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Abstract. This paper presents a new method of model selection in regression problems based on the

modulus of continuity. For this purpose, the risk function bounds are suggested using the modulus of

continuity. The suggested bounds incorporate the information of learned results as well as the structural

information of the regression model. As a result, the suggested bounds can fit the risk functions of the

trained regression models in more realistic sense. Through the simulation for function approximation, we

have shown that the model selection based on the suggested bounds can provide the better performance

than other model selection methods from the view points of the risk functions and the number of

parameters.

1 Introduction

Model selection is an important issue of selecting the reasonable network size to get the

optimal performance of regression models. The regression of real-valued functions is per-

formed for the given finite number of samples. In this regression, the proper network size

(or number of parameters) in a regression model is hard to decide since the performance of

a regression model measured for the whole distribution of samples (not just given samples)

should be optimized. The performance of regression models can be decomposed by the bias

and variance terms. If we increase the number of parameters, the bias term is decreased

but the variance term is increased or vice versa. If the number of parameters is too small

so that the performance is not optimal due to large bias term is called the under-fitting of

regression models. If the number of parameters is too large so that the performance is not

optimal due to large variance term is called the over-fitting of regression models. So we need



the trade-off between the under-fitting and over-fitting of regression models. Here, the im-

portant issue is measuring the model complexity related to the variance term. The statistical

methods of model selection is to use a penalty (correction) factor as the measure of model

complexity. The well known criteria are Akaike information criteria (AIC)[1], Bayesian infor-

mation criteria (BIC)[2], generalized cross-validation (GCV)[3], minimum description length

(MDL)[4, 5], and risk inflation criteria (RIC)[6]. These methods can be easily fit to linear

regression models when the large number of samples is available. However, they suffer the

difficulty to select the optimal structure of the estimation networks in the case of nonlinear

regression models and/or the small number of samples. Recently, Vapnik[7] proposed the

model selection method based on the structural risk minimization (SRM) principle. One of

characteristics of this method is that the model complexity is described by the structural

information such as the VC dimension of the estimation network. This method can be ap-

plied to the nonlinear models and also the regression models using small number of samples.

Chapelle et al.[8] and Cherkasky et al.[9] showed that the SRM based model selection is able

to outperform other statistical methods such as AIC or BIC. These methods require the

actual VC dimension of the hypothesis space associated with the estimation network, which

is not easy to determine in the case of nonlinear regression models.

In this paper, we present the risk function bounds in the sense of the modulus of continuity

(MC) representing a measure of continuity for the given function. Lorentz[10] applied the MC

to the function approximation theories. In our method, this measure is applied to determine

the risk function bounds in the L1 sense. For the estimation of these bounds, the MC is

analyzed for both the target and estimation functions. As a result, the suggested bounds

include both the structural information such as the number of parameters and the learned

results such as the weight values of the estimation network. Through the simulation for

function approximation, we have shown that the MC based method can provide the better
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performance than other model selection methods from the view points of the risk functions

and the number of parameters.

In section 2, we introduce the various model selection methods based from classical statis-

tic and VC approach. Section 3 describes the model selection method based on the modulus

of continuity for continuous or differentiable functions. Section 4 describes simulation re-

sults for the regression of real-valued functions using the estimation model of trigonometric

polynomials. Finally, section 5 makes the conclusion.

2 Risk Function Bounds in Regression Models

Consider the regression problem of estimating a function f in C1(X,R) or C2(X,R), where

X is the compact subset of Euclidean space R
n and Ck(X,R) is a class of functions having

continuous kth derivative on X. Let the observed output y be represented by

y = f(x) + ε (1)

where f(x) is the target function and ε is a random noise with mean zero and variance

σ2. Here, the input and output samples (xi, yi), i = 1, · · · , N are randomly generated by a

distribution P where xi ∈ X and yi = f(xi) + ε. For these samples, our goal is to construct

an estimation network (or function) fn(x) which minimizes the expected risk (or true risk)

R(fn) =

∫

X×R

L(y, fn(x))dP (x, ε) (2)

with respect to the parameters n, where L(y, fn(x)) is a given loss functional, usually the

square loss function L(y, fn(x)) = (y − fn(x))
2 for regression problems. To minimize the

expected risk (16), we have to identify the distribution P (x, ε) but it is usually unknown.

Rather, the parameters to minimize the empirical risk

Remp(fn) =
1

l

l∑

i=1

L(yi, fn(xi)) (3)
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are obtained for the given samples.

If we increase the number of parameters, the empirical risk of (3) is decreased but the

variance term related to the complexity of regression models is increased or vice versa. So we

have to make the reasonable trade-off between the under-fitting and over-fitting of regression

models. This problems is referred to as the model selection, that is, we have to determine

the optimal number of parameters (or complexity), that is, avoiding the under-fitting or

over-fitting of regression models. To check whether under-fitting or over-fitting of regression

models happens in the course of learning, we have to analyze the risk functions for the

given parameters in regression models. Here, let us represent the form of the estimate of risk

functions as

R̂(fn) = Remp(fn)T (n, l) (4)

where T (n, l) is a penalty (correction) factor, n is the number of parameters (or model

complexity), and l is the number of sample.

The well known statistical model selection criteria such as AIC and BIC can be described

using the form of (4), they are

TAIC(n, l) =
1 + n

l

1− n
l

and (5)

TBIC(n, l) = 1 +
ln l

2

n
l(

1− n
l

) (6)

where TAIC and TBIC represent the penalty factors of the AIC and BIC criteria respectively.

These model selection criteria come form the asymptotic analysis for linear models using L2

sense.

A good measure of model complexity in nonlinear models is the VC dimension of the

hypothesis space associated with the estimation network. The VC dimension can represent

the capacity of the estimation network from the view points of the number of samples. As the

hypothesis space is increased, the empirical risk can be decreased but the confidence interval,

which is proportional to the complexity of the estimation network, is increased. In this
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sense, we need to make the proper trade-off between the empirical risk and the complexity

of the estimation network. The SRM principle considers both the empirical risk and the

complexity of the regression model to decide the optimal structure of the regression model.

In this approach, the estimate of risk functions with the VC dimension d associated with

the hypothesis space defined by fn, holds the following inequality with as least probability

1− δ[7, 9]:

R̂(fn) 6 Remp(fn)


1− c

√
d
(
1 + ln l

d

)
− ln δ

l




−1

+

(7)

where c is a constant dependent on norm and tails of the loss function distribution and

u+ = max{u, 0}.

In the case of nonlinear estimation network, there is some difficulty in determining the

VC dimension. If the class of basis function {φk(x)}, k = 1, · · · , n is orthogonal with respect

to the probability measure P (x), the form of (7) can be described in easier form to calculate.

For instance, let the estimation network fn(x) be described by

fn(x) =
n∑

k=1

wkφk(x) (8)

where φk(x) represents the kth orthogonal polynomial and a continuous target function f(x)

in some Hilbert space with respect to the basis functions {φ1(x), · · · , φn(x)} be given to be

approximated. Then, the estimated expected risk[8] is given by

E[R(fn)] = E[Remp(fn)]

(
1 +

E[
∑n

i=1
1/λi]

l

)(
1−

d

l

)−1

(9)

where {λ1, · · · , λn} are the eigenvalues of the n × n covariant matrix C in which the pqth

entry is given by 1

l

∑l

i=1
φp(xi)φq(xi). Furthermore, for the experimental set up, Chepelle et

al.[8] suggest the following bound with the confidence δ = 0.1:

E[R(fn)] 6 E[Remp(fn)]TSEB(n, l) (10)
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where

TSEB(n, l) =
1 + n

lk

1− n
l

and (11)

k =


1−

√
n
(
1 + ln 2l

n

)
+ 4

l




+

. (12)

The risk function of (10) was applied to the model selection of regression problems and they

showed that their method outperformed the model selection using the statistical criteria such

as AIC or BIC.

3 Risk Function Bounds Based on the Modulus of Continuity

The modulus of continuity is a measure of continuity for the given function. We will suggest

the risk function bounds based on this measure. First, we assume that X is a compact

subset of Euclidean space R. Then, the measure of continuity of a function f ∈ C(X) can

be described by the following form:

ω(f, h) = max
x,t∈X,|t|6h

|f(x+ t)− f(x)| (13)

where h a positive constant. Here, the function ω(f, h) is called the modulus of continuity of

f . The modulus of continuity of f has the following properties: (1) ω(f, h) is continuous at

h = 0 for each f , (2) ω(f, h) is positive and increasing for h > 0, (3) ω(f, h) is sub-additive,

that is, ω(f, h1+h2) 6 ω(f, h)+ω(f, h2) for each f , and (4) ω(f, h) is continuous for h > 0.

Assume that the input data sample xi (∈ X) is randomly generated by a probability

P with unknown distribution function F . Then, we can say that there exists a partition

Xi ⊂ X satisfying

xi ∈ Xi and P (Xi) =
1

N
for i = 1, · · · , N. (14)

Since X is a compact subset of R, we can take h > 0 such that

max
16i6N

diam(Xi) 6 h. (15)
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where diam(Xi) = supx,y∈Xi
|x− y|.

For the selection of fn(x), let us consider the loss function for the observed model y and

the estimation function fn(x) with n parameters as L(y, fn) = |y − fn(x)|, that is, the risk

function and the empirical risk are defined by the following L1 measure:

R(fn)L1
=

∫

X×R

|y − fn(x)|dP (x, y) and (16)

Remp(fn)L1
=
1

N

N∑

i=1

|yi − fn(xi)|. (17)

For these risk functions, we can suggest the following theorem based on the modulus conti-

nuity:

Theorem 1 Let the samples xi ∈ X and target values yi, i = 1, · · · , N , be generated by

(1) and h be a constant satisfying condition (15). Let us also assume that the estimation

function fn(x) is described by the linear combination of basis function {φk(x)}
n
k=1

, that is,

fn(x) =
n∑

k=1

wkφk(x) (18)

where wk represents the weight value associated with the kth basis function. Then, the risk

function for a continuous function f on X is bounded by the following inequality with the

probability at least 1− δ:

R(fn)L1
6 Remp(fn)L1

+ ω(f, h) + ω(fn, h) + σ

√
2

δ
(19)

where

ω(fn, h) 6 max{ω(φk, h)}
n
k=1

n∑

k=1

|wk|. (20)

For the proof of this theorem, refer to the appendix A-1. This theorem states that the risk

function R(fn)L1
is bounded by the empirical risk Remp(fn)L1

, the modulus of continuity for

target function ω(f, h), and also for the estimation function ω(fn, h). For the fixed h > 0,

the modulus of continuity for the target function w(f, h) can be considered as a constant

but the modulus of continuity for the estimation function ω(fn, h) is proportional to the

complexity measurement which is described by the modulus of continuity of basis functions
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and the sum of absolute value of weights. If the number of parameters n is increasing, the

empirical risk Remp(fn)L1
is decreasing, but the modulus of continuity of estimation function

w(fn, h) is increasing in general. So we need the trade-off between the empirical risk and the

modulus of continuity of target function to obtain the optimal estimation network.

The modulus of continuity for target function w(f, h) is related with the degree of ap-

proximation. In the classical function approximation theory, the modulus of continuity plays

important role for the degree of approximation of f [10]. For example, if f ∈ C([0, 2π]) and fn

is the trigonometric polynomial with degree n on [0, 2π], the following approximation bound

can be satisfied:

sup
fn∈Φ

‖f − fn‖∞ 6 Mω(f,
1

n
) (21)

where Φ represents the linear combination of φ1, · · · , φn andM represents a constant depen-

dent upon the target function f . In general, we cannot compute the modulus of continuity in

advance because we don’t exactly know the target function f . Assuming that the first or sec-

ond derivatives of f is bounded, that is, ‖f ′‖∞ 6 M1 or ‖f
′′‖∞ 6 M2 for some M1,M2 > 0,

we can estimate the modulus of continuity as follows:

1) if f ∈ C1(X,R),

ω(f, h) 6 O

(
‖f ′‖∞h log

l

h
+
h

l
‖f‖∞

)
, (22)

2) and if f ∈ C2(X,R),

ω(f, h) 6 O

(
‖f ′′‖∞h(l − h) +

h

l
‖f‖∞

)
(23)

where l represents a measure of domain X. These inequalities show that the modulus of

continuity for the target function f is bounded by the terms of the sup-norm of f , the

maximum distance h between the sample data, and the measure of X. Note that as the

number of samples increases, h decreases and it makes the modulus of continuity decreases.

For the modulus of continuity of the estimation function ω(fn, h), let us consider the

regression models with the following basis functions:
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Example: Consider the trigonometric polynomials φ0(x) = 1/2, φ2j−1(x) = sin jx, and

φ2j(x) = cos jx for j = 1, 2, · · · , n. Applying the mean value theorem to φj, we get

ω(φk, h) 6 ‖φ
′
k‖∞h

6 n · h for k = 0, · · · , 2n.

That is,

max
06k62n

{ω(φk, h)} 6 n · h.

Therefore, the upper bounds of risk functions can be determined by

R(fn)L1
6 Remp(fn)L1

+ ω(f, h) + n · h

2n∑

k=0

|wk|+ σ

√
2

δ
. (24)

Similarly, we can derive the upper bounds of risk functions for the regression model using

algebraic polynomials, that is, fn(x) =
∑n

i=0
wix

i.

Example: Consider the following form of radial basis functions:

φk(x) = exp

(
−
(x− tk)

2

2σ2
k

)
for k = 1, · · · , n

where tk and σ2
k represent the center and width of the basis function φk respectively.

Applying the mean value theorem to φk, we get

ω(φk, h) 6 ‖φ′k‖∞h

6
h

σk
exp

(
−
1

2

)
for k = 1, · · · , n

since φ′k has the maximum and minimum at x = ti − σk and x = ti + σk respectively.

This implies that

max
16k6n

{ω(φk, h)} 6
h

σ′
exp

(
−
1

2

)

where

σ
′

= min
16k6n

σk.

9



Therefore, the upper bound of risk function can be determined by

R(fn)L1
6 Remp(fn)L1

+ ω(f, h) +
h

σ′
exp

(
−
1

2

) n∑

k=1

|wk|+ σ

√
2

δ
. (25)

Example: Consider the following form of sigmoid functions:

φk(x) =
1

1 + exp(−aix+ bi)
for k = 1, · · · , n

where ak and bk represent the adaptable parameters of the basis function φk. Applying

the mean value theorem to φk, we get

w(φk, h) 6 ‖φ
′
k‖∞h

6
h

4
for k = 1, · · · , n

since φ′k has the maximum at x = bk/ak. That is,

max
16k6n

{ω(φk, h)} 6
h

4
.

Therefore, the upper bound of the risk functions can be determined by

R(fn)L1
6 Remp(fn)L1

+ ω(f, h) +
h

4

n∑

k=1

|wk|+ σ

√
2

δ
. (26)

The suggested theorem of true risk bounds is derived in the sense of the L1 measure, that is,

the risk function described by (16). Other model selection criteria such as AIC and SEB are

derived from the risk function using the quadratic loss function L(y, fn(x)) = (y−fn(x))
2. In

this context, we can show that the optimal function fn∗(x) determined from the risk function

of the L1 measure is also optimal in the sense of the risk function using the quadratic loss

function under the assumption that the estimation function is unbiased and the error term

y − fn(x) has normal distribution.
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4 Simulation

The simulation for function approximation was performed using the regression model with

trigonometric polynomial functions. In this regression, various model selection methods such

as the AIC, BIC, VC dimension, and MC based methods were tested. As the VC dimen-

sion based method, we choose the smallest eigenvalue based (SEB) method[8] suggested by

Chapelle et al. Here, the trigonometric polynomial functions were selected as the basis func-

tions since this network could be considered as the linear regression model so that the VC

dimension of the network was easy to find out and the optimization of network parameters

could be easily solved. This makes easier to compare the suggested method with other meth-

ods. In this simulation, the data (xi, yi) were generated by (1). Here, the input value xi were

uniformly distributed within the interval of [−π, π]. As the target functions, the following

functions were used:

1) the step function defined by

f(x) =





1 if x > 0

0 otherwise,

(27)

2) the sine square function defined by

f(x) = sin2(x), (28)

3) the sinc function defined by

f(x) =
sin(πx)

πx
, (29)

4) and the combined function defined by

f(x) = 2x exp(−
x2

2
) cos(2πx). (30)

The target functions were illustrated in Figure 1. The first target function was discon-

tinuous while other functions were continuous. The second and third functions showed the
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similar complexity while the fourth function was more complex than other functions. For

these target function, we generated N (= 50) training samples randomly according to the

target function to train the estimation network. We also generated 300 test samples sepa-

rately. For the estimation network, the basis functions of trigonometric polynomial network

were given by

φ0(x) =
1

2
, φ2j−1(x) = sin jx, and φ2j(x) = cos jx,

where j represents the period of sinusoidal function. Here, the estimation function fn(x) was

given by

fn(x) =
n∑

k=0

wkφk(x). (31)

For N samples, the observation vector defined by y = (y1, · · · , yN)
T can be approximated

by the following vector form:

y = Φnw (32)

where Φn was a matrix in which the ij-th element was given by φj(xi) and w was a weight

vector defined by w = (w0, · · · , wn)
T . From the empirical risk minimization of square loss

function, the estimated weight vector ŵ could be determined by

ŵ = (ΦTnΦn)
−1ΦTny. (33)

By substituting the estimated weight vector to (32), we obtained the empirical risk Remp(fn)

evaluated by the training samples and the estimated risk R̂(fn) could be determined by the

AIC, BIC, SEB, and MC based methods. Here, the estimated optimal number of nodes was

determined by

n̂ = argmin
n

R̂(fn). (34)

Note that in the MC method, only the terms of Remp(fn) and the modulus of continuity

for the estimation function were considered to select the optimal number of nodes since

other terms in (19) were constant once the training samples were given. To compare the risk

12



functions obtained for the estimated optimal number of nodes n̂ with the risk functions for

the minimum number of nodes obtained from the test samples, we computed the log ratio

of two risks, that is,

rR = log
R(fn̂)

minnR(fn)
(35)

where R(fn) represented the risk function for the squared error loss function L(y, fn) =

(y− fn(x))
2. This risk ratio represented the quality of distance between the optimal and the

estimated optimal risks. We also computed the log ratio of the estimated optimal number of

nodes n̂ to the minimum number of nodes obtained from the test patterns, that is,

rn = log
n̂

argminnR(fn)
. (36)

This node ratio represented the quality of distance between the optimal and the estimated

optimal complexity of the network. After all experiments have been repeated 1000 times, the

risk ratios of (35) and the node ratios of (36) were plotted using the box-plot method. The

simulation results of model selection using the AIC, BIC, SEB and MC based methods were

illustrated in Figures 2 through 9. These simulation results showed us that 1) the SEB based

method outperformed the AIC and BIC based methods from the view point of risk ratios

in the case of the first, second, and third target functions but not in the case of the fourth

function, that is, more complicated function, 2) while the MC method demonstrated the top

level performance from the view points of risk and node ratios for all four target functions.

In general, the SEB method showed good performance when the ratio of the optimal number

of nodes to the number of samples n∗/l was small since the true risk bounds based on the VC

dimension were derived in the sense of uniform convergence, that is, the worst case in the

hypothesis space. As an example, we illustrated n∗/l for four target functions in Figure 10.

As we expected, the fourth target function required high n∗/l compared to other target

functions due to the complexity of function as shown in Figure 1. In this case, the SEB

method did not show good performance.
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To see the risk prediction of the model selection methods, we plotted the estimated error

versus the number of nodes for the AIC, BIC, and SEB methods in the L2 sense of loss

function, that is, the square root of risk function, and also for the MC method in the L1

sense of loss function defined by (16). The predicted results were compared with test errors as

shown in Figures 11 and 12. Theses results showed that 1) the risk prediction using the AIC

and BIC methods fit well except the sudden change in risk functions, 2) the risk prediction

using the SEB method had the tendency to fit well when the ratio of the number of nodes to

the number of samples n/l was small, and 3) the risk prediction using the MC method was

well suited with the test errors in overall range of the number of nodes. In these predicted

results, it was interesting that the MC method was able to catch the sudden change of test

errors while other methods didn’t.

In summary, the performance of the MC based method showed the better performance

for various types of target functions from the view points of risk and node ratios compared to

other methods. We also demonstrated that the risk prediction using the MC method was able

to catch the trend of test errors. This was mainly due to the fact that the MC based method

was performed using the risk function bounds incorporating the information of learned results

such as the sum of absolute weights as well as the structural information of the estimation

network. Furthermore, the suggested MC method can be easily extended to various types of

regression models with nonlinear kernel functions which have some smoothness constraints.
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Fig. 1. The target functions for the simulation of model selection:
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Fig. 2. The box-plots of risk ratios rR for the regression of step function: (a), (b), (c), and (d) represent the box-plots

of rR with σ = 0, 0.025, 0.05, and 0.1 respectively.
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Fig. 3. The box-plots of node ratios rn for the regression of step function: (a), (b), (c), and (d) represent the box-plots

of rn with σ = 0, 0.025, 0.05, and 0.1 respectively.
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Fig. 4. The box-plots of risk ratios rR for the regression of sine-square function: (a), (b), (c), and (d) represent the

box-plots of rR with σ = 0, 0.025, 0.05, and 0.1 respectively.
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Fig. 5. The box-plots of node ratios rn for the regression of sine-square function: (a), (b), (c), and (d) represent the

box-plots of rn with σ = 0, 0.025, 0.05, and 0.1 respectively.
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Fig. 6. The box-plots of risk ratios rR for the regression of sinc function: (a), (b), (c), and (d) represent the box-plots

of rR with σ = 0, 0.025, 0.05, and 0.1 respectively.

20



AIC BIC SEB MC 
0

0.5

1

1.5

2

(a)

AIC BIC SEB MC 
0

0.5

1

1.5

2

(b)

AIC BIC SEB MC 
0

0.5

1

1.5

2

(c)

AIC BIC SEB MC 
0

0.5

1

1.5

2

(d)

Fig. 7. The box-plots of node ratios rn for the regression of sinc function: (a), (b), (c), and (d) represent the box-plots

of rn with σ = 0, 0.025, 0.05, and 0.1 respectively.
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Fig. 8. The box-plots of risk ratios rR for the regression of combined function: (a), (b), (c), and (d) represent the

box-plots of rR with σ = 0, 0.025, 0.05, and 0.1 respectively.
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Fig. 9. The box-plots of node ratios rn for the regression of combined function: (a), (b), (c), and (d) represent the

box-plots of rn with σ = 0, 0.025, 0.05, and 0.1 respectively.
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Fig. 10. The box-plots for the optimal number of nodes to the number of samples n∗/l: (a), (b), (c), and (d) represent

the box-plots of n∗/l in the regression of step, sine-square, sinc, and combined functions respectively.

24



0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

train error
test error
BIC
SEB
AIC

test error
train error
MC

(a)

(b)

Fig. 11. Performance Predictions of model selection methods in the case of sinc function: (a) represents the estimated

error in the L2 sense versus the number of nodes using the AIC, BIC, and SEB methods and (b) represents the

estimated error in the L1 sense versus the number of nodes using the MC method.
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Fig. 12. Performance Predictions of model selection methods in the case of combined function: (a) represents the

estimated error in the L2 sense versus the number of nodes using the AIC, BIC, and SEB methods and (b) represents

the estimated error in the L1 sense versus the number of nodes using the MC method.
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5 Conclusion

We have suggested a new method of model selection in regression problems based on the

modulus of continuity. The risk function bounds are investigated from the view point of the

modulus of continuity for both the target and estimation functions. The final form of the risk

function bounds incorporate the information of learned results such as the sum of absolute

weights as well as the structural information such as the number of nodes in the regression

model. To verify the validity of the suggested bound, the model selection of regression models

using the trigonometric polynomials in function approximation problem was performed. As

a result, the suggested method showed the better performance for various types of target

functions from the view points of risk and node ratios compared to other model selection

methods. We also demonstrated that the risk prediction using the MC method was able to

catch the trend of test errors. This was mainly due to the fact that the MC based method

was performed using the risk function bounds incorporating both the information of learned

results as well as the structural information of the estimation network, the main criteria

of other model selection methods. Furthermore, the suggested MC method can be easily

extended to various types of regression models with nonlinear kernel functions which have

some smoothness constraints.
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Appendix

A-1. Proof of Theorem 1

The main idea of proving this theorem is to decompose the risk functional R(fn)L1
into

four components: the modulus of continuity for target function w(f, h), the modulus of con-

tinuity for approximation function w(fn, h), additive noise and the empirical risk functional

|yi− fn(xi)|. First, we will prove the theorem for noiseless target function, that is, y = f(x).

For each x ∈ X, there is xi ∈ Xi, i = 1, · · · , N , with |x− xi| < h. This implies that

|f(x)− fn(x)| 6 |f(x)− f(xi)|+ |f(xi)− fn(xi)|+ |fn(x)− fn(xi)|

6 ω(f, h) + |f(xi)− fn(xi)|+ |fn(x)− fn(xi)|. (37)

Let fn(x) =
∑n

i=1
wiφi(x). For each x, y ∈ X with |x− y| 6 h, we have

|fn(x)− fn(y)| = |
n∑

i=1

wi(φi(x)− φi(y))| 6 max
16i6n

|φi(x)− φi(y)|
n∑

i=1

|wi|

6 max
16i6n

{ω(φi, h)}
n∑

i=1

|wi|. (38)

That is,

|f(x)− fn(x)| 6 ω(f, h) + |f(xi) + fn(xi)|+ max
16i6n

{ω(f, h)}
n∑

i=1

|wi| (39)

from (37) and (38). By taking the integral of (39) in Xi satisfying P (Xi) = 1/N , for i =

1, · · · , N , we get

∫

Xi

|f(x)− fn(x)|dP (x) 6
1

N

(
ω(f, h) + |f(xi)− fn(xi)|+max{ω(φi, h)}

n∑

i=1

|wi|

)
. (40)

By taking the integral of (39) in X, we get

R(fn)L1
=

∫

X

|f(x)− fn(x)|dP (x) =
N∑

i=1

∫

Xi

|f(x)− fn(x)|dP (x)

6 Remp(fn)L1
+ ω(f, h) + max{ω(φi, h)}

n∑

i=1

|wi|. (41)
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Now, let us consider the target function with noise, that is, y = f(x)+ε, where ε represents

a random variable with mean zero and variance σ2. Then, it follows that

|y − fn(x)| 6 |y − yi|+ |yi − fn(xi)|+ |fn(xi)− fn(x)|

6 w(f, h) + |ε− εi|+ |yi − fn(xi)|+ |fn(xi)− fn(x)|. (42)

Here, εi, i = 1, · · · , N are random variables with mean zero and variance σ
2, We also assume

that ε and εi are independent. In this case,

P{|ε− εi| > u} 6
E|ε− εi|

2

u2
(by Markov’s inequality)

6
2σ2

u2
(43)

Therefore, with the probability at least 1− δ the following inequality holds:

R(fn)L1
=

∫

X×R

|y − fn(x)|dP (x, ε) 6

Remp(fn)L1
+ ω(f, h) + max{ω(φi, h)}

n∑

i=1

|wi|+ σ

√
2

δ
. (44)

Q. E. D.
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