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Abstract

We classify triangle- and pentagon-free distance-regular graphs with diameter d > 2,
valency k, and an eigenvalue multiplicity k. In particular, we prove that such a graph
is isomorphic to a cycle, a k-cube, a complete bipartite graph minus a matching,
a Hadamard graph, a distance-regular graph with intersection array {k,k — 1,k —
c,c,1;1,¢,k — e,k — 1,k}, where k = y(y?> +3y+ 1), c = y(y+ 1), y € N, or a
folded k-cube, k£ odd and k£ > 7. This is a generalization of the results of Nomura
[10] and Yamazaki [13], where they classified bipartite distance-regular graphs with
an eigenvalue multiplicity k and showed that all such graphs are 2-homogeneous.
We also classify bipartite almost 2-homogeneous distance-regular graphs with di-
ameter d > 4. In particular, we prove that such a graph is either 2-homogeneous
(and thus classified by Nomura and Yamazaki), or a folded k-cube for k even, or a
generalized 2d-gon with order (1,5 —1).
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1 Introduction

Let T" be a distance-regular graph with diameter d and let r € {1,...,d—1}. We say that

the parameter -, exists, when for all vertices z of I' the following holds:
IT(x)NT(y) NTr1(2)| = s, for all z,y € T'.(z), such that d(x,y) = 2,

i.e., two vertices at distance two and at distance r from z have precisely -, common neigh-
bours that are at distance » — 1 from z. If I" is bipartite, then it is called 2-homogeneous
in the sense of Nomura [9], when the parameters ~, exist for all r € {1,...,d — 1}. No-
mura [10] (see also Curtin [3]) showed that if the graph I' is a 2-homogenecous bipartite
distance-regular graph, then I" is (i) a cycle, (ii) a hypercube, (iii) a complete bipartite
graph, (iv) a complete bipartite graph minus a matching, (v) a Hadamard graph, i.e., a
distance-regular graph with intersection array {4v,4vy — 1,2v,1;1, 27,4y — 1,4~} where
v € N, or (vi) a graph with intersection array {k,k — 1,k —c,c,1;1,¢,k — ¢,k — 1, k},
where k = y(7?*+3y+ 1), c=v(y+1) and v € N.

The well known Terwilliger tree bound [12] (see Godsil [5, Lemma 13.4.4]) implies
that an eigenvalue multiplicity of a triangle-free distance-regular graph is either 1 or at
least its valency. If a distance-regular graph has an eigenvalue with multiplicity equal to
its valency, then this often yields some additional combinatorial properties. For example,
Yamazaki [13] showed that if a bipartite distance-regular graph I' of valency k£ has an
eigenvalue of multiplicity k, then the graph I' is 2-homogeneous. Combining Nomura’s and
Yamagzaki’s results gives the following classification of bipartite distance-regular graphs

with an eigenvalue multiplicity equal to its valency:

Theorem 1 (Nomura & Yamazaki) Let I' be a bipartite distance-reqular graph with
valency k. Then I' has an eigenvalue with multiplicity k if and only if I' is one of the
following graphs:

(i) the (2n)-gon for n > 2;
(ii) the k-cube for k > 1;
(i11) the complete bipartite graph Kyi1 g1 minus a matching for k > 2;

(iv) a Hadamard graph, i.e., a distance-reqular graph with intersection array
{4y,4v — 1,27,1;1,27y,4v — 1,47}, where k =4, v € N;
(v) a distance-reqular graph with intersection array
{k,;k—1,k—c,c,1;1,¢,k—c,k—1,k},
where k =y(y? +3y+ 1), c=~v(y+1), v €N.
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Let T' be a triangle-free distance-regular graph with valency & > 3 and with eigenvalue
multiplicity k. It turns out that the girth of I" is at most five, see Lemma 7(iv). Therefore,
we can consider separately the following three cases: (i) ca = 1, ag > 1; (ii) co > 2, ag = 0;
and (iii) o > 2, ag > 1. A complete classification of cases (i) and (iii) still seems to be
beyond reach. In this paper we will give the complete classification of the case (ii), i.e.,
triangle- and pentagon-free distance-regular graphs with diameter d > 2, valency k, and

an eigenvalue multiplicity k. The following is our first result.

Theorem 2 Let I' be a triangle- and pentagon-free distance-reqular graph with diameter
d > 2 and valency k. Then I' has an eigenvalue with multiplicity k iof and only if " is one
of the following graphs:

(i) the n-gon for n > 6;
(i) the k-cube for k > 2;
(iii) the complete bipartite graph Ky p41 minus a matching for k > 2;

(iv) a Hadamard graph, i.e., a distance-reqular graph with intersection array
{4v,4v — 1,27,1;1,27,4y — 1,47}, where k =47, v € N;
(v) a distance-reqular graph with intersection array
{k;k =1,k —c,c,1;1,¢,k—c,k—1,k},
where k = y(7?2 +3y+1), c=y(y+1), vy €N;

(vi) the folded k-cube for k odd and k > 7.

Remarks: (a) It is not known whether a Hadamard graph exists for every positive integer
v, however, its existence is equivalent to the existence of a Hadamard matrix of order 4~.
For the survey of Hadamard matrices see for example Hedayat and Wallis [6] or Seberry
and Yamada [11].

(b) In the case (v) there are only two examples known, namely for v =1 the 5-cube and
for v = 2 the bipartite double of the Higman-Sims graph. For integers v > 3 the existence

is still undecided.

A bipartite distance-regular graph I' with diameter d > 3 is called almost 2-homogeneous,
if the parameter -, exists for all » € {1,...,d — 2}. Almost 2-homogeneous graphs were
introduced and studied by Curtin [4]. Observe that v, = 1, so ; exists for every distance-
regular graph. Therefore, all bipartite distance-regular graphs with diameter 3 are almost
2-homogeneous. So we will investigate only almost 2-homogeneous distance-regular graphs
with diameter d > 4. Our second result is the classification of these graphs. We will prove

the following result.



Theorem 3 A bipartite distance-reqular graph with diameter d > 4 and valency k is

almost 2-homogeneous if and only if I is one of the following graphs:

(i) the (2d)-gon;
(i) the d-cube;

(iii) a Hadamard graph, i.e., a graph with intersection array
{4v,4v — 1,27,1;1,2v,4y — 1,47}, where k =47, v € N;
(iv) a graph with intersection array
{k,;k—1,k—c,c,1;1,¢,k—c,k—1,k},
where k = y(72 +3y+1), c=y(y+1), vy €N;

(v) the folded 2d-cube;
(vi) a generalized 8-gon with order (1,k — 1), i.e., a distance-regular graph with inter-
section array {k,k — 1,k —1,k—1;1,1,1,k};
(vii) a generalized 12-gon with order (1,k — 1), i.e., a distance-reqular graph with inter-
section array {k,k— 1,k —1,k—1,k—1,k—1;1,1,1,1,1, k}.

Our paper is organized as follows. After preliminaries in Section 2, we will derive some
results concerning triangle- and pentagon free distance-regular graphs with eigenvalue
multiplicity equals to the valency in Section 3. In particular, we will show that such
graphs have some additional combinatorial properties. In Section 4 we prove Theorems 2
and 3.

2 Partitions

In this section we recall some definitions and basic concepts about distance-regular graphs
and their partitions. See Brouwer, Cohen and Neumaier [1] and Godsil [5] for more
background information.

Let T" be a finite, undirected, connected graph, without loops or multiple edges. We
denote the vertex set of I' by VI'. For arbitrary x,y € VI, let Or(x,y) = d(z,y) denote
the distance between x and y, i.e., the length of a shortest path connecting = and y. Let
d = d(I') := max{0(z,y)|z,y € VI'} denote the diameter of I". For z € VI and for an
integer ¢ we denote by I';(x) the set of vertices of I' at distance i from z. We abbreviate
[(x) :=T1(z) and k;(x) = |Ti(2)].

If IT is an arbitrary partition of the vertex set of a graph I', then there is an obvious

concept of a quotient graph I'/TI. Given a partition II on the vertex set of a graph I’
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(into nonempty classes), we define the quotient graph I'/TI on the classes of II by defining
two distinct classes C,C" € II to be adjacent if I contains an edge joining a vertex of
C to a vertex of C’. The partition II is called regular (also equitable) if for any two
classes C,C" € TI, the number of vertices in C’ adjacent to € C' is a constant e(C,C")

independent of z € C.

A notion of a covering graph is an opposite concept of the quotient graph corresponding
to the regular partition II with e(C,C") € {0,1} and e(C,C) = 0 for every C,C’ € II. In
the next lemma it is demonstrated that some special graphs with valency k have k-cubes

for covering graphs. For, we need two more definitions.

A connected graph I' is called a rectagraph if it is triangle free and if any two vertices
of I at distance 2 have exactly 2 common neighbours. By Brouwer et al. [1, Prop. 1.1.2],
every rectagraph is regular. An s-claw in a graph I' is a subgraph of I" which is isomorphic

to the complete bipartite graph K ;.

Lemma 4 (Brouwer et al. [1, Prop. 4.3.6, Cor. 4.3.7]) Let I' be a rectagraph with
v vertices and valency k such that any 3-claw determines a unique 3-cube. Then the
following (i), (ii) hold.

(i) There exists a map 7 from a k-cube to T' preserving distances < 2. If ' does not
contain pentagons, then m also preserves distance 3.

(ii) If x and y are two adjacent vertices of T, then each vertezx in 7~(x) is adjacent to
a unique vertex in ©(y). In particular, |7~ (z)| = |7~ (y)|. It follows that v |2F.

We now define distance-regular graphs. A connected graph I" with diameter d is said
to be distance-regular, whenever for all integers h,i,j (0 < h,i,5 <d), and all z,y € VT
with d(z,y) = h, the number

piy = Nzl2 € VT, d(x,2) =14, d(y, 2) = j} (1)

is independent of z,y. The constants p?j are known as the intersection numbers of T'.
For convenience, set ¢; := pi,_; for 1 < i < d, a; := p}, for 0 < i < d, b; := pi,,, for
0<i<d-1,and ¢y = by = 0. Observe that k; = k;(x) = p; for 0 < i < d and for
all z € VI'. It is well known that k; = (by---b;—1)/(c1---cq) (0 < i < d). Moreover, for
0 < i < d we have

¢ +a; + b =k,

where k := k;.



Let ' be a distance-regular graph with diameter d. For each integer i (0 <i < d), let

A; be the matrix with rows and columns indexed by VT', and x, y entry

1 i O(w,y) =14,
(Ai)ay _{ 0 if O(x,y) #i.

We call A; the ith distance matriz of I'. Observe (i) Ay = I, where I denotes the
identity matrix; (i) AT = A; (0 < i < d); (iii) Y¢_, A, = J, where J denotes the
all 1’s matrix, and (iv) 4;4; = Zzzo p?jAh (0 <i,7 < d). These properties imply that
the matrices Ay, Ay, ..., Ay form a basis for a commutative semi-simple R-algebra M,
known as the Bose-Mesner algebra. By Godsil [5, Thm. 12.2.1], the algebra M has a
second basis Ey, By, ..., Ey such that (i) Ey = |[VT|7'J; (ii) Ef = E; (0 < i < d); (iii)
S B, =1, and (iv) EE; = 6;E; (0 < i,5 < d). We refer to Ey, Ey, ..., Ey as the
principal idempotents of I', and Ej as the trivial idempotent.
Set A := Ay and let 6,04, ...,0; denote the real numbers which satisfy

Then AE; = E;A = 0,E; (0 < i <d), and 6y = k. We refer to 0; as the eigenvalue of T
associated with E;, and call 6y the trivial eigenvalue of I'. For each integer i (0 < i < d),
let m; be the rank of E;. We refer to m; as the multiplicity of E; (or 6;).

For notational convenience, we identify VI' with the standard orthonormal basis in
the Euclidean space (V, (,)), where V = RIVTl (column vectors), and where (, ) is the
inner product

(u,v) =u'v  (u,v €V).

We now review the cosine sequence of I'. Let 6 be an eigenvalue of I', and let E be the

associated principal idempotent. Let wg, wq, ..., wq be the real numbers satisfying

d
me
E = iAZ'7 2
VT ;“’ )

where my denotes the multiplicity of #. We refer to w; as the ith cosine of I' with respect
to 6 (or E), and call wg, wy, ..., wy the cosine sequence of I' associated with 6 (or E). The

following basic result can be found for example in Brouwer et al. [1, Prop. 4.1.1].

Lemma 5 Let I' be a distance-reqular graph with diameter d. Let 6 be an eigenvalue of
I with multiplicity mg, the associated principal idempotent E, and the associated cosine

sequence wy, Wy, . .., wq. Then the following (i), (ii) hold.

(i) For all x,y € VT with O(x,y) = i we have (Ex, Ey) = w; - my/|VT|.



(ii) The cosine sequence satisfies wg = 1 and the three-term recurrence

CiW;—1 + a;W; + biwiH = Q’LUZ (O <3 < d) | (3)

In particular, we have w; = 6/k and for d > 2 also
wy = (0% —a10 — k)/(kby) and kb (1 —wy) = (k—0)(0+k — ay). (4)

We end this section with the following definitions. Let A C VT and let E be a principal
idempotent of I'. Then (A)g will denote the vector space spanned by {Ea | a € A}. Let
¢ and n be positive integers and let vy, vs,...,v, be vectors in the Euclidean space R™.
Then the Gram matriz of vectors vy, vo, ..., vy is the matrix G of dimension ¢ x ¢ defined
by Gi; = (vi,vj), 1 <1,57 < . Observe that the determinant of G is zero if and only if

the vectors vy, vs, ..., v, are linearly dependent.

3 On the eigenvalue multiplicity

In this section we will show that a triangle- and pentagon-free distance-regular graph I'
with an eigenvalue multiplicity equal to the valency has some additional combinatorial

properties. We begin with a simple observation.

Lemma 6 Letn be a positive integer, I be the n xn identity matriz and J all ones matrix
of the same dimension. Then det(al +bJ) = a™ (a + nb) for any scalars a and b.

Proof. For the all 1’s vector j we have (al+bJ)x = Az if and only if (A\—a)x = b (x, 5)j.
I

Lemma 7 Let T be a triangle-free distance-reqular graph with valency k > 3. Let 6 # +k

be an eigenvalue of I with multiplicity mg and let E be the associated principal idempotent.

Then the following (i)-(iv) hold.
(i1) 0 # 0 if and only if (I'(x))g has dimension k for all vertices x € VT.

(iii) If 6 = 0 then ({z} UT'(2)) \ {y})r has dimension k for all x € VI and for all
y € I'(z).

(iv) If my =k, then the girth of T is at most five.



Proof. (i) This is an immediate consequence of Terwilliger Tree Bound, see [12].

(i) Let I'(x) = {y1,...,yx} and let G be the Gram matrix of vectors Ey;, i = 1,2,..., k.

By Lemma 5(i), we have

G = 2L I+ wol Ty = 1) = =2 (1= wo) i +wa ),

where I and Jj are the identity and the all 1’s matrix with dimension k x k, and v = |VT|.
By Lemma 6, we observe that (v/mg)* det(G) = (1 —wq)* (1 + (k—1)ws). Since 0 # +k
we have 1 = wg # wy. Thus det(G) # 0 if and only if wy # —1/(k — 1), implying that the
set of vectors {Fy; | i = 1,2,...,k} is linearly independent if and only if wy # —1/(k—1),
i.e., # # 0 by a; =0 and (4).

(iii) Suppose 0 = 0, i.e., w; = 0 and wy = —1/(k —1). Let I'(z) = {y1,...,yx}. With-
out loss of generality we may assume y = yi. Let G be the Gram matrix of vectors
Ex,Ey,, Eys, ..., Ey,_1. Using Lemma 5(i), Gauss elimination and Lemma 6, we calcu-

late
(v/mg)* det(G) = (1 — wy)* (1 + (k — 2)ws).

But since wy = —1/(k — 1) # 1, we find det(G) # 0, showing that the vectors Ez, Ey,
Eys, ..., Fy,_1 are linearly independent.

(iv) Assume the girth of I" is greater then 5. Choose x € VI and y € I'(z) and let
T be the graph induced on I'(xz) U I'(y). Since the girth of I' is greater then 5, T is a
tree and Or(vy,vy) = Or(v1,v2) for every vy,vy € VT. So, by Terwilliger tree bound,
mg > 2(k—1)=k+ k —2> k, a contradiction. 1

Let I' be a triangle- and pentagon-free distance-regular graph with an eigenvalue multi-
plicity equal to the valency. Since the parameter 7, always exists, the parameter 7, is
the next to consider. In the next lemma we will show, that the parameter v; exists when

a; = 0, so in particular v, exists.

Lemma 8 Let I' be a triangle- and pentagon-free distance-reqular graph with diameter
d > 3, valency k > 3, and an eigenvalue O with multiplicity k. Then the following (i)—(iii)
hold.

(Z) Co Z 2.
(ii) 0 # 0.

(#ii) For all 1 < i <d—1 with a; =0 the parameters y; exist. In particular, v, =1 and

(k=672 — k) + 362 - 1)
= 02(k — 1)




Proof. Let E be the principal idempotent associated with the eigenvalue . For a vertex

u of I" we denote by @ the vector Fu. Let x € VI and I'(z) = {y1, ..., yx}-

(i) An immediate consequence of Lemma 7(iv).

(ii) Assume 6 = 0. Then a1 = as = 0, (4) and (3) implies w; = 0 = w3 and wy =
—1/(k —1). By Lemma 7(iii), (({z} UT'(z)) \ {yx})r has dimension k. Hence, since the
multiplicity of @ is k, the set {Z,91,...,9k—1} is a basis for the vector subspace (VT')g.

Let z be a neighbour of y;, different from z. So d(z, z) = 2, because I is triangle-free, and

there exists real numbers aq, ..., ax_1, 0 such that
k—1
i=1
Without loss of generality we may assume that y1, s, ..., ye,—1 are adjacent to z. Because

a; = as = 0, we have 0(z,y;) = 3 for ¢ <7 < k— 1. By taking the inner product of both
sides of Equation (5) with g;, for j =k and j =1,...,k — 1, and using Lemma 5(i) and

wy; = 0 = ws, we find

k—1 k—1
Zozgwgzo and Zozgw2+(1—w2)ozj:0 forje{l,...,k—1}. (6)
=1 =1

Therefore, since wy = —1/(k—1) # 1, we obtain oy = - -+ = ag_1; = 0. Hence Z = 2. As

% and Z have both the same length, it follows that 6 = 1 and so also wy = (Z,2) v/k =
d(z,z) v/k = £1, where v is the number of vertices of I'. Since wy = —1/(k — 1) # 1 we
have —1/(k — 1) = —1, i.e.,, k = 2. A contradiction! Therefore, 6 # 0.
(iii) Suppose a; = 0 for some i € {1,...,d — 1}. By (ii) above, we have 6 # 0 and so also
wy = 0/k #0. Let y € I'y(x) and z € I'y(x) NT';(y). Obviously 71 = 1, so we assume
i > 2. Furthermore, without loss of generality we assume 0(y,y;) = 1 for 1 < j < co.
Since a; = ay = 0, we have d(y,y;) = 3 for ¢ +1 < j < k. By Lemma 7(ii), there exists
real numbers «; such that
k
J=>_ i (7)
=1
Similarly as in (ii) above, by taking the inner product of both sides of Equation (7) with
y; for j =1,...,k, we find

k
w1 ifj€{1,2,...,02}
1 — wy)a; = .
;Ozng—l—( w2); { wy if je{ea+1,... k}, (8)
and hence a; = -+ = a., = @, Q41 = -+ = g =: (. From this, (8) and, by taking the

inner product of both sides of (7) also with &, we obtain,
wy =a+ ((ca—Da+ B(k—c2))wy and wqy = (coax + Bk — ¢3))wy. 9)

8



As wy # 1, wy # 0 and k # ¢, we can solve the above two equalities for o and § and

obtain

(w1 = wy)(wy + wy) and = wo(we — 1) 4 co(wy — we)(wy + wo)
wy (1 —wy) (k — co)wy(wg — 1)
Let v = 7;(z,y, 2) be the cardinality of the set I'(z) N T'(y) N T';—1(2). We may assume
I'(z) NnT(y) NTizi(2) = {y1,...,yy}. Observe that a; = 0 implies 0(z,y;) = i + 1
for v +1 < j < ¢y. Since [I'(x) NTi1(2)| = ¢, we may assume 0(z,y;) = i — 1 for
co+1 < j < co+¢;—y. Again, since a; = 0, we have 0(z, y;) = i+1 for co+¢;—y+1 < j < k.

By calculating the inner product of ¢ and Z, we get
w; = yaw;—1 + (e — y)awip + (¢ — 7)Bwir + (k — o — ¢ + ) Bwira. (10)

Observe that (10) is a linear equation for v with the coefficient beside 7 equal to (a —
B)(wi—1 — wiy1). Let us show that (o — B)(wi—1 — wiy1) # 0. Observe a — 3 = 0/(k —
c3) # 0 since 0 # 0. Let us suppose w;_; = w;r;. Then, by a; = 0 and (3), we
obtain fw; = c;w;—1 + bjw;y1 = kw;y; and thus w;1; = wyw;. By Equation (10), we
find w; = wi1(acy + B(k — ¢2)), and hence, by the second equation of (9), we have
wow;y1 = wiw;. Therefore, wowiw; = wiw;. If w; = 0, then also w;_; = w;y; = 0.
But then, by the recursion relation of the cosine sequence {w;}, we have also w; = 0,
a contradiction. So w; # 0 and hence wy = 1, which is equivalent to § = +k and
this is clearly impossible. Hence we can calculate v from Equation (10) and is therefore

independent of the choice of z,y, 2.

We obtain the formula for v from (10) for i = 2. 1

The following result and its proof are essentially the same as in Nomura [10, Lemma 5.1].

Lemma 9 Let I' be a triangle- and pentagon-free distance-reqular graph with diameter
d > 3, valency k. Pick an integer i, 2 < i < d — 1, such that a; = 0 and that the

parameter vy; exists. Then

(i) If vo exists, then (k —2)(y2 — 1) = (ca — 1)(cy — 2);
(i) vi(ciz1 — 1) = ¢i(ca — 1).

Proof. (i) Let w € VI and v € T'(u), w € I's(u) NI'(v). Count the number of edges
between I'(u) N T'(w) N Te(v) and I'(v) NTe(uw) N Iy(w) in two different ways.

(ii) Let w € VI and v € T';(u), w € I'i41(u) NT'(v). Count the number of edges between
Fiop(uw) NT(v) and T';(uw) N T(w) N Ty(v) in two different ways. 1



4 Proofs of Theorems 2 and 3

In this section we prove our main results. In order to prove Theorem 2 and Theorem 3
we will first prove Theorem 10 and Theorem 11, which are also of independent interest.
Recall that we have identified the vertex set of an arbitrary graph A with the standard
orthonormal basis in R™, where n = |V A|. For an arbitrary vector v € R™ and for every

x € VA we denote by v, = (v, z) the component of v corresponding to the vertex .

Theorem 10 Let T' be a distance-regular graph with diameter d > 3, valency k > 3,
a; =ay =0 and ¢; =i fori=1,2,3. Then T has an eigenvalue 0 € {k —2,2 — k} if and
only if I' is the k-cube or k odd, k > 7 and I" is the folded k-cube.

Proof. If T' is the k-cube or k odd, £ > 7 and I is the folded k-cube, then I' has an
eigenvalue § = k — 2 or § = 2 — k respectively, see Brouwer et al. [1, p. 261, p. 264].

Let us now assume the graph I' has an eigenvalue 6 € {k — 2,2 — k}. Since I' is a
rectagraph (i.e., a1 = 0 and ¢3 = 2), cg3 = 3 and ay = 0 < 3, every 3-claw in I" determines
a unique 3-cube by Brouwer et al. [1, Lemma 4.3.5 (ii)]. Therefore, by Lemma 4(i),
there exists a map 7 from the k-cube A to I', which preserves distances 1, 2 and 3. Let
I = {n!(z) | z € VI'}. Then two vertices in the same class are at distance at least 7.
By Lemma 4(ii), between two classes of II there is either a perfect matching or nothing
(so the partition IT of the vertex set of A is uniformly regular), and the quotient graph
A/II is the graph I'. Hence the eigenvalue 6 is also an eigenvalue of A, see Godsil [5,
Lemma 5.2.2(a)].

We construct an eigenvector of § in A from the cosine sequence wg, wy, ..., wy of I’
corresponding to 6. Choose 2y € VT. So (wp, wy, ..., wg)" is a (right) eigenvector of the
tridiagonal matrix corresponding to the distance partition of the graph I', see Brouwer et
al. [1, Sect. 4.1B], and a vector v € R™, where n = |VT'|, defined by v, = w; if and only
if O(zg,x) = i, is an eigenvector of I' corresponding to 6 by Godsil [5, Lemma 5.2.2(a)].
Fori € {0,1,...,d} define

D; = J{r " (x) |z € VT, O(xo,2) = i}.

Observe that, by Brouwer et al. [1, Lemma 11.1.4], D; = {z € VA | 0(7, Do) = i},
where 9(Z, Dy) = min{d(z,7) | 7 € Dy}. Therefore, the vector T € R, defined by
vz = (k/2")w; if and only if T € D;, is an eigenvector of A corresponding to @, such that
vz = (k/28)wy = k/2F if T € Dy.

Choose Ty € Dy and let 7;, 1 < i < k, be the neighbours of Ty in A. They are
members of Dy, since the map 7 preserves adjacency. Let E be the principal idempotent

of A corresponding to . We will now show that ¥ = EZ,. Note that we have Fv = v,
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since @ is an eigenvector for A corresponding to 6, and that the vectors EZ;, 1 <i < k,
are a basis of the eigenspace corresponding to 6, by Lemma 7, as the multiplicity of € in
A is k, see Brouwer et al. [1, p. 261]. We have, by Lemma 5 and the definition of the

vector w,
(ETy, ET;) kO _k v, (0,7;) = (B0, T;) = (0, E7;) for 1<i<k
i i) — — 7 — 9 W1 = Vz — , i) = , Lj) = , LT, T ST K.
0 ok | ok 1T T
Therefore, © = ETy. Let wo(A), w1(A), ..., wi(A) be the cosine sequence corresponding

to 0 in A. Observe that (E%g)z = (k/2F)w;(A) if and only if 9(To,T) = i, since F =
(k/2%) Z;-l:o w;(A)A;, where A; is the j-th distance matrix of A. So, by Brouwer et al.
[1, Prop. 4.4.7], the set {T € VA | (ETo)z = k/2F}, which contains Dy, is either {Zy} or
{Z0, Yy}, where 7, is the unique vertex in A, which is at distance k from Z,. It follows I'
is either the k-cube, or the folded k-cube. Assume I' is the folded k-cube. If k is even,
then neither k — 2 nor 2 — k is eigenvalue of I', see Brouwer et al. [1, p. 264]. Hence k
must be odd. If k is 5, then d = 2, thus £ > 7. 1

Theorem 11 Let I' be a distance-reqular graph with diameter d > 3, valency k > 3,
a; = ay = 0, for which the parameter o exist. Then (i) vo = co = 1, or (ii) 72 = 1,

¢ =2 and c3 = 3, or (iii) T is bipartite 2-homogeneous graph.

Proof. Set v :=,. By k > 3, it follows that v # 0. We first consider the case v = 1. If

¢y = 1 then we obtain the case (i), so we may assume ¢y > 2. Then it follows from Lemma
9(i) that ¢ = 2 and hence, by Lemma 9(ii), c3 = 3. So we obtain the case (ii). It remains
to consider the case v > 2. Then we have, by Lemma 9(i), co > 2. If v > ¢y, then we
obtain from Lemma 9(i) ¢o > k, which is not possible as d > 3. Thus ¢, > 7. Let us show
2c3 > k+3. As ¢y > 7, it follows that coy —2c0+ 27 = (7 —2) + 27 > 742 > v(y—1), so

CoY — 2¢9 + 27

G- -

On the other hand, from Lemma 9 we calculate

—1 -2 —1
polezbe=2 o g el (11)
7—1 v
so we have 5 5
203—]{32(02—1)027_ 02+ ’)/
(v —1)

It follows that 2c3 — k > co — 1 > 2, i.e., 2¢c3 > k + 3.

We will now derive two consequences, namely that I' is bipartite and has diameter at

most 5. Suppose I' is not bipartite and let 7 be the minimal integer such that a; > 0. By
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Brouwer et al. [1, Prop 5.5.4 (ii)], ¢« > 3 and 2¢3 > k + 3, we find a; > ¢; > ¢35 > k/2,
which is clearly impossible. So I' is bipartite. The bound d < 5 follows immediately from
by < cs3, see Brouwer et al. [1, Prop. 4.1.6(ii)].

Let us now show that I" is 2-homogeneous. We will first show that ¢, | 2y(y+1). Since
ko = k(k — 1)/cy is integral, co divides k(k — 1). From Lemma 9(i) we calculate k(y — 1)
and (k — 1)(y — 1) in order to find (v — 1)%k(k — 1) = (c2 — 3¢y + 27)(c2 — 3y + v + 1).
Thus ¢ must divide 2y(y + 1).

Since I is bipartite, we obtain from (11)

(2 =)(c2 =7 —1)
(v —1)

Let us now consider separately the cases d =3,d =4 and d =5. If d = 3, then b5 =0

by =k — 3 = (12)

and hence, by (12), (c2 —7v)(ca —y — 1) = 0. Since ¢2 > 7, we obtain ¢ = v+ 1. But
then, by (11), k = y+2 and I is the complete bipartite graph Ky 41 minus a matching,

which is 2-homogeneous by Theorem 1.

Assume d = 4. By Brouwer et al. [1, Lemma 4.1.7], we find p}, = k(k — 1 — c3)/ca.
But since pj, is integral, ¢y divides k(k — 1 — ¢3). By direct computation, we find from
(11) v(y — 1)?k(k — 1 —¢3) = (ca — 1)(e2 — 27)(c3 — 3ca + 27), hence ¢, divides 492, But
¢y divides also 2y(y + 1), so ¢g|47y. Since ¢y > 7, we obtain ¢y € {47v/3,2v,4v}. We
will consider each of this three cases separately. If co = 47 then, by the integrality of k,
v € {2,3,4,7}. Only for v = 3 the number ky is integral, but in this case the number
Pl is not integral. If ¢y = 27 then, by (11), k = 4y and ¢3 = 4y — 1. Hence I is a
distance-regular graph with intersection array {4v,4vy — 1,2v,1;1,27v,4y — 1,44}, i.e, a
Hadamard graph, which is 2-homogeneous by Theorem 1. Finally, if ¢ = 4+/3, then, by
the integrality of k, v = 3. But in this case we have c; = 4, k = 5 and ¢3 = 5, which is in
contradiction with d = 4. This completes the proof of the case d = 4.

Assume d = 5. Then by > ¢y by Brouwer et al. [1, Prop. 4.1.6(ii)], and from (12) we
obtain (cg —v)(ca —v—1) > coy(y — 1), e, ¢ > (v +1). Since ¢o | 29(y + 1), we have
c2 € {y(v+1),2v(y+1)}. Suppose first ¢ = 2y(y+1). By the integrality of &k, we obtain
(v —1)]6,s0 v € {2,3,4,7}. But for none of this possibilities the number ks is integral.
So we can assume ¢y = y(y+1). Then we have ¢o = b3 and ¢3 = by. Therefore, ¢4 | k(k—1)
by the integrality of k4. If ¢4 = k — 1, then I is a distance-regular graph with intersection
array {k,k—1,k—c,c,1;1,¢,k—c, k—1,k}, where k = v(v?2+3v+1), c = co = y(y+1).
In this case I is 2-homogeneous by Theorem 1. Assume now ¢4 < k—1. Since ¢4 | k(k—1),
we have ¢y = k(k — 1)/(k + a) for some positive integer a and, by ¢4 > c¢3, we obtain
a <9242y —1-1/(y(y+2)). Hence, by the integrality of a, a < v? + 27 — 2. Observe
that ' is not antipodal because by = k — ¢4 > ¢; = 1. Hence, by Brouwer et al. [1,

Prop. 5.6.1] and a; = 0, we must have ko < kj(k; —1). By direct computation, we obtain
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ko= +3y+1)(v*+2y—1) and ks = a+ 1. Thus

V43 + DA +2y-1) < (a+Da< (V¥ +2y - 1)(* + 27 -2),
which gives us v < —3, a contradiction! 1
We are now ready to give the proofs of Theorem 2 and Theorem 3.

Proof of Theorem 2. Since distance-regular graphs with k£ = 2 are cycles, we can assume
k> 3. If d =2, then I' is a bipartite strongly regular graph, i.e., a complete bipartite
graph Kj, ;. But the only complete bipartite graph with an eigenvalue multiplicity equal
to its valency is the 4-gon, i.e., the 2-cube. Thus we can assume d > 3. If I' has an
eigenvalue with multiplicity k, then, by Lemma 8, co > 2, parameter 7, exists and it is

equal to
(k=07 (2co — k) +c3(67 — 1)
= 02(k — 1)
By Theorem 11, either I' is bipartite and 2-homogeneous, or v = 1, ¢co = 2 and ¢3 = 3.

(13)

In the first case we are done by Theorem 1, so assume 75 = 1, ¢o = 2 and ¢3 = 3. From
(13) we find 6 € {k — 2,2 — k}, so, by Theorem 10, T" is the k-cube or k > 7, k odd and
' is the folded k-cube.

On the other hand, graphs (ii)-(v) from Theorem 2 are bipartite (and hence triangle-
and pentagon-free) and they all have an eigenvalue with multiplicity & by Theorem 1.
Any n-gon, n > 6, is also triangle- and pentagon-free and it has an eigenvalue 2 cos(27/n)
with multiplicity 2. Finally, folded k-cube, k£ odd and k > 7, is triangle- and pentagon-free
and it has eigenvalue 2 — k with multiplicity k. 1

Proof of Theorem 3. Since distance-regular graphs with k£ = 2 are cycles, we can assume
k > 3. If ' is almost 2-homogeneous bipartite distance-regular graph with diameter d > 4,
then parameter v, exists. So, by Theorem 11, either I' is bipartite and 2-homogeneous,
or 72 = 1. If the first case the result follows from Nomura [10, Thm. 1.2]. Therefore,
assume vy, = 1.

If c; = 1, then, by Curtin [4, Thm. 4.4], T" is a regular generalized 2d-gon of order
(1,k —1). But, by d > 4 and Brouwer et al. [1, Thm. 6.5.1], 2d € {8,12}. If ¢5 > 2,
then, by Curtin [4, Thm. 4.7], T" is the d-cube or the folded 2d-cube.

On the other hand, graphs (i)-(iv) from Theorem 3 are almost 2-homogeneous since
they are 2-homogeneous by Theorem 1, while the folded 2d-cube and a regular generalized
2d-gon of order (1, k — 1) are almost 2-homogeneous by Curtin [4, Thm. 4.4, Thm. 4.7]. n

5 Conclusions and comments

The conditions ¢3 = 3 and ay = 0 in Theorem 10 are probably not necessary. If § = k —2,

these conditions are not necessary, see Brouwer et al. [1, Thm. 4.4.11], but our proof

13



does not seem to generalize in order to show this.

The argument of the proof of Theorem 10 follows an approach due to Meyerowitz [7], who

classified the completely regular codes of strength 0, that is a completely regular code,

whose quotient matrix has k — 2 as an eigenvalue, in the Hamming schemes, see also [2].
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