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Abstract. Suppose {Qn}∞n=0 is a sequence of polynomials orthogonal with respect to the moment
functional

τ = σ + ν

where σ is a classical moment functional (Jacobi, Laguerre, Hermite) and ν is a point mass distri-
bution with finite support. In this paper, we develop a new method for constructing a differential
equation having {Qn}∞n=0 as eigenfunctions.

1. Introduction

The class of polynomial sequences {Pn}∞n=0 that are solutions of real differential equations of the
form

(1.1)
N∑

j=0

aj(x)y(j)(x) = λy(x)

where N ∈ N and λ is a spectral (eigenvalue) parameter, and are orthogonal with respect to a
bilinear form of the type

(1.2) (p, q)µ =
∫

R
pqdµ,

where µ is a (possibly signed) Borel measure on the real line R, is the so-called class of Bochner-Krall
orthogonal polynomials. In this case, we write {Pn}∞n=0 ∈ BKS(N) and call {Pn}∞n=0 a Bochner-
Krall sequence of order ≤ N. It is known that BKS(2N − 1) = ∅ and BKS(2N) 6= ∅ for each
N ∈ N; however, for even integers, only the classes BKS(2) and BKS(4) are specifically known up
to a real or complex linear change of variable. The BKS classification problem of determining the
classes BKS(2N) for each N ∈ N is of interest and importance in, for example, the area of spectral
theory of differential operators since examples from these classes generate unbounded self-adjoint
operators. For a general historical account of this classification problem, see [7] and [8].

For later purposes, we list the contents of the classical set BKS(2) up to a real linear change of
variable. The determination of BKS(2), up to a complex linear change of variable, can be traced
back to work of E. J. Routh [34] in 1885 and later to S. Bochner [4] in 1929 and P. Lesky [28] in
1962. A full account of this classification, in both a real and a complex linear change of variable,
can be found in [21].

(C-i) {P (α,β)
n }∞n=0, the Jacobi polynomials, where −α,−β,−(α + β + 1) /∈ N. For each n ∈ N0,

y = P
(α,β)
n (x) is a solution of the Jacobi differential equation

(1− x2)y′′ + (β − α− (α + β + 2)x)y + n(n + α + β + 1)y = 0.
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Let σ
(α,β)
J denote the canonical orthogonalizing moment functional for these polynomials.

(C-ii) {Lα
n}∞n=0, the Laguerre polynomials, where −α /∈ N. For each n ∈ N0, y = Lα

n(x) is a
solution of the Laguerre differential equation

xy′′ + (1 + α− x)y′ + ny = 0.

Let σα
L denote the canonical orthogonalizing moment functional for these polynomials.

(C-iii) {Hn}∞n=0, the Hermite polynomials. For each n ∈ N0, y = Hn(x) is a solution of the Hermite
differential equation

y′′ − 2xy′ + 2ny = 0.

Let σH denote the canonical orthogonalizing moment functional for these polynomials.
(C-iv) {ya

n}∞n=0, the Bessel polynomials, where −(a + 1) /∈ N. For each n ∈ N0, y = ya
n(x) is a

solution of the Bessel differential equation

x2y′′ + ((a + 2)x + 2)y′ − n(n + a + 1)y = 0.

Let σa
B denote the canonical orthogonalizing moment functional for these polynomials.

(C-v) {P̌ (α,β)
n }∞n=0, the twisted Jacobi polynomials, where −(α + β + 1) /∈ N and α = β. For each

n ∈ N0, y = P̌
(α,β)
n (x) is a solution of the twisted Jacobi differential equation

(1 + x2)y′′ + ((α + β + 2)x + i(α− β))y′ − n(n + α + β + 1)y = 0.

Let σ
(α,β)

J̌
denote the canonical orthogonalizing moment functional for these polynomials.

(C-vi) {Ȟn}∞n=0, the twisted Hermite polynomials. For each n ∈ N0, y = Ȟn(x) is a solution of
the twisted Hermite differential equation

y′′ + 2xy′ − 2ny = 0.

Let σȞ denote the canonical orthogonalizing moment functional for these polynomials.
Together, the moment functionals listed in (C-i) - (C-vi) are called the classical moment func-

tionals. For properties of the polynomials listed in (i)-(iv), see [5] and [36]. For a discussion of the
twisted polynomials in (C-v) and (C-vi), see [21] where these polynomials are first introduced.

There are several conjectures in the mathematical literature pertaining to the BKS classification
problem. One of these is Magnus’ conjecture [32] (see also Conjectures 4.3 and 5.3 in [7] and
Conjecture 7.1 in [8]) which states that any Bochner-Krall sequence necessarily is orthogonal with
respect to a moment functional that is the sum of a classical moment functional plus one or two
point masses located at the finite end point(s) of the interval of orthogonality. More specifically,
this conjecture asserts that if {Pn}∞n=0 is orthogonal with respect to the bilinear form (1.2) and are
solutions of the differential equation (1.1), then

(p, q)µ =< σ, pq > + < ν, pq >

where σ is a classical moment functional and

(1.3) ν =
m(a)∑

k=0

ck,1δ
(k)(x− a) +

m(b)∑

k=0

ck,2δ
(k)(x− b)

for some non-negative integers m(a) and m(b). In (1.3), we assume that ck,1 = 0 (respectively,
ck,2 = 0) if a = −∞ (respectively, b = ∞). To this extent, the authors in [23] prove, among
other results, the following theorem concerning Bochner-Krall sequences of polynomials that are
orthogonal with respect to the moment functional

(1.4) τ = σ + ν,
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where

(1.5) ν :=
m∑

k=1

mk∑

j=0

ck,jδ
(j)(x− xk);

that is to say, the perturbation moment functional ν is a distribution of finite order and finite
support.

Theorem 1.1. [23, Theorem 4.2] Suppose τ = σ + ν is a quasi-definite moment functional, where
σ is a classical moment functional that satisfies the moment equation

(1.6) (A(x)σ)′ = B(x)σ,

where 0 ≤ deg(A) ≤ 2 and deg(B) = 1 and where ν is a non-trivial real moment functional defined
in (1.5). Suppose {Qn}∞n=0 is a sequence of polynomials orthogonal with respect to τ and, for each
n ∈ N0, y = Qn(x), is a solution of the real differential equation

(1.7)
2N∑

j=0

aj(x)y(j)(x) = λy(x)

for some choice, say λ = λn, of the eigenvalue parameter number (see the Remark following this
theorem).Then

(i) supp(ν) ⊂ {x ∈ C | A(x) = 0} so that m ∈ {1, 2};
(ii) A(x) divides a2N (x);
(iii) if x0 ∈ supp(ν) is a zero of order q ≥ 1 of a2N (x), then x0 is a zero of order q − 1 of

a2N−1(x);
(iv) the moment functional σ must be either the Jacobi moment functional σ

(α,β)
J or the Laguerre

moment functional σ
(α)
L or the twisted Jacobi moment functional σ

(α,β)

J̌
; furthermore,

(a) if σ = σ
(α,β)
J then either −1 or 1 (or both) belongs to the support of ν. If 1 ∈ supp(ν)

(respectively, −1 ∈ supp(ν)), then α (respectively, β) must be a non-negative integer;
moreover, in this case, the moment functional τ necessarily has the form

τ = σ
(α,β)
J +

m(−1)∑

j=0

cj,−1δ
(j)(x + 1) +

m(1)∑

j=0

cj,1δ
(j)(x− 1),

where m(−1) and m(1) are non-negative integers. Furthermore, if −1 /∈ supp(ν)
(respectively, 1 /∈ supp(ν)), then cj,−1 = 0 for j = 0, . . . , m(−1) (respectively, cj,1 = 0
for j = 0, . . . ,m(1)); otherwise, we have

m(−1)∑

j=0

|cj,−1|+
m(1)∑

j=0

|cj,1| 6= 0.

(b) if σ = σ
(α)
L , then 0 ∈ supp(ν) and α must be a non-negative integer; moreover, in this

case, the moment functional τ necessarily has the form

τ = σ
(α)
L +

m(0)∑

j=0

cj,0δ
(j)(x),

where m(0) is a non-negative integer and where
∑m(0)

j=0 |cj,0| 6= 0.
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(c) if σ = σ
(α,β)

J̌
, then i and −i ∈ supp(ν), where i =

√−1; moreover, in this case, the
moment functional τ necessarily has the form

τ = σ
(α,β)

J̌
+

m(i)∑

j=0

cj,iδ
(j)(x + i) +

m(i)∑

j=0

cj,iδ
(j)(x− i),

where m(i) is a non-negative integer and where
∑m(i)

j=0 |cj,i| 6= 0.

Remark 1.1. We note that if {Qn(x)}∞n=0 is an orthogonal polynomial sequence satisfying (1.7),
it is well known that necessarily each coefficient ai(x) is a polynomial of degree ≤ i. Writing

ai(x) =
i∑

j=0

`i,jx
j (0 ≤ i ≤ 2N),

it is also well known that the value of the eigenvalue parameter λ = λn, corresponding to the
eigenfunction Qn(x), is necessarily given by

λn = `0,0 + n`1,1 + n(n− 1)`2,2 + . . . + n(n− 1) · · · (n− 2N + 1)`2N,2N (n ∈ N0).

In [23], the authors refine Theorem 1.1 in the case when the perturbation moment functional ν has
order zero (that is, each mk = 0 in (1.5)). Before stating this result, we note that the Koornwinder-
Jacobi polynomials {P (α,β,M,N)

n }∞n=0 are orthogonal on the interval [−1, 1] with respect to the weight
distribution

wα,β,c1,c2(x) = (1− x)α(1 + x)β + Mδ(x− 1) + Nδ(x + 1)

while the Koornwinder-Laguerre polynomials {Lα,A
n }∞n=0 are orthogonal on the interval [0,∞) with

respect to the weight distribution

wα,A(x) = xαe−x + Aδ(x).

For further information on these two Koornwinder polynomial sequences, see the contribution [14]
where these polynomials are introduced and studied.

Theorem 1.2. [23, Theorem 4.9] Let {Qn}∞n=0 be an orthogonal polynomial sequence with respect
to the moment functional

(1.8) τ = σ + c1δ(x− a) + c2δ(x− b).

Then {Qn}∞n=0 ∈ BKS(2N) for some N ∈ N0 if and only if
(a) when c1 = c2 = 0, then σ, subject to the parameter restrictions listed in (C-i) - (C-vi), is

one of the classic moment functionals:
(i) the Jacobi moment functional σ

(α,β)
J

(ii) the Laguerre moment functional σ
(σ)
L

(iii) the Hermite moment functional σH

(iv) the Bessel moment functional σ
(α,β)
B

(v) the twisted Jacobi moment functional σ
(α,β)

J̌
(vi) the twisted Hermite moment functional σȞ .

(b) when |c1|+ |c2| 6= 0, then σ is either the Jacobi moment functional σ
(α,β)
J , or the Laguerre

moment functional σ
(α)
L , or the twisted Jacobi moment functional σ

(α,β)

J̌
, subject to the fol-

lowing constraints:
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(i) if σ = σ
(α,β)
J , then a = −1, b = +1 and if c1 6= 0 (respectively, c2 6= 0), then α ∈ N0

(respectively, β ∈ N0). In other words, the polynomials {Qn}∞n=0 are Koornwinder-
Jacobi polynomials.

(ii) if σ = σ
(σ)
L , then a = 0, b = ∞, c2 = 0, and α ∈ N0. In other words, the polynomials

{Qn}∞n=0 are Koornwinder-Laguerre polynomials.
(iii) if σ = σ

(α,β)

J̌
, then α = β ∈ N0,, a = −i, b = +i, and c1 = c2. In this case, we call the

orthogonal polynomials {Qn}∞n=0 twisted Jacobi type polynomials.

We note that, prior to the publication of [23], J. and R. Koekoek (see [11] and [12]) explicitly
computed differential equations for {Qn}∞n=0 in cases (b) (i) and (b) (ii) above. They use a clever
combination of properties of certain special functions together with the symbolic program MAPLE
and an important new technique called the inversion formula, due to Bavinck and Koekoek [2], to
compute these differential equations; see also [1] and [13] for further details.

The significance of Theorem 1.2 is that the authors in [23] prove that the only polynomials in
the Bochner-Krall class that are orthogonal with respect to a moment functional of the form (1.8)
are the ones listed in Theorem 1.2.

There are other effective methods, discovered earlier, that have been used to compute differential
equations for polynomials in the Bochner-Krall class with respect to weights of the form (1.8). For
example, H. L. Krall devised a method, based on the classical Green’s formula in differential
equations, to compute differential equations; this method was used by Shore [35] and later by
Littlejohn and Shore [30] to compute some of the first higher-order differential equations for various
Koornwinder-Jacobi and Koornwinder-Laguerre polynomials; this method is known in the literature
as Shore’s technique. Another method was developed by Littlejohn (see [29]) using the weight or
symmetry equations to find the differential equation for polynomials orthogonal with respect to
a known weight function. This technique relied on the assumption that the differential equation
could be made Lagrangian symmetric. Later, Kwon and Yoon, in [26], showed in fact that every
differential equation in the Bochner-Krall class is Lagrangian symmetrizable.

The purpose of this paper is to introduce a new, and effective, way of constructing differential
equations in the case when the perturbation ν has positive order. This new method is based on
earlier results of Kwon and Yoon in [27] and is closely connected to the theory of the Darboux
transformation. Significantly less calculations are needed with this method compared to the other
techniques described above. After we develop this new method, we consider several examples where
this technique is applied.

The contents of this paper are as follows. In Section Two we discuss, and review, several
general facts about the calculus of moment functionals and their connections to the Bochner-Krall
classification problem. Section Three consists of a brief discussion of the results in [27] and details
our new construction technique. Following the results in this section, we discuss three examples in
detail to illustrate this new method.

2. Preliminaries

Let P be the space of all real polynomials in one variable and denote the degree of a polynomial
π(x) by deg(π) with the convention that deg(0) = −1. By a polynomial system(PS), we mean a
sequence of polynomials {φn(x)}∞n=0 with deg(φn) = n, n ∈ N0, the set of non-negative integers.

We call any linear functional σ on P a moment functional and denote its action on a polynomial
π(x) by 〈σ, π〉. For a moment functional σ, we call

σn := 〈σ, xn〉, n ∈ N0
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the n-th moment of σ. We say that a moment functional σ is quasi-definite (respectively, positive-
definite) if its moments {σn}∞n=0 satisfy the Hamburger condition

(2.1) ∆n(σ) := det[σi+j ]ni,j=0 6= 0 (respectively, ∆n(σ) > 0)

for every n ∈ N0. Any PS {φn(x)}∞n=0 determines a moment functional σ (uniquely up to a non-zero
constant multiple), called a canonical moment functional of {φn(x)}∞n=0, by the conditions

〈σ, φ0〉 6= 0 and 〈σ, φn〉 = 0, n ≥ 1.

Definition 2.1. A PS {Pn(x)}∞n=0 is called an orthogonal polynomial system (OPS) (respectively,
a positive-definite OPS) if there is a moment functional σ satisfying

〈σ, PmPn〉 = Knδmn, (m,n ∈ N0),

where {Kn}∞n=0 are non-zero (respectively, positive) constants and δmn is the Kronecker delta func-
tion. In this case, we say that {Pn(x)}∞n=0 is an OPS relative to σ and call σ an orthogonalizing
moment functional of {Pn(x)}∞n=0.

Due to the representation theorems for the moment problem by Boas [3] and Duran [6], any
moment functional σ has an integral representation of the form

〈σ, π〉 =
∫ ∞

−∞
π(x)dµ(x) =

∫ ∞

−∞
π(x)φ(x)dx (π ∈ P),

where µ is a finite, signed Borel measure on R and φ(x) is a smooth, rapidly decaying function in
the Schwartz space S(R). Hence, for any OPS {Pn(x)}∞n=0, there is a distribution w(x) relative to
which {Pn(x)}∞n=0 is orthogonal. In this case, we call w(x) a distributional orthogonalizing weight
for {Pn(x)}∞n=0.

For a moment functional σ, a polynomial π(x), we let σ′ and πσ be the moment functionals
defined by

〈σ′, φ〉 = −〈σ, φ′〉 and 〈πσ, φ〉 = 〈σ, πφ〉 for φ ∈ P.

The following results are immediate consequences of these definitions.

Lemma 2.1. ([19] and [22]) Let σ and τ be moment functionals. Then for a polynomial π(x) and
a real number λ, we have
(i) Leibniz’ rule: (π(x)σ)′ = π′(x)σ + π(x)σ′;
(ii) σ′ = 0 if and only if σ = 0.

If σ is quasi-definite and {Pn(x)}∞n=0 is an OPS relative to σ, then
(iii) π(x)σ = 0 if and only if π(x) = 0.
(iv) 〈τ, Pn〉 = 0, n ≥ k + 1 for some integer k ≥ 0 if and only if τ = φ(x)σ for some polynomial
φ(x) of degree ≤ k.

Consider a linear differential equation :

(2.2) LN [y](x) =
N∑

i=1

`i(x)y(i)(x) =
N∑

i=1

i∑

j=0

`i,jx
jy(i)(x) = λny(x),

where `i,j are real constants and λn = `11n+ · · ·+ `NNn(n−1) · · · (n−N +1). Then necessary and
sufficient conditions for an OPS to satisfy the differential equation (2.2) were found first by Krall
[17], of which another simpler proof can be found in [22].

We call an OPS {Pn(x)}∞n=0 a Bochner-Krall OPS (BKOPS) of order ≤ N if {Pn(x)}∞n=0

satisfies a differential equation (2.2) of order N.
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Proposition 2.2. (see [16], [17], [22] and [31]) Let {Pn(x)}∞n=0 be an OPS relative to σ. Then the
following statements are equivalent.

(i) {Pn(x)}∞n=0 is a BKOPS satisfying the differential equation (2.2);

(ii) The moments {σn}∞n=0 of σ satisfy r := [N+1
2 ] recurrence relations :

(2.3) Rk[σ] =
N∑

i=2k+1

(−1)i

(
i− k − 1

k

)
(`kσ)(i−2k−1) = 0 (k = 0, 1, · · · , r − 1);

(iii) σ satisfies N + 1 functional equations:

(2.4)
N∑

i=k

(−1)i

(
i

k

)
(`iσ)(i−k) = `kσ (k = 0, 1, · · · , N).

Furthermore, if any of the above equivalent conditions holds, then N = 2r must be even.

Proof. See Theorem 2.4 in [22]. ¤
When σ is a classical moment functional ([20, 33]) satisfying (1.6), then it is well known that an

OPS {Pn(x)}∞n=0 relative to σ satisfies the second-order differential equation

(2.5) A(x)P ′′
n (x) + B(x)P ′

n(x) = (
1
2
n(n− 1)A′′(x) + nB′(x))Pn(x) (n ∈ N0).

By iterating an equation (2.5), we can see that any classical orthogonal polynomials may satisfy
differential equations (2.2) for any N ≥ 2. In [24, Proposition 1], the converse has been shown :

Theorem 2.3. Assume that {Pn(x)}∞n=0 is a classical OPS satisfying the differential equation (2.5).
If {Pn(x)}∞n=0 also satisfies a differential equation (2.2) of order N = 2r (r ≥ 1), then LN [·] is a
linear combination of iterations of the differential equation (2.5).

We now consider a point-mass perturbation τ := σ + ν of a classical moment functional σ at
finitely many points, where

(2.6) ν =
m∑

k=1

mk∑

j=0

ck,jδ
(j)(x− xk)

is a distribution with finite support {xk}m
k=1 in C and ck,j ∈ C.

Lemma 2.4. ([23]) Let σ be a quasi-definite moment functional. If for some polynomial π(x), π(x)σ =
ν, where ν is as in (2.6), then π(x) ≡ 0 and ν ≡ 0.

Proof. Let φ(x) =
∏m

k=1(x− xk)mk+1. Then φ(x)ν = 0 so that φ(x)π(x)σ = φ(x)ν = 0. Hence, by
Lemma 2.1, φ(x)π(x) ≡ 0 so that π(x) ≡ 0 and ν ≡ 0. ¤

3. Construction of differential operators

We want to construct a differential operator in (2.2) having as eigenfunctions an OPS {Qn(x)}∞n=0

orthogonal to a moment functional τ of the form

(3.1) τ = σ + ν

where σ is a classical moment functional and ν a distribution with finite support. It is, however,
open that an OPS in the Koornwinder class is a BKOPS.
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From now on, we let {Pn(x)}∞n=0 be a monic OPS relative to σ and

(3.2) L0[·] =
k∑

i=0

ai(x)Di =
k∑

i=0

i∑

j=0

aijx
jDi, (D = d/dx)

a linear differential operator of order k with polynomial coefficients ai(x), (ak(x) 6≡ 0). For non-
negative integers n ≥ 0, let

(3.3) αn :=
k∑

i=0

aii(n + r)(i+r), n ≥ 0,

where

n(i) =

{
1, if i = 0,

n(n− 1) · · · (n− i + 1), if i ≥ 1.

Then for each n ≥ 0, L0[P
(r)
n+r(x)] is either 0 if αn = 0 or a polynomial of degree n with leading

coefficient αn if αn 6= 0.

Theorem 3.1. Let {Qn(x)}∞n=0 be a monic OPS relative to τ. Then for an integer r ≥ 0, {Qn(x)}∞n=0

satisfies the relations :

(3.4) L0[P
(r)
n+r(x)] = αnQn(x), n ≥ 0

if and only if there are k + r + 1 polynomials {bi(x)}k+r
i=0 with deg(bi) ≤ i + r satisfying

(3.5)
k+r∑

i=j

(−1)i

(
i

j

)
(ai−r(x)τ)(i−j) = bj(x)σ, 0 ≤ j ≤ k + r

where ai(x) = 0 for i < 0.

Proof. Assume that {Qn(x)}∞n=0 satisfies (3.4). First,

< τ, αnQn(x) >=<
k+r∑

i=0

(−1)i(ai−r(x)τ)(i), Pn+r(x) >= 0, n ≥ 1

so that by Lemma 2.1 (iv), there is a polynomial b0(x) of degree ≤ r, with which (3.5) holds for
j = 0. Assume now that there are polynomials {bj(x)}`

j=0 (0 ≤ ` < k + r) with deg(bj) ≤ j + r and
(3.5) holds for 0 ≤ j ≤ `. Then for n ≥ ` + 2

0 = < τ, αnQ`+1Qn >=<
k+r∑

i=0

(−1)i(Q`+1ai−rτ)(i), Pn+r >

= <
k+r∑

j=0

Q
(j)
`+1

k+r∑

i=j

(−1)i

(
i

j

)
(ai−rτ)(i−j), Pn+r >

= Q
(`+1)
`+1 <

k+r∑

i=`+1

(−1)i

(
i

` + 1

)
(ai−rτ)(i−`−1), Pn+r > + < σ, (

∑̀

j=0

Q
(j)
`+1bj)Pn+r >

= Q
(`+1)
`+1 <

k+r∑

i=`+1

(−1)i

(
i

` + 1

)
(ai−rτ)(i−`−1), Pn+r >
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so that

<
k+r∑

i=`+1

(−1)i

(
i

` + 1

)
(ai−rτ)(i−`−1), Pn+r >= 0, n ≥ ` + 2.

Hence, again by Lemma 2.1 (iv), there is a polynomial b`+1(x) of degree ≤ ` + r + 1 with which
(3.5) holds for j = ` + 1, which proves (3.5).

Conversely, we assume that there are polynomials {bj(x)}k+r
j=0 with deg(bj) ≤ j + r satisfying

(3.5). Then for each n ≥ 0, L0[P
(r)
n+r](x) is a polynomial of degree ≤ n. Expand L0[P

(r)
n+r](x) in

terms of {Qj(x)}n
j=0 ;

L0[P
(r)
n+r](x) = αnQn(x) +

n−1∑

j=0

cjQj(x).

Then

cj < τ, Q2
j > =< τ, L0[P

(r)
n+r]Qj >

=<
k+r∑

i=0

(−1)i(Qjai−rτ)(i), Pn+r >

=<

k+r∑

i=0

(−1)i
i∑

m=0

(
i

m

)
Q

(m)
j (ai−rτ)(i−m), Pn+r >

=< σ, (
k+r∑

m=0

bmQ
(m)
j )Pn+r >= 0, 0 ≤ j ≤ n− 1

so that cj = 0, j = 0, 1, 2, · · · , n−1. Thus {Qn(x)}∞n=0 satisfies (3.4), which completes the proof. ¤

Remark 3.1. It was shown in [27] that (3.5) is equivalent to the relations :

(3.6)
k+r∑

i=j

(−1)i

(
i

j

)
(bi(x)σ)(i−j) = aj−r(x)τ, 0 ≤ j ≤ k + r.

Theorem 3.1 implies that if {Qn(x)}∞n=0 is an OPS satisfying (3.4), then the operator L0[·] gives
rise to a bispectral operator L := L2 ◦ L1 such that

{
L2 ◦ L1[Pn](x) = αn−rβn−rPn(x), n ≥ 0
L1 ◦ L2[Qn](x) = αnβnQn(x), n ≥ 0

where L1[·] = L0 ◦Dr and

L2[·] =
k+r∑

i=0

bi(x)Di (deg(bi) ≤ i + r)

for polynomials bi(x) =
∑i+r

j=0 bijx
j given in (3.5), and the constants βn are given as

(3.7) βn :=
k+r∑

j=0

bj,j+rn(j), n ≥ 0.

More precisely, we have the followings.
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Theorem 3.2. Let {Qn(x)}∞n=0 be a monic OPS satisfying (3.4) and {bi(x)}k+r
i=0 the polynomials

satisfying (3.5). Then for the linear differential operator L2[·] defined

L2[·] =
k+r∑

i=0

bi(x)Di (deg(bi) ≤ i + r),

{Qn(x)}∞n=0 satisfies

(3.8) L2[Qn(x)] =
k+r∑

i=0

bi(x)Q(i)
n (x) = βnPn+r(x), n ≥ 0

so that

(3.9)
{

L2 ◦ L1[Pn](x) = αn−rβn−rPn(x), n ≥ 0
L1 ◦ L2[Qn](x) = αnβnQn(x), n ≥ 0

where L1[·] := L0 ◦Dr.

Proof. By the same argument used in the proof of the necessity of Theorem 3.1, it is easily shown
that for each n ≥ 0, L2[Qn(x)] =

∑k+r
j=0 bj(x)Q(j)

n (x) is either a polynomial of degree exactly n + r

or identically zero. We now define a PS {P̃n(x)}∞n=0 by

P̃n(x) :=
{

L2[Qn−r](x), if n ≥ r and βn−r 6= 0,
Pn(x), otherwise.

Then deg(P̃n) = n, n ≥ 0 by (3.7), and by using (3.6) we can show easily that

< σ, P̃nP̃m >= 0, for n 6= m,

which shows that {P̃n(x)}∞n=0 is an OPS relative to σ. Hence,

L2[Qn−r](x) = βn−rPn(x), n ≥ r

for βn given in (3.7). Finally,

L2 ◦ L1[Pn](x) = L2 ◦ L0[P (r)
n ](x) =

{
0, if 0 ≤ n ≤ r − 1

L2[Qn−r](x) = αn−rβn−rPn(x), if n ≥ r

and
L1 ◦ L2[Qn](x) = βnL1[Pn+r](x) = αnβnQn(x), n ≥ 0,

which proves (3.9). ¤

Without the information for the orthogonalizing weight or measure of an OPS {Qn(x)}∞n=0, we
have no way other than checking all the Hankel determinants given in (2.1) in order to check
the positive-definiteness of {Qn(x)}∞n=0. But it is complicated and cumbersome. So the following
characterization of positive-definiteness of such an OPS {Qn(x)}∞n=0 as given in (3.4) is useful and
efficient.

Theorem 3.3. Let {Qn(x)}∞n=0 be a monic OPS relative to τ satisfying (3.4). Assume that σ is
a positive-definite moment functional. If αn 6= 0, n ≥ 0 for αn in (3.3), then {Qn(x)}∞n=0 is a
positive-definite OPS if and only if

αnβn > 0, n ≥ 0

for αn in (3.3) and βn in (3.7).
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Proof. Using the relations in (3.5), we have

< τ,Q2
n > = α−1

n <
k+r∑

j=0

Q(j)
n

k+r∑

i=j

(−1)i

(
i

j

)
(ai−rτ)(i−j), Pn+r >

= α−1
n < σ, (

k+r∑

j=0

Q(j)
n bj)Pn+r >

= α−1
n βn < σ, xn+rPn+r >, n ≥ 0.

Since 〈σ, xn+rPn+r〉 > 0, n ≥ 0, it follows that {Qn(x)}∞n=0 is positive-definite if and only if
αnβn > 0, n ≥ 0, which proves the theorem. ¤

Remark 3.2. Theorem 3.1 and 3.2 in [27] were obtained under the assumption that αn 6= 0, n ≥ 0
for αn in (3.3). Note that for each n ≥ 0,

< τ, αnQ2
n >=< τ,L0[P

(r)
n+r]Qn >=< σ, βnP 2

n+r >

which implies that αn 6= 0 if and only if βn 6= 0.

4. Illustration

We want to construct a differential operator in (2.2) having as eigenfunctions an OPS {Qn(x)}∞n=0

orthogonal relative to a moment functional τ of the form

(4.1) τ = σ + ν

where σ is a classical moment functional and ν a distribution with finite support. It is, however,
open that an OPS in the Koornwinder class is a BKOPS.

In this situation, Theorem 3.1 suggests a method to construct a differential operator having
a sequence of eigenpolynomials orthogonal relative to τ as in (4.1). We illustrate Theorem 3.1
with some examples. In particular, this result give a useful method to construct such differential
operators.

In the remainder of this section, we let {Pn(x)}∞n=0 be a classical monic OPS relative to σ and
{Qn(x)}∞n=0 a monic OPS relative to τ in (4.1).

Example 1. The Krall-Laguerre polynomials I.
Let σ = σ

(α)
L be the Laguerre moment functional, which satisfies the moment equation

(4.2) (xσ)′ = (α + 1− x)σ.

Assume that there are polynomials a2(x) = ax2 + bx + c, a1(x) = rx + s, and a constant a0 such
that

(4.3) L0[Pn(x)] = (ax2 + bx + c)P ′′
n (x) + (rx + s)P ′

n(x) + a0Pn(x) = αnQn(x), n ≥ 0,

where αn = a(n2 − n) + rn + a0. Then Theorem 3.1 implies that there are polynomials b2(x) =
b22x

2 + b21x + b20, b1(x) = b10x + b10 and a constant b0 such that

(4.4) a2(x)τ = b2(x)σ,

(4.5) 2(a2(x)τ)′ − a1(x)τ = b1(x)σ,
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(4.6) (a2(x)τ)′′ − (a1(x)τ)′ − a0(x)τ = b0σ.

And {Pn(x)}∞n=0 is obtained from {Qn(x)}∞n=0 via the differential operator M0[·]:
M0[Qn](x) := b2(x)Q′′

n(x) + b1(x)Q′
n(x) + b0Qn(x) = βnPn(x), n ≥ 0

where βn = b22(n2 − n) + b11n + b0. Since {Pn(x)}∞n=0 satisfies the differential equation M0 ◦
L0[Pn](x) = αnβnPn(x), Theorem 2.3 implies that a2(x)b2(x) = Cx2 for some non-zero constant
C. Then there are three cases and we consider only the case when a2(x) = b2(x) = x. Solve the
relation (4.4) and then there is a constant λ such that

(4.7) τ = σ + λδ(x).

To avoid the trivial case, we assume that λ 6= 0. By substituting (4.2) into the left expression in
(4.5), we have that

2(a2(x)τ)′ − a1(x)τ = 2(xσ)′ − (rx + s)σ − λ(rx + s)δ(x)

= 2(α + 1− x)σ − (rx + s)σ − sλδ(x)

= (2α + 2− 2x− rx− s)σ − sλδ(x).

Hence (4.5) yields the relation

(2α + 2− (r + 2)x− b1(x))σ = sλδ(x),

and Lemma 2.4 implies

a1(x) = rx and b1(x) = 2(α + 1)− (r + 2)x.

Now we consider the moment equation in (4.6). Using (4.2), we expand (4.6) as

b0σ = [(xσ)′]′ − r(xσ)′ + a0σ + a0λδ(x)

= (α + 1)σ′ − (r + 1)(α + 1− x)σ + a0σ + a0λδ(x).

Multiplying by x and implying the relation xσ′ = (α− x)σ, we get the identity

(α + 1)(α− x)− (r + 1)(α + 1− x)x + a0x = b0x,

which shows that α(α + 1) = 0 and r = −1. Since α is a non-negative integer by Theorem 1.1, we
have that α = 0.

On the other hand, σ
(0)
L is represented with the weight function e−x on [0,∞), we have the

explicit expression for the derivative of σ
(0)
L

(4.8) σ′ = (σ(0)
L )′ = −σ + δ(x).

Using (4.8), we simplify (4.6) into

−σ + δ(x) + a0σ + a0λδ(x) = b0σ.

By implying Lemma 2.4, we have

r = −1, a0λ + 1 = 0, b0 = a0 − 1.

Hence we have shown that {Qn(x)}∞n=0 is orthogonal with respect to τ = σ
(0)
L + λδ(x) and that

L0[Pn(x)] = xP ′′
n (x)− xP ′

n(x)− 1
λ

Pn(x) = −(n +
1
λ

)Qn(x), n ≥ 0

and

M0[Qn(x)] = xQ′′
n(x)− (x− 2)Q′

n(x)− (1 +
1
λ

)Qn(x) = −(n + 1 +
1
λ

)Pn(x), n ≥ 0,
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hence {Qn(x)}∞n=0 satisfies the fourth order differential equation

L0 ◦M0[Qn(x)] = x2Q(4)
n (x)− 2x(x− 2)Q(3)

n (x) + x(x− 6− 2
λ

)Q′′
n(x)

+ 2[(1 +
1
λ

)x− 1
λ

]Q′
n(x) +

1
λ

(1 +
1
λ

)Qn(x)

= (n +
1
λ

)(n + 1 +
1
λ

)Qn(x)

and {Pn(x)}∞n=0 satisfies the fourth order differential equation

M0 ◦ L0[Pn(x)] = x2P (4)
n (x)− 2x(x− 2)P (3)

n (x) + [x2 − (6 +
2
λ

)x + 2]P ′′
n (x)

+ 2(1 +
1
λ

)(x− 1)P ′
n(x) +

1
λ

(1 +
1
λ

)Pn(x)

= (n +
1
λ

)(n + 1 +
1
λ

)Pn(x).

The operator M0 ◦ L0 is expressed as

M0 ◦ L0 = L2 + (1 +
2
λ

)L +
1
λ

(1 +
1
λ

)

for the Laguerre operator L = xD2 + (1 − x)D with D = d/dx. This is the same result as that
in [18] or [9]. Note that Theorem 3.3 shows that τ = σ

(0)
L + λδ(x) is a positive-definite moment

functional if and only if λ is positive.

Remark 4.1. F. Grünbaum and L. Haine [9] gave the special condition that α = 0, in order to
obtain the same result. The reason for the specialization seems due to the fact that the Krall-
Laguerre polynomials satisfying a fourth-order differential equation were found before their work.
(see, [18]).

Example 2. Krall-Laguerre polynomials II
Let τ be a point mass perturbation of the Laguerre moment functional σ = σ

(0)
L ,

(4.9) τ = σ
(0)
L + λδ(x) + µδ′(x)

for some constants λ and µ 6= 0. Assume that there are polynomials {ai(x)}6
i=0 with deg(ai) ≤ i

such that

(4.10) L0[Pn(x)] =
6∑

i=0

ai(x)P (i)
n (x) = αnQn(x), n ≥ 0

where {Qn(x)}∞n=0 is the monic OPS relative to τ. Theorem 3.1 implies that there are polynomials
{bi(x)}6

i=0 with deg(bi) ≤ i such that σ and τ satisfy the equations

(4.11)
6∑

i=j

(−1)i

(
i

j

)
(ai(x)τ)(i−j) = bj(x)σ, j = 0, 1, 2, · · · , 6

and

(4.12) M0[Qn(x)] =
6∑

i=0

bi(x)Q(i)
n (x) = βnPn(x), n ≥ 0.
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Since {Pn(x)}∞n=0 satisfy the 12th order differential equation M0◦L0[Pn](x) = αnβnPn(x), Theorem
2.3 implies that a6(x)b6(x) = Cx6 for some constant C. The relation (4.9) yields that a6(x) and
b6(x) are of the same degree, so we may assume that a6(x) = b6(x) = x3. By implying the relations

(4.13) [σ(0)
L ](k) = (−1)kσ

(0)
L +

k−1∑

j=0

(−1)k−1−jδ(j)(x)

and Lemma 2.4 to equations in (4.11), and then equating coefficients, we obtain

a5(x) = (Ax + B)x2, a4(x) = (Cx + D)x2, a3(x) = (Ex + F )x2, a2(x) = (Gx + H)x

for some constants. And let a1(x) = Kx + L. Using (4.13), we solve the equations in (4.11) and we
have that

a5(x) = −3x3 + 5x2,

a4(x) = 3x3 + Dx2,

a3(x) = −x3 − (2D + 15)x2,

a2(x) = (D + 10)x2 − 10
µ

x,

a1(x) =
10
µ

x +
6
µ

,

a0 =
6D + 72

µ
,

where D = 3λ
4µ − 53

4 and the constant λ is determined by the relation

5µ2 − 18λµ + 9λ2 − 32µ = 0,

for a free parameter µ (µ ≤ −8 or µ ≥ 0). Also we have

b5(x) = −3x3 + 13x2,

b4(x) = 3x3 + (D − 20)x2 + 40x,

b3(x) = −x3 + (−2D + 1)x2(8D + 20)x + 20,

b2(x) = (D + 6)x2 − (12D +
10
µ

+ 102)x + 12D + 120,

b1(x) = (4D +
10
µ

+ 42)x− 12D − 26
µ
− 138,

b0(x) = 2D +
16
µ

+ a0 + 24.

Hence for n ≥ 0, we get

αn = −n(n− 1)(n− 2) + (D + 10)n(n− 1) +
10
µ

n +
6D + 72

µ
,

βn = −n(n− 1)(n− 2) + (D + 6)n(n− 1) + (4D +
10
µ

+ 42)n + 2D +
16
µ

+ a0 + 24.

In this case, the 5-th Hankel determinant ∆5(τ) = det[τi+j ]5i,j=0 of τ is

∆5(τ) = 1 + 6λ + 30µ− 105µ2.
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µ = −10 µ = 0.5 µ = 10
αn βn αn βn αn βn

n = 0 0.16584 −1.98695 18.73863 53.86174 0.10249 2.04413
n = 1 −.83416 −10.09252 38.73863 74.10795 1.10249 −2.27259
n = 2 −6.38695 −30.75088 57.86174 85.47727 −1.55587 −18.24766
n = 3 −22.49252 −69.96203 70.10795 81.96969 −13.87259 −51.88110
n = 4 −55.15088 −133.7296 69.47727 57.58522 −41.84766 −109.17290
n = 5 −110.36203 −228.04268 49.96969 6.32385 −91.48110 −196.12305
n = 6 −194.12596 −358.91218 5.58522 −77.81441 −168.77290 −318.73157
n = 7 −312.44268 −532.33447 −69.67615 −200.82956 −279.72305 −482.99844
n = 8 −471.31218 −754.30955 −181.81441 −368.72161 −430.33157 −694.92367
n = 9 −676.73447 −1030.8374 −336.82956 −587.49056 −626.59844 −960.50726

Table 1. Table of the values of αn and βn for λ = µ + 2
3

√
µ2 + 8µ

µ = −10 µ = 0.5 µ = 10
αn βn αn βn αn βn

n = 0 0.43416 −2.61305 −30.73863 −3.86174 −0.70249 −1.44413
n = 1 −0.56584 −12.50748 −10.73863 −0.10795 0.29751 −11.12741
n = 2 −7.01305 −35.84912 0.13826 −13.47727 −5.04413 −35.15234
n = 3 −24.90748 −78.63797 −4.10795 −49.96969 22.72741 −79.51890
n = 4 −60.24912 −146.87404 −29.47727 −115.58522 −58.75234 −150.22710
n = 5 −119.03797 −246.55732 −81.96969 −216.32385 −119.11890 −253.27695
n = 6 −207.27404 −383.68782 −167.58522 −358.18559 −209.82710 −394.66843
n = 7 −330.95732 −564.26553 −292.32385 −547.17044 −336.87695 −580.40156
n = 8 −496.08782 −794.29045 −462.18559 −789.27839 −506.26843 −816.47633
n = 9 −708.66553 −1079.76258 −683.17044 −1090.50944 −724.00156 −1108.89274

Table 2. Table of the values of αn and βn for λ = µ− 2
3

√
µ2 + 8µ

This yields that in order for τ to be positive-definite on [0,∞), µ < 1. However, 〈τ, x〉 = 1 − µ
should be positive because p(x) = x is non-negative on [0,∞). Hence, τ is not positive-definite on
[0,∞). We can see from the tables below that there exists an integer n ≥ 0 such that αnβn < 0.

Example 3. The Krall-Legendre polynomials.
Let τ be a point mass perturbation of the Legendre moment functional σ = σ

(0,0)
J ,

(4.14) τ = σ
(0,0)
J + λ1δ(x− 1) + λ2δ

′(x− 1) + µ1δ(x + 1) + µ2δ(x + 1),

for some constants λi and µi. Here we assume λ2 6= 0. We attempt to construct an 8th order
differential operator having {Qn(x)}∞n=0 as eigenfunctions. Assume that there are polynomials
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{ai(x)}4
i=0, deg(ai) ≤ i and {bi(x)}4

i=0, deg(bi) ≤ i satisfying

a4(x)τ = b4(x)σ,(4.15)

4(a4(x)τ)′ − a3(x)τ = b3(x)σ,(4.16)

6(a4(x)τ)′′ − 3(a3(x)τ)′ + a2(x)τ = b2(x)σ,(4.17)

4(a4(x)τ)′′′ − 3(a3(x)τ)′′ + 2(a2(x)τ)′ − a1(x)τ = b1(x)σ,(4.18)

(a4(x)τ)(iv) − (a3(x)τ)′′′ + (a2(x)τ)′′ − (a1(x)τ)′ + a0(x)τ = b0(x)σ.(4.19)

In this case, we may assume that

a4(x) = b4(x) = (x2 − 1)2.

Using the identity

(4.20) σ′ = δ(x + 1)− δ(x− 1),

we can easily show the relations

[(x2 − 1)2τ ]′ = 4x(x2 − 1)σ,(4.21)

[(x2 − 1)2τ ]′′ = (12x2 − 4)σ,(4.22)

[(x2 − 1)2τ ]′′′ = 24xσ + 8δ(x + 1)− 8δ(x− 1),(4.23)

[(x2 − 1)2τ ](iv) = 24σ − 24δ(x + 1)− 24δ(x− 1) + 8δ′(x + 1)− 8δ′(x− 1).(4.24)

The relations (4.16-4.18) yield that a3(x), a2(x), and a1(x) are written as

a3(x) = (Ax + B)(x− 1)2, a2(x) = C(x− 1)2, a1(x) = D(x− 1).

Using the relations (4.20-4.24), we solve the equations (4.15-4.19) that we have

τ = σ − 64
3

δ(x− 1) +
128
3

δ′(x− 1) +
8
3
δ(x + 1)

and

a3(x) = 3(x + 1)(x− 1)2, b3(x) = (13x + 3)(x2 − 1)

a2(x) = 0, b2(x) = 45x2 + 18x− 15

a1(x) =
3
4
(x− 1), b1(x) =

165
4

x +
75
4

a0(x) = − 9
16

, b0(x) =
75
16

.

So in this case, {Qn(x)}∞n=0 is quasi-definite but not positive-definite.
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