∗ are used several times. ¤

Lemma 5.4 In addition to the hypothesis of Lemma 5.2, suppose also that

rank G(x) = dim Û||x = dim V̂||x a.e.

Then the following assertions are equivalent:

(1) f =
∑r

i=1

∑
k∈Zd 〈f, Tkψi〉Tkϕ for each f ∈ U ;

(2) g =
∑r

i=1

∑
k∈Z 〈g, Tkϕi〉Tkψi for each g ∈ V .

If one of the two conditions holds, then {Tkϕi : k ∈ Zd, 1 ≤ i ≤ r} and

{Tkψi : k ∈ Zd, 1 ≤ i ≤ r} are frames for U and V , respectively.
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Proof. The rank condition implies that P (x) is invertible a.e. by Lemma 3.1.

Suppose that (1) holds. Then, by Lemma 5.2, f̂||x =
∑r

j=1

〈
f̂||x, ψ̂j ||x

〉
`2(Zd)

ϕ̂j ||x

for each f ∈ U and for a.e. x ∈ Td. Therefore, for each f ∈ U, k = 1, 2, · · · , r

and for a.e. x ∈ Td,

〈
P (x)f̂||x, ψ̂k ||x

〉
`2(Zd)

=
〈
PV̂||x

f̂||x, ψ̂k ||x
〉

`2(Zd)

=
〈
f̂||x, PV̂||x

ψ̂k ||x
〉

`2(Zd)

=
〈
f̂||x, ψ̂k ||x

〉
`2(Zd)

=

〈
r∑

j=1

〈
f̂||x, ψ̂j ||x

〉
`2(Zd)

ϕ̂j ||x, ψ̂k||x

〉

`2(Zd)

=

〈
f̂||x,

r∑
j=1

〈
ψ̂k||x, ϕ̂j ||x

〉
`2(Zd)

ψ̂j ||x

〉

`2(Zd)

=

〈
P (x)f̂||x,

r∑
j=1

〈
ψ̂k ||x, ϕ̂j ||x

〉
`2(Zd)

ψ̂j ||x

〉

`2(Zd)

.

Since P (x) is invertible a.e., this shows that

ψ̂k ||x =
r∑

j=1

〈
ψ̂k||x, ϕ̂j ||x

〉
`2(Zd)

ψ̂j ||x

for each k = 1, 2, · · · , r and a.e. x ∈ Td. This implies (2) by Lemma 5.2. On

the other hand, (2) implies (1) by symmetry.

Finally, the last assertion is a standard fact. ¤
The remaining proofs of Theorem 4.10:

(1) ⇒ (5): Assume that (1) holds. Then (4) holds also. In particular,

G(x) = dim Û||x = dim V̂||x a.e. Lemma 3.1 implies that P (x) is invertible

a.e. Hence, len U = len V since we already assumed that U and V are

finitely generated. Let r be the common length of U and V . Then, by [39,
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Corollary 2.3.8] (see also [8, Theorem 3.3]), there exist Φ := {ϕ1, ϕ2, · · · , ϕr}
and Ψ := {ψ1, ψ2, · · · , ψr} such that U = S(Φ) and V = S(Ψ). Then, again

by (4), there exists a positive constant C such that

‖GΦ(x)1/2G(x)†GΨ(x)1/2‖ ≤ C a.e. x ∈ σ(U), (5.6)

where the relevant Gramians and the mixed Gramian are r × r square ma-

trices. Define Φ̃ and Ψ̃ using the tightization process (5.1) then {Tkϕ̃i : k ∈
Z, 1 ≤ i ≤ r} and {Tkψ̃i : k ∈ Z, 1 ≤ i ≤ r} are tight frames with bound 1

for U and V , respectively. (4) also implies that rank GΦ̃,Ψ̃(x) = dim Û||x =

dim V̂||x a.e. Hence Condition (i) of Lemma 5.3 holds. A direct calculation

shows that

GΦ̃,Ψ̃(x) = (GΨ(x)†)1/2G(x)(GΦ(x)†)1/2 a.e.

Since P (x) is invertible a.e.,

GΦ̃,Ψ̃(x)† = GΦ(x)1/2G(x)†GΨ(x)1/2

a.e. by Lemma 3.11. Now (5.6) implies that Condition (ii) of Lemma 5.3

holds. Therefore (5) follows by Lemmas 5.3 and 5.4.

(5) ⇒ (1): Assume that (5) holds. Define Π : L2(Rd) → U via Πf :=
∑r

i=1

∑
k∈Zd

〈
f, Tkψ̃i

〉
Tkϕ̃i. Then, Π is, not necessarily an orthogonal, pro-

jection. Therefore, L2(Rd) = ran Π u ker Π = U u ker Π. We show that

ker Π = V ⊥. Suppose that g ∈ ker Π. Then there exists f ∈ L2(Rd) such
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that g = f − Πf . Now, for each h ∈ V ,

〈g, h〉 = 〈f − Πf, h〉 = 〈f, h〉 − 〈Πf, h〉

= 〈f, h〉 −
r∑

i=1

∑

k∈Zd

〈
f, Tkψ̃i

〉
〈Tkϕ̃i, h〉

= 〈f, h〉 −
〈

f,

r∑
i=1

∑

k∈Zd

〈h, Tkϕ̃i〉Tkψ̃i

〉

= 〈f, h〉 − 〈f, h〉 = 0.

Hence g ∈ V ⊥. On the other hand, if g ∈ V ⊥, then, trivially, Πg = 0. ¤
In the proof of the implication from (1) to (5), we could have assumed,

before the tightization process, that {Tkϕi : k ∈ Zd, 1 ≤ i ≤ r} and {Tkψi :

k ∈ Zd, 1 ≤ i ≤ r} are tight frames with frame bound 1 for U and V ,

respectively, by resorting either to [6, Theorem 3.5] or to [8, Theorem 3.3].

It, however, is the authors’ opinion that the current proof is constructive

in the sense that given the generating sets Φ and Ψ of U and V with the

same number of generators, respectively, we may first apply the tightization

process (5.1) to Φ and Ψ and then we may apply the dualization process (5.5)

to one of the resulting tight frame to get the oblique-duality as in Lemma

5.4.

The remaining proofs of Corollary 4.11:

(1) ⇒ (5): Suppose that (1) of Corollary 4.11 holds. Then the conditions

of Lemma 5.3 are satisfied since (4) of Corollary 4.11 holds also. Note that

σ(U) = Td by Proposition 4.6. Define Ψ̃ := {ψ̃i}n
i=1 as in (5.5), i.e.,

ˆ̃ψi||x :=
n∑

j=1

(G(x)−1)ijψ̂j ||x, x ∈ Td.
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Then, by Lemma 5.3,

Tkϕi =
n∑

j=1

∑

l∈Zd

〈
Tkϕi, Tkψ̃j

〉
Tlϕj (5.7)

for each k ∈ Zd and i = 1, 2, · · · , n. Lemma 5.4 implies that the shifts of Ψ̃

form a frame for V . In particular, the shifts of Ψ̃ are dense in V . A direct

calculation shows that GΨ̃(x) = G(x)−1GΨ(x)(G(x)−1)∗. Hence GΨ̃(x) is

invertible a.e. Lemma 3.1 implies that ‖G(x)‖ is bounded above by a uniform

constant a.e. This bound and (4) of Corollary 4.11 show that ‖GΨ̃(x)‖ and

‖GΨ̃(x)−1‖ are bounded above by a uniform constant a.e. Therefore, the

shifts of Ψ̃ form a Riesz basis for its closed linear span, which is V , by

Proposition 4.6. Moreover, (5.7) implies that
〈
Tkϕi, Tlψ̃j

〉
= δklδij since the

shifts of Φ form a Riesz basis.

(5) ⇒ (1) follows from the equivalence of (1) and (3) of Proposition 4.8. ¤

6 Examples

In this section we illustrate our results by concrete examples.

We first give an example in which Theorem 4.7 is used to calculate the

angle between two shift-invariant subspaces analytically. Let ψ1 := χ[0,1] and

ϕ := ψ1 ∗ ψ1 ∗ ψ1, where ∗ denotes the convolution. Note that ψ1 and ϕ are

the B-splines of first and third order, respectively. We recall the following

relations:

ψ̂1(x) = e−iπx

(
sin πx

πx

)
= m1

(x

2

)
ψ̂1

(x

2

)
,

ϕ̂(x) = e−iπ3x

(
sin πx

πx

)3

= m3

(x

2

)
ϕ̂

(x

2

)
,
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where

m1(x) := e−iπx cos πx and m3(x) := e−i3πx cos3 πx.

Let ψ2 := m̃1(x/2)ψ̂1(x/2), where m̃1(x) := −e−2πixm1(x + 1/2). We set

U := S(Φ) and V := S(Ψ), where Φ := {ϕ} and Ψ := {ψ1, ψ2}. Note that

ψ2 is nothing but the Haar function. It is now easy to see that

GΨ(x) =


1 0

0 1


 .

In particular, dim V̂||x = 2 a.e. by Lemma 3.1. On the other hand,

GΦ(x) =
∑

k∈Z
|ϕ̂(x + k)|2 =

(
sin πx

π

)6 ∑

k∈Z

(
1

x + k

)6

= cos2 πx +
2

15
sin4 πx

=
16

30
+

13

30
cos 2πx +

1

30
cos2 2πx,

where we have used the well-known identity ([17, Equation (4.2.9)]):

∑

k∈Z

1

(x + k)2
=

π2

sin2 πx
.

It is a standard fact that the shifts of ϕ form a Riesz basis for its closed

linear span [17], which can also be seen by the above calculations and by

Proposition 4.6. In particular, σ(U) = T and dim Û||x = 1 a.e. The mixed

Gramian G(x) is also given by

G(x) :=




e−2πix

3
(2 + cos 2πx)

−ie−2πix

4
sin 2πx


 ,
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where we have used the following calculations:

〈
ϕ̂||x, ψ̂1||x

〉
= e2πix sin4(πx)

π4

∑

k∈Z

1

(x + k)4
;

〈
ϕ̂||x, ψ̂2||x

〉
= m3

(x

2

)
m̃1

(x

2

)〈
ϕ̂||x/2, ψ̂1||x/2

〉

+ m3

(
x

2
+

1

2

)
m̃1

(
x

2
+

1

2

) 〈
ϕ̂||x/2+1/2, ψ̂1||x/2+1/2

〉
.

Since 
a

b



†

=
1

|a|2 + |b|2
(
a b

)
,

we have

G(x)† =
1

4
9

+ 4
9
cos(2πx) + 1

9
cos2(2πx) + 1

16
sin2(2πx)

×
(

e2πix

3
(2 + cos 2πx) ie2πix

4
sin 2πx

)

Therefore,

‖GΦ(x)1/2G(x)†GΨ(x)1/2‖

=

∥∥∥∥∥∥

√
16
30

+ 13
30

cos(2πx) + 1
30

cos2(2πx)

4
9

+ 4
9
cos(2πx) + 1

9
cos2(2πx) + 1

16
sin2(2πx)

×
(

e2πix

3
(2 + cos 2πx) ie2πix

4
sin 2πx

)∥∥∥

=

√
16
30

+ 13
30

cos(2πx) + 1
30

cos2(2πx)
4
9

+ 4
9
cos(2πx) + 1

9
cos2(2πx) + 1

16
sin2(2πx)

,
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where we used that
∥∥∥
(
a b

)∥∥∥ = (|a|2 + |b|2)1/2. Now,

R(U, V ) = ess-infx∈T ||GΦ(x)1/2G(x)†GΨ(x)1/2||−1

= ess-infx∈T

√
4
9

+ 4
9
cos(2πx) + 1

9
cos2(2πx) + 1

16
sin2(2πx)

16
30

+ 13
30

cos(2πx) + 1
30

cos2(2πx)

= ess-infx∈T

√
73
144

+ 4
9
cos(2πx) + 7

144
cos2(2πx)

16
30

+ 13
30

cos(2πx) + 1
30

cos2(2πx)
> 0.

In order to evaluate R(U, V ) analytically, we denote the quantity inside the

radical above by f(x). Then we see that

f ′(x) = −2π sin(2πx)
5

8

25 + 26y + 9y2

(16 + 13y + y2)2

= −2π sin(2πx)
5

8

9(y + 13/9)2 + 56/9

(16 + 13y + y2)2
,

where y := cos(2πx). Then f ′(x) = −f ′(−x) and f ′(x) > 0 for x < 0. Hence

f(x) ≥ f(−1/2) = f(1/2) = 5/6. Therefore R(U, V ) =
√

30/6. ¤
In the next example we illustrate the use of Theorem 4.10 to construct

the generators of the oblique dual frame. Let 1/3 < a < 1/2 and let {Ii}3
i=1

be

I1 := [2a− 1,−2a + 1] ,

I2 :=
[−1

3
, 2a− 1

] ⋃ [−2a + 1, 1
3

]
,

I3 :=
[−a,−1

3

] ⋃ [
1
3
, a

]
.
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Define Φ := {ϕ1, ϕ2}, Ψ := {ψ1, ψ2} via

ϕ̂1(x) := χ[− 2
3
,a−1]

⋃
[−a,a]

⋃
[−a+1, 2

3
](x);

ϕ̂2(x) := χ[− 4
3
,2a−2]

⋃
[−2a,a−1]

⋃
[−a,− 1

3
]
⋃

[ 1
3
,a]

⋃
[−a+1,2a]

⋃
[−2a+2, 4

3
](x);

ψ̂1(x) := χ[−a,a](x);

ψ̂2(x) := χ[−2a,− 2
3
]
⋃

[−a,− 1
3
]
⋃

[ 1
3
,a]

⋃
[ 2
3
,2a](x),

and let U := S(Φ) and V := S(Ψ). Direct calculations show that

GΦ(x) =


 χI1

⋃
I2(x) + 2χI3(x) 2χI3(x)

2χI3(x) 2χI2
⋃

I3(x)


 ,

GΨ(x) =


 χI1

⋃
I2

⋃
I3(x) χI3(x)

χI3(x) χI2
⋃

I3(x)


 ,

GΦ,Ψ(x) = GΨ,Φ(x) =


 χI1

⋃
I2

⋃
I3(x) χI3(x)

χI3(x) χI2
⋃

I3(x)


 .

We note that

dim Û||x = dim V̂||x = rank GΦ,Ψ(x) =





2, if x ∈ I2;

1, if x ∈ I1

⋃
I3;

0, otherwise,

and σ(U) = σ(V ) = I1

⋃
I2

⋃
I3. We can easily check that

G
1/2
Φ (x) =


 χI1

⋃
I2

⋃
I3(x) χI3(x)

χI3(x)
√

2χI2(x) + χI3(x)




G
1/2
Ψ (x) =


 χI1

⋃
I2(x) + 1√

2
χI3(x) 1√

2
χI3(x)

1√
2
χI3(x) χI2(x) + 1√

2
χI3(x)




G†
Φ,Ψ(x) =


 χI1

⋃
I2(x) + 1

4
χI3(x) 1

4
χI3(x)

1
4
χI3(x) χI2(x) + 1

4
χI3(x)


 .
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and

G
1/2
Φ (x)G†

Φ,Ψ(x)G
1/2
Ψ (x) = G

1/2
Ψ (x)G†

Ψ,Φ(x)G
1/2
Φ (x)

=


 χI1

⋃
I2(x) + 1√

2
χI3(x) 1√

2
χI3(x)

1√
2
χI3(x)

√
2χI2(x) + 1√

2
χI3(x)


 .

Since ‖A‖ ≤
(∑n

i=1

∑n
j=1 |aij|2

)1/2

for an n× n matrix A := (aij)1≤i,j≤n,

‖G1/2
Φ (x)G†

Φ,Ψ(x)G
1/2
Ψ (x)‖ ≤

√
3 a.e. x ∈ σ(U).

Therefore R(U, V ) = R(V, U) ≥ 1/
√

3 and so L2(Rd) = U u V ⊥ by Theorem

4.10. We now construct the generators of the oblique dual frame of {Tkϕj :

k ∈ Z, j = 1, 2}. As in Lemma 5.3, define ψ̃1, ψ̃2 via dualization:




ˆ̃ψ1||x
ˆ̃ψ2||x


 := G†

Φ,Ψ(x)


 ψ̂1||x

ψ̂2||x


 ,

that is,

ˆ̃ψ1(x) := χI1
⋃

I2(x) + 1
2
χI3(x),

ˆ̃ψ2(x) := 1
2
χI3(x) + χ[−2a,−2/3]

⋃
[2/3,2a](x).

Then ψ̃1, ψ̃2 are the generators of the oblique dual frame of V for {Tkϕj : k ∈
Z, j = 1, 2} of U by Lemma 5.3. ¤
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