
TRIANGLE- AND PENTAGON-FREE

DISTANCE-REGULAR GRAPHS WITH AN

EIGENVALUE MULTIPLICITY EQUAL TO THE

VALENCY

Aleksandar Jurǐsić
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Abstract

We classify triangle- and pentagon-free distance-regular graphs with diameter d ≥ 2,
valency k, and an eigenvalue multiplicity k. In particular, we prove that such a graph
is isomorphic to a cycle, a k-cube, a complete bipartite graph minus a matching,
a Hadamard graph, a distance-regular graph with intersection array {k, k − 1, k −
c, c, 1; 1, c, k − c, k − 1, k}, where k = γ(γ2 + 3γ + 1), c = γ(γ + 1), γ ∈ N, or a
folded k-cube, k odd and k ≥ 7. This is a generalization of the results of Nomura
[10] and Yamazaki [13], where they classified bipartite distance-regular graphs with
an eigenvalue multiplicity k and showed that all such graphs are 2-homogeneous.
We also classify bipartite almost 2-homogeneous distance-regular graphs with di-
ameter d ≥ 4. In particular, we prove that such a graph is either 2-homogeneous
(and thus classified by Nomura and Yamazaki), or a folded k-cube for k even, or a
generalized 2d-gon with order (1, k − 1).
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1 Introduction

Let Γ be a distance-regular graph with diameter d and let r ∈ {1, . . . , d−1}. We say that

the parameter γr exists, when for all vertices z of Γ the following holds:

|Γ(x) ∩ Γ(y) ∩ Γr−1(z)| = γr, for all x, y ∈ Γr(z), such that ∂(x, y) = 2,

i.e., two vertices at distance two and at distance r from z have precisely γr common neigh-

bours that are at distance r − 1 from z. If Γ is bipartite, then it is called 2-homogeneous

in the sense of Nomura [9], when the parameters γr exist for all r ∈ {1, . . . , d − 1}. No-

mura [10] (see also Curtin [3]) showed that if the graph Γ is a 2-homogeneous bipartite

distance-regular graph, then Γ is (i) a cycle, (ii) a hypercube, (iii) a complete bipartite

graph, (iv) a complete bipartite graph minus a matching, (v) a Hadamard graph, i.e., a

distance-regular graph with intersection array {4γ, 4γ − 1, 2γ, 1; 1, 2γ, 4γ − 1, 4γ} where

γ ∈ N, or (vi) a graph with intersection array {k, k − 1, k − c, c, 1; 1, c, k − c, k − 1, k},

where k = γ(γ2 + 3γ + 1), c = γ(γ + 1) and γ ∈ N.

The well known Terwilliger tree bound [12] (see Godsil [5, Lemma 13.4.4]) implies

that an eigenvalue multiplicity of a triangle-free distance-regular graph is either 1 or at

least its valency. If a distance-regular graph has an eigenvalue with multiplicity equal to

its valency, then this often yields some additional combinatorial properties. For example,

Yamazaki [13] showed that if a bipartite distance-regular graph Γ of valency k has an

eigenvalue of multiplicity k, then the graph Γ is 2-homogeneous. Combining Nomura’s and

Yamazaki’s results gives the following classification of bipartite distance-regular graphs

with an eigenvalue multiplicity equal to its valency:

Theorem 1 (Nomura & Yamazaki) Let Γ be a bipartite distance-regular graph with

valency k. Then Γ has an eigenvalue with multiplicity k if and only if Γ is one of the

following graphs:

(i) the (2n)-gon for n ≥ 2;

(ii) the k-cube for k ≥ 1;

(iii) the complete bipartite graph Kk+1,k+1 minus a matching for k ≥ 2;

(iv) a Hadamard graph, i.e., a distance-regular graph with intersection array

{4γ, 4γ − 1, 2γ, 1; 1, 2γ, 4γ − 1, 4γ}, where k = 4γ, γ ∈ N;

(v) a distance-regular graph with intersection array

{k, k − 1, k − c, c, 1; 1, c, k − c, k − 1, k},

where k = γ(γ2 + 3γ + 1), c = γ(γ + 1), γ ∈ N.
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Let Γ be a triangle-free distance-regular graph with valency k ≥ 3 and with eigenvalue

multiplicity k. It turns out that the girth of Γ is at most five, see Lemma 7(iv). Therefore,

we can consider separately the following three cases: (i) c2 = 1, a2 ≥ 1; (ii) c2 ≥ 2, a2 = 0;

and (iii) c2 ≥ 2, a2 ≥ 1. A complete classification of cases (i) and (iii) still seems to be

beyond reach. In this paper we will give the complete classification of the case (ii), i.e.,

triangle- and pentagon-free distance-regular graphs with diameter d ≥ 2, valency k, and

an eigenvalue multiplicity k. The following is our first result.

Theorem 2 Let Γ be a triangle- and pentagon-free distance-regular graph with diameter

d ≥ 2 and valency k. Then Γ has an eigenvalue with multiplicity k if and only if Γ is one

of the following graphs:

(i) the n-gon for n ≥ 6;

(ii) the k-cube for k ≥ 2;

(iii) the complete bipartite graph Kk+1,k+1 minus a matching for k ≥ 2;

(iv) a Hadamard graph, i.e., a distance-regular graph with intersection array

{4γ, 4γ − 1, 2γ, 1; 1, 2γ, 4γ − 1, 4γ}, where k = 4γ, γ ∈ N;

(v) a distance-regular graph with intersection array

{k, k − 1, k − c, c, 1; 1, c, k − c, k − 1, k},

where k = γ(γ2 + 3γ + 1), c = γ(γ + 1), γ ∈ N;

(vi) the folded k-cube for k odd and k ≥ 7.

Remarks: (a) It is not known whether a Hadamard graph exists for every positive integer

γ, however, its existence is equivalent to the existence of a Hadamard matrix of order 4γ.

For the survey of Hadamard matrices see for example Hedayat and Wallis [6] or Seberry

and Yamada [11].

(b) In the case (v) there are only two examples known, namely for γ = 1 the 5-cube and

for γ = 2 the bipartite double of the Higman-Sims graph. For integers γ ≥ 3 the existence

is still undecided.

A bipartite distance-regular graph Γ with diameter d ≥ 3 is called almost 2-homogeneous,

if the parameter γr exists for all r ∈ {1, . . . , d − 2}. Almost 2-homogeneous graphs were

introduced and studied by Curtin [4]. Observe that γ1 = 1, so γ1 exists for every distance-

regular graph. Therefore, all bipartite distance-regular graphs with diameter 3 are almost

2-homogeneous. So we will investigate only almost 2-homogeneous distance-regular graphs

with diameter d ≥ 4. Our second result is the classification of these graphs. We will prove

the following result.
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Theorem 3 A bipartite distance-regular graph with diameter d ≥ 4 and valency k is

almost 2-homogeneous if and only if Γ is one of the following graphs:

(i) the (2d)-gon;

(ii) the d-cube;

(iii) a Hadamard graph, i.e., a graph with intersection array

{4γ, 4γ − 1, 2γ, 1; 1, 2γ, 4γ − 1, 4γ}, where k = 4γ, γ ∈ N;

(iv) a graph with intersection array

{k, k − 1, k − c, c, 1; 1, c, k − c, k − 1, k},

where k = γ(γ2 + 3γ + 1), c = γ(γ + 1), γ ∈ N;

(v) the folded 2d-cube;

(vi) a generalized 8-gon with order (1, k − 1), i.e., a distance-regular graph with inter-

section array {k, k − 1, k − 1, k − 1; 1, 1, 1, k};

(vii) a generalized 12-gon with order (1, k − 1), i.e., a distance-regular graph with inter-

section array {k, k − 1, k − 1, k − 1, k − 1, k − 1; 1, 1, 1, 1, 1, k}.

Our paper is organized as follows. After preliminaries in Section 2, we will derive some

results concerning triangle- and pentagon free distance-regular graphs with eigenvalue

multiplicity equals to the valency in Section 3. In particular, we will show that such

graphs have some additional combinatorial properties. In Section 4 we prove Theorems 2

and 3.

2 Partitions

In this section we recall some definitions and basic concepts about distance-regular graphs

and their partitions. See Brouwer, Cohen and Neumaier [1] and Godsil [5] for more

background information.

Let Γ be a finite, undirected, connected graph, without loops or multiple edges. We

denote the vertex set of Γ by V Γ. For arbitrary x, y ∈ V Γ, let ∂Γ(x, y) = ∂(x, y) denote

the distance between x and y, i.e., the length of a shortest path connecting x and y. Let

d = d(Γ) := max{∂(x, y)|x, y ∈ V Γ} denote the diameter of Γ. For x ∈ V Γ and for an

integer i we denote by Γi(x) the set of vertices of Γ at distance i from x. We abbreviate

Γ(x) := Γ1(x) and ki(x) = |Γi(x)|.

If Π is an arbitrary partition of the vertex set of a graph Γ, then there is an obvious

concept of a quotient graph Γ/Π. Given a partition Π on the vertex set of a graph Γ
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(into nonempty classes), we define the quotient graph Γ/Π on the classes of Π by defining

two distinct classes C, C ′ ∈ Π to be adjacent if Γ contains an edge joining a vertex of

C to a vertex of C ′. The partition Π is called regular (also equitable) if for any two

classes C, C ′ ∈ Π, the number of vertices in C ′ adjacent to x ∈ C is a constant e(C, C ′)

independent of x ∈ C.

A notion of a covering graph is an opposite concept of the quotient graph corresponding

to the regular partition Π with e(C, C ′) ∈ {0, 1} and e(C, C) = 0 for every C, C ′ ∈ Π. In

the next lemma it is demonstrated that some special graphs with valency k have k-cubes

for covering graphs. For, we need two more definitions.

A connected graph Γ is called a rectagraph if it is triangle free and if any two vertices

of Γ at distance 2 have exactly 2 common neighbours. By Brouwer et al. [1, Prop. 1.1.2],

every rectagraph is regular. An s-claw in a graph Γ is a subgraph of Γ which is isomorphic

to the complete bipartite graph K1,s.

Lemma 4 (Brouwer et al. [1, Prop. 4.3.6, Cor. 4.3.7]) Let Γ be a rectagraph with

v vertices and valency k such that any 3-claw determines a unique 3-cube. Then the

following (i), (ii) hold.

(i) There exists a map π from a k-cube to Γ preserving distances ≤ 2. If Γ does not

contain pentagons, then π also preserves distance 3.

(ii) If x and y are two adjacent vertices of Γ, then each vertex in π−1(x) is adjacent to

a unique vertex in π−1(y). In particular, |π−1(x)| = |π−1(y)|. It follows that v | 2k.

We now define distance-regular graphs. A connected graph Γ with diameter d is said

to be distance-regular, whenever for all integers h, i, j (0 ≤ h, i, j ≤ d), and all x, y ∈ V Γ

with ∂(x, y) = h, the number

ph
ij := |{z | z ∈ V Γ, ∂(x, z) = i, ∂(y, z) = j}| (1)

is independent of x, y. The constants ph
ij are known as the intersection numbers of Γ.

For convenience, set ci := pi
1i−1 for 1 ≤ i ≤ d, ai := pi

1i for 0 ≤ i ≤ d, bi := pi
1i+1 for

0 ≤ i ≤ d − 1, and c0 = bd = 0. Observe that ki = ki(x) = p0
ii for 0 ≤ i ≤ d and for

all x ∈ V Γ. It is well known that ki = (b0 · · · bi−1)/(c1 · · · cd) (0 ≤ i ≤ d). Moreover, for

0 ≤ i ≤ d we have

ci + ai + bi = k,

where k := k1.
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Let Γ be a distance-regular graph with diameter d. For each integer i (0 ≤ i ≤ d), let

Ai be the matrix with rows and columns indexed by V Γ, and x, y entry

(Ai)xy =

{

1 if ∂(x, y) = i,
0 if ∂(x, y) 6= i.

We call Ai the ith distance matrix of Γ. Observe (i) A0 = I, where I denotes the

identity matrix; (ii) AT
i = Ai (0 ≤ i ≤ d); (iii)

∑d

h=0
Ah = J , where J denotes the

all 1’s matrix, and (iv) AiAj =
∑d

h=0
ph

ijAh (0 ≤ i, j ≤ d). These properties imply that

the matrices A0, A1, . . . , Ad form a basis for a commutative semi-simple R-algebra M ,

known as the Bose-Mesner algebra. By Godsil [5, Thm. 12.2.1], the algebra M has a

second basis E0, E1, . . . , Ed such that (i) E0 = |V Γ|−1J ; (ii) ET
i = Ei (0 ≤ i ≤ d); (iii)

∑d

h=0
Eh = I, and (iv) EiEj = δijEi (0 ≤ i, j ≤ d). We refer to E0, E1, . . . , Ed as the

principal idempotents of Γ, and E0 as the trivial idempotent.

Set A := A1 and let θ0, θ1, . . . , θd denote the real numbers which satisfy

A =

d
∑

i=0

θiEi.

Then AEi = EiA = θiEi (0 ≤ i ≤ d), and θ0 = k. We refer to θi as the eigenvalue of Γ

associated with Ei, and call θ0 the trivial eigenvalue of Γ. For each integer i (0 ≤ i ≤ d),

let mi be the rank of Ei. We refer to mi as the multiplicity of Ei (or θi).

For notational convenience, we identify V Γ with the standard orthonormal basis in

the Euclidean space (V, 〈 , 〉), where V = R
|V Γ| (column vectors), and where 〈 , 〉 is the

inner product

〈u, v〉 = utv (u, v ∈ V ).

We now review the cosine sequence of Γ. Let θ be an eigenvalue of Γ, and let E be the

associated principal idempotent. Let w0, w1, . . . , wd be the real numbers satisfying

E :=
mθ

|V Γ|

d
∑

i=0

wiAi, (2)

where mθ denotes the multiplicity of θ. We refer to wi as the ith cosine of Γ with respect

to θ (or E), and call w0, w1, . . . , wd the cosine sequence of Γ associated with θ (or E). The

following basic result can be found for example in Brouwer et al. [1, Prop. 4.1.1].

Lemma 5 Let Γ be a distance-regular graph with diameter d. Let θ be an eigenvalue of

Γ with multiplicity mθ, the associated principal idempotent E, and the associated cosine

sequence w0, w1, . . . , wd. Then the following (i), (ii) hold.

(i) For all x, y ∈ V Γ with ∂(x, y) = i we have 〈Ex, Ey〉 = wi · mθ/|V Γ|.
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(ii) The cosine sequence satisfies w0 = 1 and the three-term recurrence

ciwi−1 + aiwi + biwi+1 = θwi (0 ≤ i ≤ d). (3)

In particular, we have w1 = θ/k and for d ≥ 2 also

w2 = (θ2 − a1θ − k)/(kb1) and kb1(1 − w2) = (k − θ)(θ + k − a1). (4)

We end this section with the following definitions. Let A ⊆ V Γ and let E be a principal

idempotent of Γ. Then 〈A〉E will denote the vector space spanned by {Ea | a ∈ A}. Let

` and n be positive integers and let v1, v2, . . . , v` be vectors in the Euclidean space R
n.

Then the Gram matrix of vectors v1, v2, . . . , v` is the matrix G of dimension `× ` defined

by Gij = 〈vi, vj〉, 1 ≤ i, j ≤ `. Observe that the determinant of G is zero if and only if

the vectors v1, v2, . . . , v` are linearly dependent.

3 On the eigenvalue multiplicity

In this section we will show that a triangle- and pentagon-free distance-regular graph Γ

with an eigenvalue multiplicity equal to the valency has some additional combinatorial

properties. We begin with a simple observation.

Lemma 6 Let n be a positive integer, I be the n×n identity matrix and J all ones matrix

of the same dimension. Then det(aI + bJ) = an−1(a + nb) for any scalars a and b.

Proof. For the all 1’s vector j we have (aI+bJ)x = λx if and only if (λ−a)x = b 〈x, j〉j.

Lemma 7 Let Γ be a triangle-free distance-regular graph with valency k ≥ 3. Let θ 6= ±k

be an eigenvalue of Γ with multiplicity mθ and let E be the associated principal idempotent.

Then the following (i)–(iv) hold.

(i) mθ ≥ k.

(ii) θ 6= 0 if and only if 〈Γ(x)〉E has dimension k for all vertices x ∈ V Γ.

(iii) If θ = 0 then 〈({x} ∪ Γ(x)) \ {y}〉E has dimension k for all x ∈ V Γ and for all

y ∈ Γ(x).

(iv) If mθ = k, then the girth of Γ is at most five.

6



Proof. (i) This is an immediate consequence of Terwilliger Tree Bound, see [12].

(ii) Let Γ(x) = {y1, . . . , yk} and let G be the Gram matrix of vectors Eyi, i = 1, 2, . . . , k.

By Lemma 5(i), we have

G =
mθ

v
(Ik + w2(Jk − Ik)) =

mθ

v
((1 − w2)Ik + w2Jk),

where Ik and Jk are the identity and the all 1’s matrix with dimension k×k, and v = |V Γ|.

By Lemma 6, we observe that (v/mθ)
k det(G) = (1−w2)

k−1(1+(k−1)w2). Since θ 6= ±k

we have 1 = w0 6= w2. Thus det(G) 6= 0 if and only if w2 6= −1/(k− 1), implying that the

set of vectors {Eyi | i = 1, 2, . . . , k} is linearly independent if and only if w2 6= −1/(k−1),

i.e., θ 6= 0 by a1 = 0 and (4).

(iii) Suppose θ = 0, i.e., w1 = 0 and w2 = −1/(k − 1). Let Γ(x) = {y1, . . . , yk}. With-

out loss of generality we may assume y = yk. Let G be the Gram matrix of vectors

Ex, Ey1, Ey2, . . . , Eyk−1. Using Lemma 5(i), Gauss elimination and Lemma 6, we calcu-

late

(v/mθ)
k det(G) = (1 − w2)

k−2(1 + (k − 2)w2).

But since w2 = −1/(k − 1) 6= 1, we find det(G) 6= 0, showing that the vectors Ex, Ey1,

Ey2, . . . , Eyk−1 are linearly independent.

(iv) Assume the girth of Γ is greater then 5. Choose x ∈ V Γ and y ∈ Γ(x) and let

T be the graph induced on Γ(x) ∪ Γ(y). Since the girth of Γ is greater then 5, T is a

tree and ∂T (v1, v2) = ∂Γ(v1, v2) for every v1, v2 ∈ V T . So, by Terwilliger tree bound,

mθ ≥ 2(k − 1) = k + k − 2 > k, a contradiction.

Let Γ be a triangle- and pentagon-free distance-regular graph with an eigenvalue multi-

plicity equal to the valency. Since the parameter γ1 always exists, the parameter γ2 is

the next to consider. In the next lemma we will show, that the parameter γi exists when

ai = 0, so in particular γ2 exists.

Lemma 8 Let Γ be a triangle- and pentagon-free distance-regular graph with diameter

d ≥ 3, valency k ≥ 3, and an eigenvalue θ with multiplicity k. Then the following (i)–(iii)

hold.

(i) c2 ≥ 2.

(ii) θ 6= 0.

(iii) For all 1 ≤ i ≤ d − 1 with ai = 0 the parameters γi exist. In particular, γ1 = 1 and

γ2 =
(k − θ2)(2c2 − k) + c2

2(θ
2 − 1)

θ2(k − 1)
.
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Proof. Let E be the principal idempotent associated with the eigenvalue θ. For a vertex

u of Γ we denote by û the vector Eu. Let x ∈ V Γ and Γ(x) = {y1, . . . , yk}.

(i) An immediate consequence of Lemma 7(iv).

(ii) Assume θ = 0. Then a1 = a2 = 0, (4) and (3) implies w1 = 0 = w3 and w2 =

−1/(k − 1). By Lemma 7(iii), 〈({x} ∪ Γ(x)) \ {yk}〉E has dimension k. Hence, since the

multiplicity of θ is k, the set {x̂, ŷ1, . . . , ŷk−1} is a basis for the vector subspace 〈V Γ〉E.

Let z be a neighbour of yk different from x. So ∂(x, z) = 2, because Γ is triangle-free, and

there exists real numbers α1, . . . , αk−1, δ such that

ẑ =

k−1
∑

i=1

αi ŷi + δ x̂. (5)

Without loss of generality we may assume that y1, y2, . . . , yc2−1 are adjacent to z. Because

a1 = a2 = 0, we have ∂(z, yi) = 3 for c2 ≤ i ≤ k − 1. By taking the inner product of both

sides of Equation (5) with ŷj, for j = k and j = 1, . . . , k − 1, and using Lemma 5(i) and

w1 = 0 = w3, we find

k−1
∑

`=1

α`w2 = 0 and

k−1
∑

`=1

α`w2 + (1 − w2)αj = 0 for j ∈ {1, . . . , k − 1}. (6)

Therefore, since w2 = −1/(k − 1) 6= 1, we obtain α1 = · · · = αk−1 = 0. Hence ẑ = δx̂. As

x̂ and ẑ have both the same length, it follows that δ = ±1 and so also w2 = 〈x̂, ẑ〉 v/k =

δ〈x̂, x̂〉 v/k = ±1, where v is the number of vertices of Γ. Since w2 = −1/(k − 1) 6= 1 we

have −1/(k − 1) = −1, i.e., k = 2. A contradiction! Therefore, θ 6= 0.

(iii) Suppose ai = 0 for some i ∈ {1, . . . , d− 1}. By (ii) above, we have θ 6= 0 and so also

w1 = θ/k 6= 0. Let y ∈ Γ2(x) and z ∈ Γi(x) ∩ Γi(y). Obviously γ1 = 1, so we assume

i ≥ 2. Furthermore, without loss of generality we assume ∂(y, yj) = 1 for 1 ≤ j ≤ c2.

Since a1 = a2 = 0, we have ∂(y, yj) = 3 for c2 + 1 ≤ j ≤ k. By Lemma 7(ii), there exists

real numbers αj such that

ŷ =
k

∑

`=1

α` ŷ`. (7)

Similarly as in (ii) above, by taking the inner product of both sides of Equation (7) with

ŷj for j = 1, . . . , k, we find

k
∑

`=1

α`w2 + (1 − w2)αj =

{

w1 if j ∈ {1, 2, . . . , c2}
w3 if j ∈ {c2 + 1, . . . , k},

(8)

and hence α1 = · · · = αc2 =: α, αc2+1 = · · · = αk =: β. From this, (8) and, by taking the

inner product of both sides of (7) also with x̂, we obtain,

w1 = α + ((c2 − 1)α + β(k − c2))w2 and w2 = (c2α + β(k − c2))w1. (9)
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As w2 6= 1, w1 6= 0 and k 6= c2, we can solve the above two equalities for α and β and

obtain

α =
(w1 − w2)(w1 + w2)

w1(1 − w2)
and β =

w2(w2 − 1) + c2(w1 − w2)(w1 + w2)

(k − c2)w1(w2 − 1)
.

Let γ = γi(x, y, z) be the cardinality of the set Γ(x) ∩ Γ(y) ∩ Γi−1(z). We may assume

Γ(x) ∩ Γ(y) ∩ Γi−1(z) = {y1, . . . , yγ}. Observe that ai = 0 implies ∂(z, yj) = i + 1

for γ + 1 ≤ j ≤ c2. Since |Γ(x) ∩ Γi−1(z)| = ci, we may assume ∂(z, yj) = i − 1 for

c2+1 ≤ j ≤ c2+ci−γ. Again, since ai = 0, we have ∂(z, yj) = i+1 for c2+ci−γ+1 ≤ j ≤ k.

By calculating the inner product of ŷ and ẑ, we get

wi = γαwi−1 + (c2 − γ)αwi+1 + (ci − γ)βwi−1 + (k − c2 − ci + γ)βwi+1. (10)

Observe that (10) is a linear equation for γ with the coefficient beside γ equal to (α −

β)(wi−1 − wi+1). Let us show that (α − β)(wi−1 − wi+1) 6= 0. Observe α − β = θ/(k −

c2) 6= 0 since θ 6= 0. Let us suppose wi−1 = wi+1. Then, by ai = 0 and (3), we

obtain θwi = ciwi−1 + biwi+1 = kwi+1 and thus wi+1 = w1wi. By Equation (10), we

find wi = wi+1(αc2 + β(k − c2)), and hence, by the second equation of (9), we have

w2wi+1 = w1wi. Therefore, w2w1wi = w1wi. If wi = 0, then also wi−1 = wi+1 = 0.

But then, by the recursion relation of the cosine sequence {wi}, we have also w1 = 0,

a contradiction. So wi 6= 0 and hence w2 = 1, which is equivalent to θ = ±k and

this is clearly impossible. Hence we can calculate γ from Equation (10) and is therefore

independent of the choice of x, y, z.

We obtain the formula for γ2 from (10) for i = 2.

The following result and its proof are essentially the same as in Nomura [10, Lemma 5.1].

Lemma 9 Let Γ be a triangle- and pentagon-free distance-regular graph with diameter

d ≥ 3, valency k. Pick an integer i, 2 ≤ i ≤ d − 1, such that ai = 0 and that the

parameter γi exists. Then

(i) If γ2 exists, then (k − 2)(γ2 − 1) = (c2 − 1)(c2 − 2);

(ii) γi(ci+1 − 1) = ci(c2 − 1).

Proof. (i) Let u ∈ V Γ and v ∈ Γ(u), w ∈ Γ2(u) ∩ Γ(v). Count the number of edges

between Γ(u) ∩ Γ(w) ∩ Γ2(v) and Γ(v) ∩ Γ2(u) ∩ Γ2(w) in two different ways.

(ii) Let u ∈ V Γ and v ∈ Γi(u), w ∈ Γi+1(u) ∩ Γ(v). Count the number of edges between

Γi−1(u) ∩ Γ(v) and Γi(u) ∩ Γ(w) ∩ Γ2(v) in two different ways.
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4 Proofs of Theorems 2 and 3

In this section we prove our main results. In order to prove Theorem 2 and Theorem 3

we will first prove Theorem 10 and Theorem 11, which are also of independent interest.

Recall that we have identified the vertex set of an arbitrary graph ∆ with the standard

orthonormal basis in R
n, where n = |V ∆|. For an arbitrary vector v ∈ R

n and for every

x ∈ V ∆ we denote by vx = 〈v, x〉 the component of v corresponding to the vertex x.

Theorem 10 Let Γ be a distance-regular graph with diameter d ≥ 3, valency k ≥ 3,

a1 = a2 = 0 and ci = i for i = 1, 2, 3. Then Γ has an eigenvalue θ ∈ {k − 2, 2− k} if and

only if Γ is the k-cube or k odd, k ≥ 7 and Γ is the folded k-cube.

Proof. If Γ is the k-cube or k odd, k ≥ 7 and Γ is the folded k-cube, then Γ has an

eigenvalue θ = k − 2 or θ = 2 − k respectively, see Brouwer et al. [1, p. 261, p. 264].

Let us now assume the graph Γ has an eigenvalue θ ∈ {k − 2, 2 − k}. Since Γ is a

rectagraph (i.e., a1 = 0 and c2 = 2), c3 = 3 and a2 = 0 ≤ 3, every 3-claw in Γ determines

a unique 3-cube by Brouwer et al. [1, Lemma 4.3.5 (ii)]. Therefore, by Lemma 4(i),

there exists a map π from the k-cube ∆ to Γ, which preserves distances 1, 2 and 3. Let

Π = {π−1(x) | x ∈ V Γ}. Then two vertices in the same class are at distance at least 7.

By Lemma 4(ii), between two classes of Π there is either a perfect matching or nothing

(so the partition Π of the vertex set of ∆ is uniformly regular), and the quotient graph

∆/Π is the graph Γ. Hence the eigenvalue θ is also an eigenvalue of ∆, see Godsil [5,

Lemma 5.2.2(a)].

We construct an eigenvector of θ in ∆ from the cosine sequence w0, w1, . . . , wd of Γ

corresponding to θ. Choose x0 ∈ V Γ. So (w0, w1, . . . , wd)
T is a (right) eigenvector of the

tridiagonal matrix corresponding to the distance partition of the graph Γ, see Brouwer et

al. [1, Sect. 4.1B], and a vector v ∈ R
n, where n = |V Γ|, defined by vx = wi if and only

if ∂(x0, x) = i, is an eigenvector of Γ corresponding to θ by Godsil [5, Lemma 5.2.2(a)].

For i ∈ {0, 1, . . . , d} define

Di =
⋃

{π−1(x) | x ∈ V Γ, ∂(x0, x) = i}.

Observe that, by Brouwer et al. [1, Lemma 11.1.4], Di = {x ∈ V ∆ | ∂(x, D0) = i},

where ∂(x, D0) = min{∂(x, y) | y ∈ D0}. Therefore, the vector v ∈ R
2k

, defined by

vx = (k/2k)wi if and only if x ∈ Di, is an eigenvector of ∆ corresponding to θ, such that

vx = (k/2k)w0 = k/2k if x ∈ D0.

Choose x0 ∈ D0 and let xi, 1 ≤ i ≤ k, be the neighbours of x0 in ∆. They are

members of D1, since the map π preserves adjacency. Let E be the principal idempotent

of ∆ corresponding to θ. We will now show that v = Ex0. Note that we have Ev = v,
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since v is an eigenvector for ∆ corresponding to θ, and that the vectors Exi, 1 ≤ i ≤ k,

are a basis of the eigenspace corresponding to θ, by Lemma 7, as the multiplicity of θ in

∆ is k, see Brouwer et al. [1, p. 261]. We have, by Lemma 5 and the definition of the

vector v,

〈Ex0, Exi〉 =
k

2k

θ

k
=

k

2k
w1 = vxi

= 〈v, xi〉 = 〈Ev, xi〉 = 〈v, Exi〉 for 1 ≤ i ≤ k.

Therefore, v = Ex0. Let w0(∆), w1(∆), . . . , wk(∆) be the cosine sequence corresponding

to θ in ∆. Observe that (Ex0)x = (k/2k)wi(∆) if and only if ∂(x0, x) = i, since E =

(k/2k)
∑d

j=0
wj(∆)Aj, where Aj is the j-th distance matrix of ∆. So, by Brouwer et al.

[1, Prop. 4.4.7], the set {x ∈ V ∆ | (Ex0)x = k/2k}, which contains D0, is either {x0} or

{x0, y0}, where y0 is the unique vertex in ∆, which is at distance k from x0. It follows Γ

is either the k-cube, or the folded k-cube. Assume Γ is the folded k-cube. If k is even,

then neither k − 2 nor 2 − k is eigenvalue of Γ, see Brouwer et al. [1, p. 264]. Hence k

must be odd. If k is 5, then d = 2, thus k ≥ 7.

Theorem 11 Let Γ be a distance-regular graph with diameter d ≥ 3, valency k ≥ 3,

a1 = a2 = 0, for which the parameter γ2 exist. Then (i) γ2 = c2 = 1, or (ii) γ2 = 1,

c2 = 2 and c3 = 3, or (iii) Γ is bipartite 2-homogeneous graph.

Proof. Set γ := γ2. By k ≥ 3, it follows that γ 6= 0. We first consider the case γ = 1. If

c2 = 1 then we obtain the case (i), so we may assume c2 ≥ 2. Then it follows from Lemma

9(i) that c2 = 2 and hence, by Lemma 9(ii), c3 = 3. So we obtain the case (ii). It remains

to consider the case γ ≥ 2. Then we have, by Lemma 9(i), c2 > 2. If γ ≥ c2, then we

obtain from Lemma 9(i) c2 ≥ k, which is not possible as d ≥ 3. Thus c2 > γ. Let us show

2c3 ≥ k +3. As c2 > γ, it follows that c2γ − 2c2 +2γ = c2(γ − 2)+2γ > γ2 > γ(γ− 1), so

c2γ − 2c2 + 2γ

γ(γ − 1)
> 1.

On the other hand, from Lemma 9 we calculate

k =
(c2 − 1)(c2 − 2)

γ − 1
+ 2 and c3 =

c2(c2 − 1)

γ
+ 1, (11)

so we have

2c3 − k = (c2 − 1)
c2γ − 2c2 + 2γ

γ(γ − 1)
.

It follows that 2c3 − k > c2 − 1 ≥ 2, i.e., 2c3 ≥ k + 3.

We will now derive two consequences, namely that Γ is bipartite and has diameter at

most 5. Suppose Γ is not bipartite and let i be the minimal integer such that ai > 0. By
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Brouwer et al. [1, Prop 5.5.4 (ii)], i ≥ 3 and 2c3 ≥ k + 3, we find ai ≥ ci ≥ c3 > k/2,

which is clearly impossible. So Γ is bipartite. The bound d ≤ 5 follows immediately from

b3 < c3, see Brouwer et al. [1, Prop. 4.1.6(ii)].

Let us now show that Γ is 2-homogeneous. We will first show that c2 | 2γ(γ +1). Since

k2 = k(k − 1)/c2 is integral, c2 divides k(k − 1). From Lemma 9(i) we calculate k(γ − 1)

and (k − 1)(γ − 1) in order to find (γ − 1)2k(k − 1) = (c2
2 − 3c2 + 2γ)(c2

2 − 3c2 + γ + 1).

Thus c2 must divide 2γ(γ + 1).

Since Γ is bipartite, we obtain from (11)

b3 = k − c3 =
(c2 − γ)(c2 − γ − 1)

γ(γ − 1)
. (12)

Let us now consider separately the cases d = 3, d = 4 and d = 5. If d = 3, then b3 = 0

and hence, by (12), (c2 − γ)(c2 − γ − 1) = 0. Since c2 > γ, we obtain c2 = γ + 1. But

then, by (11), k = γ+2 and Γ is the complete bipartite graph Kk+1,k+1 minus a matching,

which is 2-homogeneous by Theorem 1.

Assume d = 4. By Brouwer et al. [1, Lemma 4.1.7], we find p4
42 = k(k − 1 − c3)/c2.

But since p4
42 is integral, c2 divides k(k − 1 − c3). By direct computation, we find from

(11) γ(γ − 1)2k(k − 1 − c3) = (c2 − 1)(c2 − 2γ)(c2
2 − 3c2 + 2γ), hence c2 divides 4γ2. But

c2 divides also 2γ(γ + 1), so c2 | 4γ. Since c2 > γ, we obtain c2 ∈ {4γ/3, 2γ, 4γ}. We

will consider each of this three cases separately. If c2 = 4γ then, by the integrality of k,

γ ∈ {2, 3, 4, 7}. Only for γ = 3 the number k2 is integral, but in this case the number

p4
42 is not integral. If c2 = 2γ then, by (11), k = 4γ and c3 = 4γ − 1. Hence Γ is a

distance-regular graph with intersection array {4γ, 4γ − 1, 2γ, 1; 1, 2γ, 4γ − 1, 4γ}, i.e., a

Hadamard graph, which is 2-homogeneous by Theorem 1. Finally, if c2 = 4γ/3, then, by

the integrality of k, γ = 3. But in this case we have c2 = 4, k = 5 and c3 = 5, which is in

contradiction with d = 4. This completes the proof of the case d = 4.

Assume d = 5. Then b3 ≥ c2 by Brouwer et al. [1, Prop. 4.1.6(ii)], and from (12) we

obtain (c2 − γ)(c2 − γ − 1) ≥ c2γ(γ − 1), i.e., c2 ≥ γ(γ + 1). Since c2 | 2γ(γ + 1), we have

c2 ∈ {γ(γ +1), 2γ(γ+1)}. Suppose first c2 = 2γ(γ +1). By the integrality of k, we obtain

(γ − 1) | 6, so γ ∈ {2, 3, 4, 7}. But for none of this possibilities the number k3 is integral.

So we can assume c2 = γ(γ+1). Then we have c2 = b3 and c3 = b2. Therefore, c4 | k(k−1)

by the integrality of k4. If c4 = k− 1, then Γ is a distance-regular graph with intersection

array {k, k− 1, k− c, c, 1; 1, c, k− c, k− 1, k}, where k = γ(γ2 +3γ +1), c = c2 = γ(γ +1).

In this case Γ is 2-homogeneous by Theorem 1. Assume now c4 < k−1. Since c4 | k(k−1),

we have c4 = k(k − 1)/(k + a) for some positive integer a and, by c4 ≥ c3, we obtain

a ≤ γ2 + 2γ − 1 − 1/(γ(γ + 2)). Hence, by the integrality of a, a ≤ γ2 + 2γ − 2. Observe

that Γ is not antipodal because b4 = k − c4 > c1 = 1. Hence, by Brouwer et al. [1,

Prop. 5.6.1] and a5 = 0, we must have k2 ≤ k5(k5 − 1). By direct computation, we obtain
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k2 = (γ2 + 3γ + 1)(γ2 + 2γ − 1) and k5 = a + 1. Thus

(γ2 + 3γ + 1)(γ2 + 2γ − 1) ≤ (a + 1)a ≤ (γ2 + 2γ − 1)(γ2 + 2γ − 2),

which gives us γ ≤ −3, a contradiction!

We are now ready to give the proofs of Theorem 2 and Theorem 3.

Proof of Theorem 2. Since distance-regular graphs with k = 2 are cycles, we can assume

k ≥ 3. If d = 2, then Γ is a bipartite strongly regular graph, i.e., a complete bipartite

graph Kk,k. But the only complete bipartite graph with an eigenvalue multiplicity equal

to its valency is the 4-gon, i.e., the 2-cube. Thus we can assume d ≥ 3. If Γ has an

eigenvalue with multiplicity k, then, by Lemma 8, c2 ≥ 2, parameter γ2 exists and it is

equal to

γ2 =
(k − θ2)(2c2 − k) + c2

2(θ
2 − 1)

θ2(k − 1)
. (13)

By Theorem 11, either Γ is bipartite and 2-homogeneous, or γ2 = 1, c2 = 2 and c3 = 3.

In the first case we are done by Theorem 1, so assume γ2 = 1, c2 = 2 and c3 = 3. From

(13) we find θ ∈ {k − 2, 2 − k}, so, by Theorem 10, Γ is the k-cube or k ≥ 7, k odd and

Γ is the folded k-cube.

On the other hand, graphs (ii)-(v) from Theorem 2 are bipartite (and hence triangle-

and pentagon-free) and they all have an eigenvalue with multiplicity k by Theorem 1.

Any n-gon, n ≥ 6, is also triangle- and pentagon-free and it has an eigenvalue 2 cos(2π/n)

with multiplicity 2. Finally, folded k-cube, k odd and k ≥ 7, is triangle- and pentagon-free

and it has eigenvalue 2 − k with multiplicity k.

Proof of Theorem 3. Since distance-regular graphs with k = 2 are cycles, we can assume

k ≥ 3. If Γ is almost 2-homogeneous bipartite distance-regular graph with diameter d ≥ 4,

then parameter γ2 exists. So, by Theorem 11, either Γ is bipartite and 2-homogeneous,

or γ2 = 1. If the first case the result follows from Nomura [10, Thm. 1.2]. Therefore,

assume γ2 = 1.

If c2 = 1, then, by Curtin [4, Thm. 4.4], Γ is a regular generalized 2d-gon of order

(1, k − 1). But, by d ≥ 4 and Brouwer et al. [1, Thm. 6.5.1], 2d ∈ {8, 12}. If c2 ≥ 2,

then, by Curtin [4, Thm. 4.7], Γ is the d-cube or the folded 2d-cube.

On the other hand, graphs (i)-(iv) from Theorem 3 are almost 2-homogeneous since

they are 2-homogeneous by Theorem 1, while the folded 2d-cube and a regular generalized

2d-gon of order (1, k− 1) are almost 2-homogeneous by Curtin [4, Thm. 4.4, Thm. 4.7].

5 Conclusions and comments

The conditions c3 = 3 and a2 = 0 in Theorem 10 are probably not necessary. If θ = k−2,

these conditions are not necessary, see Brouwer et al. [1, Thm. 4.4.11], but our proof
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does not seem to generalize in order to show this.

The argument of the proof of Theorem 10 follows an approach due to Meyerowitz [7], who

classified the completely regular codes of strength 0, that is a completely regular code,

whose quotient matrix has k − 2 as an eigenvalue, in the Hamming schemes, see also [2].
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