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We show that when the three-way association level among the three binary variables, X, Y, Z is

fixed, DP = P (X = 1|Y = 1)−P (X = 1|Y = 0) increases as the cross-product ratio (≥ 1) of Y

and Z increases under the assumption that X is positively associated with Y and Z. We then

discuss some implications of this property.
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1 Introduction and problem

The cross-product ratio (cpr) is a basic measure of association in 2×2 tables, and many of the

measures of association for 2×2 tables as discussed in Goodman and Kruskal (1954, 1959, 1963,

1972) are simply monotone functions of the cross-product ratio. In addition to that, the cpr has

been widely used in educational, genetic, and medical contexts during the last 50 years (Holland

and Thayer, 1988; Kimura, 1965; Cornfield, 1956). The association measure for 2k (k ≥ 2)

tables can also be represented in the form of nested ratios of conditional cpr’s (Bishop et al.,

1975). An example for 23 tables is given in expression (1). While an association measure for 2k

(k ≥ 2) tables gives us an overall picture of association among the k variables involved, it is not

clear how it is related to prediction for a variable given the values of the other variables. We

will investigate this problem in this article.

Consider three binary variables, U1, U2, and X, and suppose that we are interested in pre-

dicting for U1 given an outcome of X. Assuming that all the variables are binary taking on 0

or 1, we will explore how the cpr between U1 and U2 is related with

DP = P (X = 1|U1 = 1)− P (X = 1|U1 = 0).

DP may be regarded as a measure of discrimination between the two events, X = 1 and X = 0,

based on the information from U1. The larger the value of DP becomes, the better discriminator

U1 becomes. This discriminating ability may change according to the association level of the

two U variables.
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The three-way interaction measure among U1, U2, and X can be expressed as

PX|U1U2
(1|1, 1)PX|U1U2

(0|0, 1)
PX|U1U2

(1|0, 1)PX|U1U2
(0|1, 1)

/
PX|U1U2

(1|1, 0)PX|U1U2
(0|0, 0)

PX|U1U2
(1|0, 0)PX|U1U2

(0|1, 0)
. (1)

This expression implies that the three-way interaction remains the same as long as the condi-

tional probability PX|U1U2
remains the same. Suppose that we have two probability distributions

Q and R for U1, U2, X. It may sound reasonable that if the three-way interaction is the same

between the two probability distributions, then QX|U1
= RX|U1

. But it is not true in general, as

we will see below.

To see how the association level between the U variables affect the discriminating ability, we

will consider some restriction on the probability models as follows:

(i) Q(X = 1|U1 = u1, U2 = u2) = R(X = 1|U1 = u1, U2 = u2), for every u1 and u2.

(ii) Q(Ui = 1) = R(Ui = 1), i = 1, 2.

Conditions (i) and (ii) mean that the conditional probability of X conditional on the U

variables are the same between the two models and so are the marginals of the U variables.

The only possible differences between the models are on the association level between the two

U variables and the marginal on X.

2 A theorem

We will now prove a theorem which shows a direct relation between the discriminating ability

DP and the association level among the U variables.

Theorem 1 Consider a model of three binary variables, U1, U2, and X for which conditions

(i) and (ii) are satisfied and the three variables are three-way interactive. Also assume that,

whenever u1 ≥ u′1 and u2 ≥ u′2,

QX|U1,U2
(1|u1, u2) ≥ QX|U1,U2

(1|u′1, u′2) (2)

and similarly for R(·). Then

(a) DQ ≥ DR if and only if cprQ
U1U2

≥ cprR
U1U2

, (3)

where cprQ
U1U2

(cprR
U1U2

) is the cross-product ratio of U1 and U2 with the probability distribution

Q (R).

(b) For each value of PX|U1
(1|0),

cprQ
XU1

≥ cprR
XU1

if and only if cprQ
U1U2

≥ cprR
U1U2

. (4)

Equality holds simultaneously in (3) and (4).
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Proof: First, we will prove the sufficiency of (a). After a simple algebra, we have

DQ −DR =
∑
u2

QX|U1,U2
(1|1, u2))

{
QU2|U1

(u2|1)−RU2|U1
(u2|1)

}

−
∑
u2

QX|U1,U2
(1|0, u2))

{
QU2|U1

(u2|0)−RU2|U1
(u2|0)

}

=
{
QU2|U1

(1|1)−RU2|U1
(1|1)

} {
QX|U1,U2

(1|1, 1)−QX|U1,U2
(1|1, 0)

}

+
{
RU2|U1

(1|0)−QU2|U1
(1|0)

} {
QX|U1,U2

(1|0, 1)−QX|U1,U2
(1|0, 0)

}
, (5)

where the first equality follows from condition (i).

The inequality cprQ
U1U2

> cprR
U1U2

is equivalent to that

QU2|U1
(1|1)/QU2|U1

(1|0)
RU2|U1

(1|1)/RU2|U1
(1|0)

>
QU2|U1

(0|1)/QU2|U1
(0|0)

RU2|U1
(0|1)/RU2|U1

(0|0)
(6)

Under condition (ii), inequality (6) leads to

QU2|U1
(1|1) > RU2|U1

(1|1). (7)

By condition (ii) and inequality (7), we have

QU2|U1
(1|1)−RU2|U1

(1|1) > 0 and RU2|U1
(1|0)−QU2|U1

(1|0) > 0.

Therefore, from the assumption (2) of the theorem, we have that DQ − DR > 0. Note that

equality in (6) leads to, by condition (ii),

QU2|U1
(1|1)−RU2|U1

(1|1) = 0 and RU2|U1
(1|0)−QU2|U1

(1|0) = 0, (8)

from which follows that DQ −DR = 0.

Now we will prove the necessity of (a). We can rewrite the inequality DQ −DR > 0, from

(5), as

{
QU2|U1

(1|1)−RU2|U1
(1|1)

} {
QX|U1,U2

(1|1, 1)−QX|U1,U2
(1|1, 0)

}

>
{
RU2|U1

(1|0)−QU2|U1
(1|0)

} {
QX|U1,U2

(1|0, 1)−QX|U1,U2
(1|0, 0)

}
. (9)

Note that this inequality is possible, under condition (ii), the three-way interactivity, and

assumption (2), only when

QU2|U1
(1|1) > RU2|U1

(1|1).

This inequality implies inequality (6) under condition (ii). To see if equality holds simultaneously,

suppose that inequality (9) becomes an equality. By the three-way interactivity, at most one of

QX|U1,U2
(1|1, 1)−QX|U1,U2

(1|1, 0) and QX|U1,U2
(1|0, 1)−QX|U1,U2

(1|0, 0) is equal to 0. If neither

of them equals zero, the equality in (9) is not guaranteed because of condition (ii). If one of
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them equals zero, expression (8) must hold by condition (ii). This means that equality holds

simultaneously in expression (3).

The proof of (b) is immediate from result (a). The cprXU1 is the same whether it is expressed

in terms of PX|U1
or PU1|X , that is,

PX|U1
(1|1)/PX|U1

(1|0)
PX|U1

(0|1)/PX|U1
(0|0)

=
PU1|X(1|1)/PU1|X(1|0)
PU1|X(0|1)/PU1|X(0|0)

. (10)

And that, if we let d = PX|U1
(1|1)− PX|U1

(1|0) and a = PX|U1
(1|0), it follows that

cprXU1 =
1 + d/a

1− d/(1− a)
. (11)

For each value of a, cprXU1 is strictly increasing in d. Therefore, result (b) follows from result

(a), and so the equality holds simultaneously in (4).

Expression (3) means that, as long as PX|U1
(1|1) > PX|U1

(1|0), the difference between these

two values increases as cprP
U1U2

increases. Expression (3) is restated in terms of cprXU1 in

expression (4). This theorem shows us the relationship between cprXU1 and cprU1U2 under the

assumption that X is positively associated with U1 and U2.

Under condition (2), the U variables in the theorem are not necessarily positively associated.

Those who are interested in a detailed description on the notion of positive association among

categorical variables and its implications are referred to Holland and Rosenbaum (1986) and

Junker and Ellis (1997).

The relation between cprXU1 and DP as expressed in (11) is illustrated in Table 1, which is

obtained with P (U1 = 1) fixed to 0.5. The table displays the cprU1U2 values and the DP values.

We can see that the DP values increase as the cpr values increase. We consider only the cases

where U1 and U2 are independent and positively associated, because such cases are meaningful

in many real world problems in educational testing and medicine (Mislevy 1994; Kim 2003). We

can expect a similar result when the association between the U variables is negative since U1

and 1 − U2 are then positively associated. Figure 1 is a graphic display of the rows of Table 1

where P (U2 = 1) = 0.6. Graphs for the other rows are ignored since they show similar patterns

of monotone increase.

We have considered the relation between cprXU1 and cprU1U2 so far, but we can have a similar

result as for the relationship between cprXU2 and cprU1U2 by exchanging U1 and U2 in the above

argument.
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Table 1: cprU1U2 and DP values with P (U1 = 1) fixed to 0.5.

P (U2 = 1)
0.3 cpr 1.00 1.33 1.73 2.20 2.76 3.40 4.15 5.01 6.00 7.13

DP 0.28 0.39 0.41 0.43 0.44 0.46 0.47 0.48 0.49 0.50

0.4 cpr 1.00 1.40 1.90 2.51 3.27 4.18 5.27 6.57 8.11 9.91
DP 0.34 0.44 0.46 0.49 0.50 0.52 0.54 0.55 0.56 0.57

0.5 cpr 1.00 1.49 2.16 3.04 4.20 5.70 7.64 10.12 13.29 17.33
DP 0.40 0.49 0.52 0.54 0.57 0.59 0.60 0.62 0.64 0.65

0.6 cpr 1.00 1.40 1.90 2.51 3.27 4.18 5.27 6.57 8.11 9.91
DP 0.46 0.52 0.55 0.57 0.59 0.60 0.62 0.63 0.64 0.66

0.7 cpr 1.00 1.33 1.73 2.20 2.76 3.40 4.15 5.01 6.00 7.13
DP 0.51 0.56 0.58 0.60 0.61 0.62 0.63 0.65 0.66 0.66

0.8 cpr 1.00 1.28 1.62 2.00 2.43 2.93 3.50 4.14 4.86 5.67
DP 0.57 0.60 0.62 0.63 0.64 0.65 0.65 0.66 0.67 0.67

0.9 cpr 1.00 1.25 1.53 1.85 2.21 2.61 3.07 3.57 4.14 4.77
DP 0.63 0.65 0.66 0.66 0.67 0.67 0.68 0.68 0.68 0.69

cpr
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Figure 1: Plot of the cprU1U2 and DP values for the case that P (U2 = 1) = 0.6 in Table 1
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3 Discussion

Conditions (i) and (ii) lead us to consider a model where the state of X is influenced by U1 and

U2. In particular, when the ratio in expression (1) is equal to one, we have

logit(u1, u2) = log
P (X = 1|u1, u2)
P (X = 0|u1, u2)

= α + β1u1 + β2u2.

Note in (11) that cprU1X = 1 if and only if DP = 0. It thus follows from Theorem 1 that cprU1X

increases beyond 1 as cprU1U2 increases, as long as DP > 0. We can have an analogous result

when the ratio in (1) is not equal to 1, in which case the logit is given by

logit(u1, u2) = α′ + β′1u1 + β′2u2 + β′3u1u2.

From a regression point of view, we can say that whether the conditional probability of X

depends upon the cross-product term of U1 and U2 or not has nothing to do with that the

cprU1X increases beyond 1 as the cprU1U2 increases as long as DP > 0.

Inequality (2) does not imply that X, U1, U2 are positively associated each other. X and U1

can be negatively associated and also the pair of X and U2. This is an instance of the Simpson’s

paradox (Fienberg 1980, p. 45). However, if

X, U1, U2 are positively associated with each other, (12)

then under condition (2),

(a’) the measure of discrimination DP is non-negative and increases as U1 and U2 become more

highly associated; and

(b’) X and U1 are positively associated and their association level increases as U1 and U2 become

more highly associated.

(b’) means that X becomes more informative for U1 as cprU1U2 increases. This contributes

to the stability of the prediction for U1 which is made in terms of P (U1 = 1|X = x). This has

to do with the robustness of classification for binary variables where the conditional probability

that a binary variable takes on 1 given observed values of a set of binary variables is categorized

and predictions are made in terms of the category level. When the predicted binary variables are

more associated among themselves, the category levels for individual predicted variable become

more stable. This phenomenon is found under a more general setting in Kim (2003).

The positive association among a set of variables is a common phenomenon in educational

testing since abilities, knowledge units, and item scores are in general causally related or posi-

tively associated among themselves (Mislevy 1994; Tatsuoka 1990). In educational or medical

testing, it is often the case that we build a causal model where some or most of the causal vari-

ables in the model are unobservable and most of the observables are on the effect side. Given the
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values of the observed variables, predictions are often made for causal or unobserved variables.

According to the result of section 2, it is desirable that, when we want to predict for causal

variables, we avoid any pair of independent variables that are causal to the same observable

variable and at the same time try to have a set of variables that are highly associated each other

as causal to one and the same variable. This point seems to be very important in designing an

educational test or a medical examination among others that a set of variables which are causal

to an observable variable be associated highly each other when we are interested in predicting

for individual causal or unobservable variables.

Finally, we let d′ = PU1|X(1|1) − PU1|X(1|0), a′ = PU1|X(1|0), and D′
P = P (U1 = 1|X =

1) − P (U1 = 1|X = 0). Since cprXU1 can be expressed in terms of either PX|U1
or PU1|X as in

(10), we have from (4) and

cprXU1 =
1 + d′/a′

1− d′/(1− a′)
,

that, for each pair of the values a, a′,

D′
Q ≥ D′

R if and only if cprQ
U1U2

≥ cprR
U1U2

.

Under the assumption (12), the D′ values are not negative. So as the cprU1U2 increases, the

difference between P (U1 = 1|X = 1) and P (U1 = 1|X = 0) gets larger, improving the overall

prediction accuracy for U1.
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