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Abstract

In this paper we study the problem of constructing refinable or-
thonormal cardinal functions from Blaschke products. The digital
filter perspective of our construction corresponds to what is called an
infinite impulse response (IIR) filter. We show how to construct, at
least numerically, stable filters of this type in contrast to the Butter-
worth filter which is the maximally flat filter in our class.

1 Introduction

The sinc function

S(x) =
sin πx

πx
, x ∈ R,
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has three remarkable properties that motivate us here. First, it is a cardinal

function, that is,

S(k) = δk :=

{
0, k ∈ Z \ {0},
1, k = 0.

(1.1)

Next, it has orthonormal integer translates, that is

(S, S(· − k)) = δk, k ∈ Z. (1.2)

where, (·, ·) is the standard inner product on L2 (R). We simply say that S

is orthonormal. The third property is that S is refinable.

The first property of the sinc function connects it to the Whittaker–

Kotelnikov–Shannon series

f =
∑
n∈Z

f(n)S(· − n), (1.3)

which is valid for all functions f ∈ L2(R) whose Fourier transform is zero

off the interval Iπ := [−π, π], cf. [10, 13, 14]. These functions are commonly

referred to as band–limited functions with band width π. The totality of all

such functions, denoted by B0, is a reproducing kernel Hilbert space with

reproducing kernel K(x, y) := S(x − y), x, y ∈ R, and from this property it

follows that S is orthonormal.

The third property of the sinc function which is central to this paper rests

upon the fact that the closed subspace

B1 := {f(2·) : f ∈ B0} (1.4)

of L2 (R) contains B0 as a closed subspace. This means that S is refinable in

the sense of [2] and so it satisfies the refinement equation

Ŝ(2·) = s Ŝ, a.e. R, (1.5)

where s is the 2π–periodic extension of the function χIπ/2 restricted to Iπ.

The study of refinable functions which are both orthonormal and cardinal

was addressed in [6, 9]. In this paper, we provide a construction of such func-

tions using Blaschke products. The method we propose is simple and yields

refinable functions, which are different from those in [6, 9], with desirable

properties not possessed by the sinc function.
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2 The form of the filter

To prepare ourselves, we let ∆ be the open unit disc, ∆ its closure, ∂∆ its

boundary and C the complex plane. Any complex-valued function a defined

on ∂∆ determines a refinement equation

Â(2·) =
1

2
a
(
e−i·
)
Â (2.1)

for some function A ∈ L2(R).

We let R(∆) be the set of all rational functions of the form f/g where f

and g are polyomials. A Blaschke product b of degree n is a function of the

form

b(z) = c
∏
k∈Zn

z − zk
1− zkz

, z ∈ ∆,

where {zk : k ∈ Zn} ⊆ ∆, c ∈ ∂∆ and Zn := {0, 1, · · · , n− 1}. The constant

c can be chosen so that b(1) = 1. The totality of Blaschke products which

satisfy this additional condition shall be denoted by Bn(∆) (By convention

for n = 0, Bn(∆) consists of the function which is identically one).

Our starting point is the following fact.

Lemma 2.1 If a ∈ R(∆) and A is an orthonormal cardinal function such

that A ∈ L2(R), Â ∈ L1(R) and

Â(2·) =
1

2
a
(
e−i·
)
Â,

then there exist two nonnegative integers, n1, n2 ∈ N and Blaschke products

bk ∈ Bnk(∆), k ∈ Z2 with no common zeros such that

a(z) = z
b1 (z2)

b2 (z2)
+ 1, z ∈ ∆. (2.2)

Proof. Our hypotheses on A and a imply that

a(1) = 2, (2.3)

a(z) + a(−z) = 2, (2.4)

and

|a(z)|2 + |a(−z)|2 = 4, (2.5)
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for all z ∈ ∂∆, cf. [6, 9].

Equations (2.4) and (2.5) imply that |a − 1|2 = 1 on ∂∆. Since a −
1 ∈ R(∆) and a(1) = 2 we get that a − 1 = b+/b− where b+ and b− are

Blaschke products without common zeros which have the value one at one.

Substituting this form of a into equation (2.4) yields the desired result. �
It has been known for some time that regularity (in the sense of existence

of derivatives) of a refinable function A implies that a must have a zero at

−1 of an order which reflects the regularity of A. This important fact was

proved in [2] in great generality (and even in [11] in the non–stationary case).

Michael Stessin reminded one of us that any Blaschke product b ∈ Bn(∆)

has the property that b′(1) > 0, and so, if the functions a and A satisfy the

hypothesis of Lemma 2.1 then Â /∈ L1 (R). For this reason, we write equation

(2.2) in the form

a(z) = z−1 b1 (z2)

b2 (z2)
+ 1 (2.6)

for some pair b1, b2 of Blaschke products without common zeros. Indeed,

any odd power of z could appear above. Next, we explain how to prescribe

a zero at z = −1 of a given order for a in (2.6) by expressing the right hand

side of this equation in an alternative form.

We begin this discussion with a given monic polynomial p of degree n.

We identify the coefficients of p relative to the monomial basis, take their

complex conjugate and write them in reverse order to form the polynomial

p̃(z) := znp

(
1

z

)
, z ∈ C.

When p̃ = p we say p is symmetric.

The rational function p/p̃ has modulus one on ∂∆ and therefore can

be written in the form c b0/b1 where c ∈ ∂∆, bk ∈ Bnk(∆), k ∈ Z2 and

n := n0 + n1 is the number of zeros of p in C \ ∂∆. Indeed, if p = p0p1p2

where p0 has zeros in ∆, p1 has zeros in ∂∆ and p2 has zeros in C \∆ then

p0/p̃0 = b0, p1/p̃1 = c and p2/p̃2 = b−1
1 . Conversely, any Blaschke product

b ∈ Bn(∆) can easily be written in the form p/p̃ where the degree of p is n.

Let us now consider the question of when the function

a(z) := z−1p(z
2)

p̃(z2)
+ 1, z ∈ ∆,
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has a zero of exact order k ∈ N at z = −1, that is, a(j)(−1) = 0, j ∈ Zk, and

a(k)(−1) 6= 0. To this end, we write a as

a(z) =
zp̃(z2) + p(z2)

zp̃(z2)
, z ∈ ∆. (2.7)

The denominator of this rational function does not vanish at −1 and so for

the function a to have a k−fold zero at −1 means there exists a polynomial

q such that

z2n+1 p

(
1

z2

)
+ p

(
z2
)

= (1 + z)kq(z). (2.8)

The left hand side is a polynomial of exact degree 2n+ 1, since p is of exact

degree n. Hence the degree of q is 2n+ 1− k which implies that k ≤ 2n+ 1.

Let us solve (2.8) for the polynomial p. This can be accomplished by

replacing z by −z in equation (2.8) and adding the resulting equation to

equation (2.8) to obtain the formula

p
(
z2
)

=
1

2

[
(1 + z)kq(z) + (1− z)kq(−z))

]
.

We now substitute this expression for p into (2.8) and conclude that the

polynomial

v(z) := (1 + z)k

[
z2n+1−kq

(
1

z

)
− q(z)

]
, (2.9)

is even. Since v has a k−fold zero at −1 it also must have a k−fold zero at

1 and so

v(z) = (1− z2)kw(z), (2.10)

where w is a polynomial of exact degree 2n− 2k. Therefore, when k > n we

conclude that v = 0 and consequently q is a symmetric polynomial. Con-

versely, when q is symmetric and p is given by (2.8) then the rational function

a defined by (2.7) does indeed have a k−fold zero. This gives complete char-

acterization of this property of a which we sought, at least for k > n.

Let us now show that this fact still holds even when k ≤ n. In this case,

combining (2.9) and (2.10) gives us the equation

(1− z)kw(z) = z2n+1−kq

(
1

z

)
− q(z). (2.11)
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Replace z by 1/z in this equation to obtain the formula

z2n+1−k
(

1− 1

z

)k
w

(
1

z

)
= q(z)− z2n+1−kq

(
1

z

)
, (2.12)

which yields the identity

z2n+1−k
(

1− 1

z

)
w

(
1

z

)
= −(1− z)kw(z)

or equivalently

z2n+1−2k(−1)k+1w

(
1

z

)
= w(z).

However, we have already pointed out that w is a polynomial of at most

degree 2n − 2k. Therefore, by the above equation it is identically zero and

we conclude even in the case k ≤ n that q is a symmetric polynomial.

We combine this observation into the next result.

Theorem 2.2 If a and A satisfy the hypothesis of Lemma 2.1 then there is

a polynomial p of exact degree n such that

a(z) := z−1p (z2)

p̃ (z2)
+ 1, z ∈ ∆. (2.13)

Moreover, a has a zero of order k at −1 if and only if k ≤ 2n+ 1 and in that

case there is a symmetric polynomial q of exact degree 2n+ 1− k such that

p
(
z2
)

=
1

2

[
(1 + z)kq(z) + (1− z)kq(−z)

]
, z ∈ C. (2.14)

Conversely, if p is given by (2.14) where q is a symmetric polynomial of exact

degree 2n+ 1− k then a defined by (2.13) satisfies (2.3)-(2.5) and has a zero

of order k at −1.

In view of (2.13) and (2.14), the rational function a also has the form

a(z) =
2(1 + z)kq(z)

(z + 1)kq(z)− (1− z)kq(−z)
, (2.15)

where q is a symmetric polynomial of exact degree N = 2n+ 1− k and can

yield refinable functions which are real–valued, orthonormal and cardinal.
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From now on, we consider only the rational function a of the form (2.15)

where q is a real symmetric polynomial. We note that the maximum order

of the zero of a at z = −1 is 2n + 1 and it is attained by taking q = 1, so

that

an(z) :=
2(1 + z)2n+1

(z + 1)2n+1 − (1− z)2n+1
, z ∈ C. (2.16)

This is the autocorrelation symbol of the Butterworth filter of degree 2n+ 1,

see [7], which we discovered after we derived Theorem 2.2.

3 Stationary subdivision and an example

Associated with a bi–infinite sequence a = (ak : k ∈ Z) ∈ `1(Z) is the sub-

division operator, defined for all λ = (λk : k ∈ Z) ∈ `∞(Z) as

Saλ =

(∑
k∈Z

aj−2k λk : j ∈ Z

)
.

The subdivision scheme is said to be convergent if for any λ ∈ `∞(Z) there

exists a continuous function f ∈ C(R) such that

lim
r→∞

sup
k∈Z

∣∣(Sraλ)k − f
(
2−rk

)∣∣ = 0

and for at least one λ ∈ `∞(Z) the function f is not identically zero. It fol-

lows that whenever the subdivision scheme converges there exists a refinable

function A in C(R) which satisfies the refinement equation

A =
∑
k∈Z

ak A (2 · −k) (3.1)

and that

f =
∑
k∈Z

A (· − k) λk, (3.2)

see [2]. We denote the right hand side of (3.2) by A ∗ λ. We refer to A as

the refinable function associated to the mask a. Note that here we express

the refinement equation in the spatial domain while in (2.1) the frequency

domain version is used.
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This section is motivated by the study of the convergence of the subdivi-

sion scheme for the coefficient vector of the Laurent expansion of the special

family of rational functions corresponding to

a(z) = 1 + z−1 z
2 − t

1− tz2
, z ∈ C, (3.3)

where t ∈ R, |t| < 1. This is the simplest case of the rational masks given in

(2.6). Here, n = 1 and k = 1 unless t = −1
3

in which case (3.3) becomes the

Butterworth autocorrelation with k = 3.

Theorem 3.1 Let a be defined as in (3.3). For t ∈
(
−1

2
, 0
)

the subdivision

scheme determined by the coefficients of the Laurent expansion of a in (3.3)

converges and the associated refinable function is continuous, orthonormal

and cardinal.

Later, by using a Fourier analysis approach to convergence, we shall show

that for t = −1
3

the associated refinable function is even continuously differ-

entiable.

To prove this theorem, we provide a sufficient condition for the conver-

gence of the subdivision scheme. To this end, we introduce the forward

difference operator ∆, defined for λ ∈ `∞(Z) as

(∆λ)k = λk+1 − λk, k ∈ Z,

and set u = (1 : k ∈ Z).

Theorem 3.2 If the bi–infinite sequence a = (aj : j ∈ Z) satisfies the con-

ditions that (|j aj| : j ∈ Z) ∈ `1 (Z), Sau = u and there exists a number

r ∈ N such that ‖Srb‖∞ < 1, where ∆Sa = Sb∆ then the subdivision scheme

Sa converges.

The proof of this fact is based on the following lemma which extends an idea

in [12].

Lemma 3.3 If the bi–infinite sequence a = (aj : j ∈ Z) satisfies the con-

dition (|j aj| : j ∈ Z) ∈ `1(Z) then there exists a positive constant M such

that for all λ ∈ `∞ (Z) we have that ‖Saλ‖∞ ≤M ‖∆λ‖∞.
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Proof. Note that for any subdivision operator Sa with Sau = 0 we have that

Saλ = X∆λ where X is the bi–infinite matrix whose elements are defined as

Xjk =
∞∑

`=k+1

aj−2`, j, k ∈ Z.

Alternatively, we have for j, k ∈ Z the representation

Xjk = −
k∑

`=−∞

aj−2`.

Now, we can estimate the quantity ‖X‖∞ by first noting that

‖X‖∞ = sup
j∈Z

∑
k∈Z

|Xjk| ,

then choosing j ∈ Z and observing that

∑
k∈Z

|Xjk| =
∑
k≥j/2

∣∣∣∣∣
∞∑

`=k+1

aj−2`

∣∣∣∣∣+
∑
k<j/2

∣∣∣∣∣
k∑

`=−∞

aj−2`

∣∣∣∣∣
≤

∑
k≥j/2

∑
`>k

|aj−2`|+
∑
k<j/2

∑
`≤k

|aj−2`|

=
∑
`>j/2

∑
j/2≤k<`

|aj−2`|+
∑
`<j/2

∑
`≤k<j/2

|aj−2`|

≤
∑
`>j/2

(`− j/2) |aj−2`|+
∑
`<j/2

(j/2− `) |aj−2`| ≤
∑
`∈Z

∣∣∣∣`− j

2

∣∣∣∣ |aj−2`|

=


∑
`∈Z

|`| |a2`|, j ∈ 2Z,∑
`∈Z

(
|`|+ 1

2

)
|a2`+1|, j ∈ 2Z+ 1,

which is independent of j ∈ Z. �

With this lemma in hand, we can now return to the proof of Theorem 3.2.

Proof. (Theorem 3.2) Choose any finitely supported mask g ∈ `1(Z) such that

the subdivision scheme Sg converges with an associated compactly supported
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refinable function G ∈ C(R) which is nonnegative on R and has the property

that ∑
j∈Z

G (· − j) = 1.

For λ ∈ `∞(R), we consider the sequence of functions

fn := G ∗ (Snaλ) (2n·) , n ∈ Z∞.

Consequently, we have that

fn+1 − fn = G ∗ ((Sa − Sg)Snaλ)
(
2n+1·

)
.

Because (Sa − Sg)u = 0 and a − g satisfies the condition of Lemma 3.3, we

conclude that there exists a constant M such that∥∥fn+1 − fn
∥∥
∞ ≤ ‖(Sa − Sg)S

n
aλ‖∞ ≤M ‖∆Snaλ‖∞ = M ‖Snb ∆λ‖∞ .

Hence, {fn : n ∈ Z∞} is a Cauchy sequence and thus converges uniformly

to a continuous function. �

We now are ready to use Theorem 3.2 to prove Theorem 3.1. To this end,

we define the rational function q by setting, for z ∈ C, q(z) := a(z)/(z + 1).

We see that the coefficients of q are given by

qj =


0, j < −1

−t, j = −1

tk (1 + t) j = 2k, k ∈ Z∞,
−tk+1 (1 + t) j = 2k + 1, k ∈ Z∞.

(3.4)

Our goal is to show that
∥∥S2

q

∥∥
∞ < 1 for t ∈

(
−1

2
, 0
)
. We begin by recalling

from [2] that ∥∥S2
q

∥∥
∞ = max

ε∈Z4

∑
k∈Z

∣∣q1
4k−ε

∣∣ ,
where q1 =

(
q1
j : j ∈ Z

)
is the bi–infinite vector whose coordinates are given

for j ∈ Z as

q1
j =

∑
k∈Z

qj−2kqk.
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Therefore, we obtain for k ∈ Z that

q1
4k = (1 + t) tk

(
1 + t− tk+2

)
,

q1
4k−1 = −(1 + t)tk+1

(
1− tk+1

)
,

q1
4k−2 = −t2k+1(1 + t),

q1
4k−3 = −tk(1 + t)

(
1− tk+1

)
.

Since 1 + t− tk+2 ≥ 0 for all k ∈ Z∞ if and only if 1−
√

5
2
≤ t < 0, we conclude

for any such t that ∑
k∈Z

∣∣q1
4k

∣∣ ≤ 1 + t

1 + t2
,

∑
k∈Z

∣∣q1
4k−1

∣∣ ≤ 1− 1 + t

1 + t2
,

∑
k∈Z

∣∣q1
4k−2

∣∣ ≤ −t
1− t

.

Consequently, we observe that the upper bounds are less than 1 for any t

such that 1−
√

5
2
≤ t < 0. We also get that∑

k∈Z

∣∣q1
4k−3

∣∣ ≤ 2t2 − t(1 + t)

1 + t2
.

Now, observe that, as a function of t, the upper bound is decreasing for −1
2
≤

t < 0 and is less than 1 for t = −1
2
. Hence, by appealing to Theorem 3.2,

the proof of convergence is established.

4 Orthonormal cardinal functions with ratio-

nal symbol

In this section, we use the rational symbol in (2.15) to construct an orthonor-

mal cardinal refinable function A. To this end, we solve the refinement equa-

tion (2.1) for Â, estimate its decay at ±∞ and then obtain A from the Fourier

inversion formula. We begin by writing a in the form

a(z) = 2

(
1 + z

2

)k
b(z), z ∈ C, (4.1)
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where

b(z) =
2kq(z)

(1 + z)kq(z)− (1− z)kq(−z)
, z ∈ C, (4.2)

and, assuming that k = 2m+ 1 is odd,

q(z) =
∑

j∈Zn−m+1

α2j(1 + z)N−2j(1− z)2j, z ∈ C, (4.3)

is a real symmetric polynomial of degree N = 2n+ 1− k.

We estimate the decay of the infinite product

G(w) =
∏
`∈N

1

2
a(e−iw/2

`

). (4.4)

using the methods in [4]. Since a has no poles on ∂∆ and a(1) = 2, the

infinite product converges uniformly on compact subsets of the real line R.

In order to estimate the decay of G, we have to find an upper bound for the

function b on ∂∆. We denote the denominator of b by d which is given for

z ∈ C as

d(z) = (1 + z)kq(z)− (1− z)kq(−z). (4.5)

Also, we introduce the function Q, defined for w ∈ R as

Q(w) =
(

cos
w

2

)2bk/2c−k+1 ∑
j∈Zn−bk/2c+1

(−1)jα2j

(
cos2 w

2

)n−bk/2c−j (
sin2 w

2

)j
.

(4.6)

We record below the connection between these functions which is verified by

direct computation.

Lemma 4.1 For w ∈ R and an odd positive integer k we have that

(a) |q (e−iw)| = 22n+1−k |Q(w)|.

(b) |d (e−iw)| = 22n+1

[(
cos2 w

2

)k
Q(w)2 +

(
sin2 w

2

)k
Q(w + π)2

]1/2

.

(c) |b (e−iw)| = |Q(w)| /
[(

cos2 w

2

)k
Q(w)2 +

(
sin2 w

2

)k
Q(w + π)2

]1/2

.
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Theorem 4.2 Let a be the rational symbol in (4.1) where q is a real sym-

metric polynomial of degree N = 2n + 1 − k, k an odd positive integer and

suppose that there are positive constants L and U such that for all w ∈ R

0 < L ≤ |Q(w)| ≤ U <∞.

Then the infinite product in (4.4) converges uniformly on compact subsets of

R and there is a positive constant c ∈ R such that for all w ∈ R we have

|G(w)| ≤ c (1 + |w|)−
k+1

2
+log2

U
L . (4.7)

Furthermore, if U/L < 2k, then A with Â = G is an orthonormal refinable

function, and if U/L < 2k−1/2, then A is an orthonormal cardinal function.

In particular, if k = 2n+ 1, then for all w ∈ R

|G(w)| ≤ c (1 + |w|)−(n+1) (4.8)

and A is an orthonormal cardinal function.

Proof. Our hypothesis on Q implies for all w ∈ R that

L

U
≤
∣∣b (e−iw)∣∣ ≤ U

L
2(k−1)/2.

Therefore, the infinite product in (4.4) converges uniformly on compact sub-

sets of R. Since

B1 := max
{∣∣b (e−iw)∣∣ : w ∈ Iπ

}
≤ U

L
2(k−1)/2,

we conclude that there exists a positive constant c such that for all w ∈ R
we have

|G(w)| ≤ c (1 + |w|)−
k+1

2
+log2

U
L ,

cf. [4]. The other assertions are consequences of the above decay. �

We remark that the decay rate in (4.8) can be improved by considering the

quantity B2 := max {|b(z)b (z2)| : z ∈ ∂∆}. For example, if n = 1 and k = 3

then B1 = 2 but B2 = 18/7. Therefore, we get for all w ∈ R that

|G(w)| ≤ c (1 + |w|)−3+ 1
2

log2 B2 = c (1 + |w|)−2.26··· ,
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an improvement over the estimate |G(w)| ≤ c (1 + |w|)−2, w ∈ R, obtained by

using B1. From this decay rate we see that A is continuously differentiable on

R. This case corresponds to the parameter t = −1
3

in (3.3) which is discussed

after Theorem 3.1. In general, the computation of Bj for general j ≥ 2 is

beyond us.

The regularity estimate for G given in (4.7) associated with the rational

function a given by (4.1) is also discussed in [3, 8]. However, in both instances

the authors are only concerned with orthonormal refinable functions. The

rational filter (4.1) which we study here also appear in [1, 15] where their

relationship to discrete splines is pointed out.

Our final remarks in this section concern the limiting behavior as n→∞
for the refinable function An corresponding to the symbol

an(z) = 2
(1 + z)2n+1

(1 + z)2n+1 − (1− z)2n+1
.

Recall that

Ân(w) =
∏
`∈N

1

2
an(e−iw/2

`

), w ∈ R.

Since we have that
1

2
an(e−iw) =

1

1− i(−1)n(tan w
2
)2n+1

it follows that

lim
n→∞

1

2
an
(
e−iw

)
= s(w) (4.9)

uniformly for any compact subsets of R \
{

2k+1
2
π : k ∈ Z

}
. Recall that the

Fourier transform of the sinc function S is given by the equation Ŝ = χIπ
and that the function s appears in the refinement equation (1.5). These

comments motivate the following result.

Theorem 4.3 There holds

lim
n→∞

Ân = Ŝ

where convergence takes place a.e. in R, in L1(R) and in L2(R). Moreover,

we have that

lim
n→∞

An = S

in L2(R) and uniformly on R.
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For the proof we define three functions H, P and R for w ∈ R as

P (w) :=


1

cos6(w/2)
, |w| ≤ π

2

2

cos6(w/2) + sin6(w/2)
, π

2
≤ |w| ≤ π,

R(w) = cos6 w
2
P (w) and

H(w) :=
∏
`∈N

R
(
2−`w

)
.

To proceed further, one should verify that

max {|P (w)| : w ∈ Iπ} = 8 (4.10)

and observe that

H(w) = 1, w ∈ Iπ. (4.11)

Lemma 4.4 There exists a positive constant c such that for any w ∈ R and

n ∈ N we have that

(a)
∣∣1

2
an (e−iw)

∣∣2 ≤ R(w).

(b) |H(w)| ≤ c (1 + |w|)−3.

(c)
∣∣1

2
an (e−iw)− 1

∣∣ ≤ min
{

1, 2
π
|w|
}

.

Proof. The first claim follows directly from the definition of an and R while

(b) is a consequence of equation (4.10) used to estimate G in Theorem 4.2.

For (c), we note for all w ∈ R that∣∣∣∣12an (e−iw)− 1

∣∣∣∣ =
| sin w

2
|2n+1[(

cos2 w
2

)2n+1
+
(
sin2 w

2

)2n+1
]1/2
≤ 1,

while for |w| ≤ π/2 we have that
(

tan |w|
2

)2n+1

≤
(

2
π
|w|
)2n+1

. Therefore, we

conclude for |w| ≤ π/2 that∣∣∣∣12an (e−iw)− 1

∣∣∣∣ =

∣∣tan w
2

∣∣2n+1[
1 +

(
tan2 w

2

)2n+1
]1/2
≤
(

tan
|w|
2

)2n+1

≤ 2

π
|w|.

�
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Lemma 4.5

(a) The infinite product ∏
`∈N

1

2
an

(
eiw/2

`
)

converges uniformly in n ∈ N and ω in any compact subset of R.

(b) We have that

lim
n→∞

Ân(w) = Ŝ(w), a.e. w ∈ R.

Proof. (a) Fix a compact interval I. Choose a positive integer k so that

|w/2k| ≤ π/2 for all w ∈ I. By Lemma 4.4 we obtain that∑
`∈N

∣∣∣∣12an (e−iw/2`)− 1

∣∣∣∣
=

∑
`∈Zk

∣∣∣∣12an (e−iw/2`+1
)
− 1

∣∣∣∣+
∑
`∈Z∞

∣∣∣∣12an (e−iw/2`+k+1
)
− 1

∣∣∣∣ ≤ k +
2

π

|w|
2k
,

uniformly in n. This estimate proves the claim.

(b) Fix w ∈ Iπ and ε > 0. There exists a positive integer k such that for all

n ∈ N we have that ∣∣∣∣∣Ân(w)−
∏
`∈Zk

1

2
an

(
e−iw/2

`+1
)∣∣∣∣∣ < ε.

Therefore, we obtain that∣∣∣Ân(w)− Ŝ(w)
∣∣∣

≤

∣∣∣∣∣Ân(w)−
∏
`∈Zk

1

2
an

(
e−iw/2

`+1
)∣∣∣∣∣+

∣∣∣∣∣∏
`∈Zk

1

2
an

(
e−iw/2

`+1
)
− 1

∣∣∣∣∣
< ε+

∣∣∣∣∣∏
`∈Zk

1

2
an

(
e−iw/2

`+1
)
− 1

∣∣∣∣∣ .
We now appeal to equation (4.9) and choose a positive integer m so that∣∣∣∣∣∏

`∈Zk

1

2
an

(
e−iw/2

`+1
)
− 1

∣∣∣∣∣ < ε, n ∈ m+ Z∞.
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Therefore we conclude that

lim
n→∞

Ân(w) = Ŝ(w), a.e. w ∈ Iπ.

We extend the convergence to R by comparing the refinement equation

Ân (2·) = 1
2
an (e−i·) Ân for An to the one for S given in (1.5). �

We are now ready to complete the proof of Theorem 4.3.

Proof. (Theorem 4.3) By part (a) of Lemma 4.4 we conclude for w ∈ R that∣∣∣Ân(w)
∣∣∣2 ≤ H(w). Since H1/2 is in L1(R)∩L2(R) the result follows from the

dominated convergence theorem. �

5 Stable filters

Recall that the rational function a defined by (2.15) always has a pole at

z = 0. We want to determine a so that it is analytic in a neighborhood of

∆ \ {0}. In this case, a gives rise to an infinite impulse response (IIR) digi-

tal filter which can be efficiently implemented by means of delayed feedback

whenever it is stable, see [7] for additional details. Recall that the Butter-

worth autocorrelation filter in (2.16) is not stable. In this section we present

a method for the construction of stable filters of the type (2.15). Our remarks

in this section support the following conjecture.

Conjecture 5.1 If k ∈ N is an odd integer and k ≤ n then there exists a

real symmetric polynomial q of degree 2n+ 1− k such that the polynomial d

in (4.5) has a k–fold zero at zero and all its other zeros are outside ∆.

Before we address the details and numerical computations that support

this conjecture, we explain how we approach it. First, we recall the cele-

brated Hurwitz Criterion for a polynomial to have zeros in the left half plane

[5]. This is expressed in terms of determinants formed from the coefficients

of the polynomial in its monomial basis. Recall that the linear fractional

transformation z = (w− 1)(w+ 1)−1 maps the left half plane to the exterior

of ∆. We associate with a coefficient vector p = (pj : j ∈ Zn+1) two different

17



polynomials. The first one which we call pbe uses the coefficient vector with

the Bernstein basis relative to the interval [−1, 1],

pbe(z) =
∑

j∈Zn+1

pj (1− z)j (1 + z)n−j , z ∈ C, (5.1)

and the other polynomial pmo uses it with respect to the monomial basis,

pmo(w) =
∑

j∈Zn+1

pj w
n−j, w ∈ C. (5.2)

These two polynomials are connected by means of the formula

pbe(z) =

(
2

w + 1

)n
pmo(w), z =

w − 1

w + 1
.

Therefore, the Hurwitz criterion applied to pmo will determine whether or not

the zeros of pbe are outside ∆. The representation (5.1) is also convenient for

the study of the polynomial

d(z) = (1 + z)kq(z)− (1− z)kq(−z). (5.3)

We wish to identify q so that d(z) = zk r(z) and the polynomial r has all

its zeros outside of ∆. So, the procedure is to first express q in its Bernstein

form and then find the Bernstein representation of r. This computation is

burdensome because of the factor zk. Let us not be discouraged by that and

begin this task.

We write k = 2m + 1 and let q be a symmetric polynomial of degree

N = 2n+ 1− k, given as

q(z) =
∑

j∈Zn−m+1

qj (1− z)2j (1 + z)N−2j , z ∈ C. (5.4)

Similarly, with M = 2n+ 1, we express d in the form

d(z) =
∑

j∈ZM+1

dj (1− z)j (1 + z)M−j . (5.5)

Lemma 5.2 The polynomial d in (5.5) satisfies (5.3) for some q of the form

(5.4) if and only if

dj = −dM−j, j ∈ ZM+1, d2j+1 = 0, j ∈ Zm. (5.6)

18



Proof. Substituting (5.4) into (5.3) and comparing coefficients we obtain that

d and q are related by the equations

d2j = qj, d2(j+m)+1 = −qn−m−j, j ∈ Zn−m+1, (5.7)

where we also require that the coefficients of d not appearing above are zero.

From these formulas the claim follows. �

A consequence of Lemma 5.2 is that for k > 1 the polynomial d must

have zeros inside ∆. Indeed, Lemma 5.2 implies that d has zero coefficients

whenever k > 1 while the Hurwitz criterion yields that pmo must have all

nonzero coefficients of the same sign when it has its zeros in the left half plane.

In addition, (5.6) tells us that every positve coefficient of d also implies the

occurence of a negative coefficient.

Motivated by this observation, we fix the order of zero of d at z = 0 and

adjust the remaining factor to have all its zeros outside ∆. Our experience

suggests that we choose the order of the zero at zero to be k. Hence, we

write d as d(z) = zk r(z) for some polynomial r of degree 2n + 1 − k whose

zeros will be outside the unit circle.

For the next result we introduce the backwards difference operator ∇
defined on a bi–infinite sequence λ = (λj : j ∈ Z) as (∇λ)j = λj − λj−1,

j ∈ Z.

Theorem 5.3 If k ≤ n and r is a polynomial of degree N , written as

r(z) =
∑

j∈ZN+1

rj (1− z)j (1 + z)N−j , (5.8)

then there exists a symmetric polynomials q of degree N such that d(z) =

zk r(z) if and only if rj = rN−j, j ∈ ZN+1, and there exist coefficients αj,

j ∈ Zm, such that for ` ∈ Zm we have that

r2` =
∑
j∈Z`+1

αj

(
k

2`− 2j

)
,

r2`+1 =
∑
j∈Z`+1

αj

(
k

2`+ 1− 2j

)
.

(5.9)
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Proof. First, we set rj = 0, j ∈ Z \ ZN+1, and use the fact that z =
1
2

[(1 + z)− (1− z)] to conclude that

z r(z) =
1

2

∑
j∈ZN+2

(∇r)j (1− z)j (1 + z)N−j+1 ,

Repeating this process, it follows that

zk r(z) =
1

2k

∑
j∈ZM+1

(
∇kr

)
j

(1− z)j (1 + z)M−j . (5.10)

and comparing coefficients with (5.5) we get that

dj = 2−k
(
∇kr

)
j
, j ∈ ZM+1. (5.11)

We first prove that the existence of q such that d(z) = zk r(z) is equivalent

to the requirement that rj = rN−j, j ∈ ZN+1, and

r2`+1 =
∑

j∈Z2`+1

(−1)j
(

k

2`+ 1− j

)
rj, ` ∈ Zm. (5.12)

We begin the proof by showing how to compute r0 and rN from q0. This

is accomplished by choosing j = 0 and j = 2n + 1 in (5.11) and upon

simplification we get r0 = rN = 2k q0. Similarly, we choose j = 1 and j = 2n

in (5.11) and using the fact that d1 = d2n = 0 from Lemma 5.2, we obtain

r1 = rN−1 = k2k q0. Thus, we have proved the cases ` = 0, 1 of the following

identity (5.13) that we claim to hold for all ` ∈ Zk and determines r` and

rN−` uniquely and symmetrically in terms of qj, j ∈ Z`/2+1:

r` = rN−` =


2k q`/2 −

∑
j∈Z`

(−1)j
(

k

`− j

)
rj, ` ∈ 2Z∞,∑

j∈Z`

(−1)j
(

k

`− j

)
rj, ` ∈ 2Z∞ + 1.

(5.13)

In particular, the second part of (5.13) yields (5.12). We prove this by in-

duction and advance the induction hypothesis by setting j = ` + 1 and

j = M − ` − 1 in (5.11), isolating r`+1 and rN−`−1, respectively. An appli-

cation of the induction hypothesis of symmetry on these expressions then
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shows that (5.13) also holds with ` replaced by ` + 1. Processing with the

same argument we also obtain for k ≤ ` ≤ n that

r` = rN−` =
∑
j∈Zk

(−1)j
(
k

j

)
r`−k+j + 2k

{
qm, ` ∈ 2Z∞,

−qN−m, ` ∈ 2Z∞ + 1.
(5.14)

Hence, the coefficients of q uniquely determine the coefficients of r. Con-

versely, the above computations also show that for any polynomial r of de-

gree N whose coefficient vector r satisfies (5.12), there exists a symmetric

polynomial q of degree N such that

zk r(z) = (1 + z)k q(z)− (1− z)k q(−z), z ∈ C,

which completes the proof.

It remains to relate (5.12) to (5.9). To that end we write (5.12) in matrix

form as Mr̃ = 0, where r̃ = (rj : j ∈ Z2m) is the initial segment of r relevant

for (5.12) and

M =


(
k
1

)
−
(
k
0

)
0 0 . . . 0 0(

k
3

)
−
(
k
2

) (
k
1

)
−
(
k
0

)
. . . 0 0

...
...

...
...

. . .
...

...(
k

2m−1

)
−
(

k
2m−2

) (
k

2m−3

) (
k

2m−4

)
. . .

(
k
1

)
−
(
k
0

)
 ∈ Rm×2m

has rank m. Next, we note that MM ′ = 0 for the matrix

M ′ =



(
k
0

)
0 . . . 0(

k
1

)
0 . . . 0(

k
2

) (
k
0

)
. . . 0

...
...

. . .
...(

k
2m−3

) (
k

2m−5

)
. . . 0(

k
2m−2

) (
k

2m−4

)
. . .

(
k
1

)(
k

2m−1

) (
k

2m−3

)
. . .

(
k
0

)


∈ R2m×m,
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which follows by direct computations taking into account that

2`+1∑
t=2j

(−1)t
(

k

2`+ 1− t

)(
k

t− 2j

)

=
1

2

[
2`+1∑
t=2j

(−1)t
(

k

2`+ 1− t

)(
k

t− 2j

)

+
2`+1∑
t=2j

(−1)2`+1+2j+t

(
k

t− 2j

)(
k

2`+ 1− t

)]

=
1

2

2`+1∑
t=2j

(
k

2`+ 1− t

)(
k

t− 2j

) (
(−1)t + (−1)t+1

)
= 0.

Thus, the linearly independent columns of M ′ span the nullspace of M and

therefore r̃ = M ′α, for some α = (αj : j ∈ Zm). Written explicitely, this is

(5.9). �
Now we can attack the construction of stable filters, that is, the construc-

tion of a Hurwitz polynomial r that satisfies the conditions of Theorem 5.3.

We will describe a construction for the case k = n.

By Theorem 5.3, the coefficients of r must satisfy the symmetry relations

rj = rk+1−j, j ∈ Zm+1 \ Z3.

Substituting (5.9) into these relations we obtainm−1 homogeneous equations

in the m unknowns αj, j ∈ Zm, from (5.9), i.e., a system of the form

Mα = 0, M ∈ Rm−1×m, α = (αj : j ∈ Zm) .

Symbolic computations which we performed for all odd values up to k = 111

confirm that the rank of M is m − 1 and therefore setting α0 = 1, α1 = t,

t ∈ R, uniquely determines the remaining values of α. In our experiments

we found two values for t useful, namely

t0 =
k + 1

2k − 2
, t1 =

k + 1

2k
.

In both cases, we obtained that all the zeros of the resulting polynomial r were

outside the unit circle for all the values of k that we tested, which we verified
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by checking the Hurwitz criterion symbolically. Indeed, the computational

results strongly support Conjecture 5.1 as it turns out the minimal value

of all Hurwitz determinants of a given order k was strictly increasing with

respect to k in all the cases we considered. The use of t1 resulted in raising

the order of the zero of a by two, thus leading to even smoother functions.

We close this section by showing some graphs of the associated refinable

functions and the placement of the nonzero poles of a for various parameters

of k.

Another interesting properties of this construction which is suggested by

the numerical computations is that there exists a limit distribution of the

poles as k →∞ which is depicted in Fig. 2.
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