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Abstract

In this paper we consider the tight-span of a finite metric space.
This is a polytopal complex with interesting combinatorial and geo-
metrical properties that was independently discovered and studied by
J. Isbell [14], A. Dress [4], and M. Chrobak and L. Larmore [2]. Al-
though the tight-span is quite difficult to understand in general, for
certain types of metrics much can be said about its structure. For
example, in a series of papers [6, 7, 9] various results were proven con-
cerning the structure of the tight-span of a totally split-decomposable
metric, which resulted in an explicit description of the tight-span for
a large subclass of such metrics. In [9] we introduced the concept of
a cell-decomposable metric, and showed that the tight-span of such a
metric is comprised of smaller, easier to understand tight-spans. Here
we show that totally split-decomposable metrics are cell-decomposable
and, moreover, that the cells in the tight-span of a totally split-
decomposable metric are zonotopes that are polytope isomorphic to
either hypercubes or rhombic dodecahedra.

1 Introduction

In this paper X will denote a finite set with |X| ≥ 2. Given a metric d on
X, i.e. a symmetric map d : X × X → R that vanishes precisely on the
diagonal and satisfies the usual triangle inequality, we can canonically asso-
ciate a polytopal complex T (d) to d as follows (see Section 2 for definitions
concerning polytopes and polytopal complexes). Let RX denote the set of
functions that map X to R. To the metric d associate the polyhedron

P (d) = {f ∈ RX : f(x) + f(y) ≥ d(x, y) for all x, y ∈ X},
and let T (d) consist of the bounded faces of P (d). The complex T (d) is
known as the tight-span of d. It was independently discovered and studied
by J. Isbell [14], A.Dress [4], and by M.Chrobak and L. Larmore [2]. More
recently, it has also been seen to arise naturally in the context of tropical
geometry. In particular, it was shown in [3] that the tight-span of a metric
is a tropical polytope, and that any tropical polytope which is fixed under a
certain canonical involution defined on the set of all tropical polytopes must
in fact be the tight-span of a metric.

Due to its fundamental nature, it is of interest to describe the structure
of the tight-span of various types of metrics. Several results of this nature
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have been presented in the literature. For example, an explicit description
of the structure of the tight-span of a metric on five or less points was given
in [1, 4]. Moreover, various characterizations for metrics having “tree-like”
tight-spans were given in [4], some of which were subsequently extended in
a series of papers [6, 7, 9] on the structure of the tight-span of a totally
split-decomposable metric (see below for the definition of this latter type of
metric).

To better understand the structure of a the tight-span, in [12] we intro-
duced the concept of cell-decomposable metrics, the definition of which we
now recall. It can be shown (cf. [4, 14]) that if d is a metric on X, then the
map d∞ : RX × RX → R≥0 defined, for f, g ∈ RX , by

d∞(f, g) = max
x∈X

|f(x)− g(x)|,

restricts to give a metric on on P (d) and T (d), and that the map

Ψ : X → T (d) : y 7→ (hy : X → R : x 7→ d(x, y))

is an embedding of the metric space (X, d) into (T (d), d∞), i.e. Ψ is an
injection with d∞(Ψ(x), Ψ(y)) = d(x, y) holding for all x, y ∈ X. Now, given
a cell C of T (d) (i.e. a bounded face of P (d)) and some x ∈ X, we call a
(necessarily unique) element g ∈ C a gate in C for x if, for all h ∈ C,

d∞(hx, h) = d∞(hx, g) + d∞(g, h).

Moreover, we say that C is X-gated if there is a gate in C for each x ∈ X. In
[12, Theorem 1.1] we proved that if a cell C in T (d) with non-zero dimension
is X-gated, then

(i) the metric obtained by restricting d∞ to the set G(C), consisting of the
gates in C for all of the elements in X, is antipodal (recall that a metric
d on a finite set Y is antipodal if there is an involution σ : Y → Y ,
mapping each element y in Y to its antipode y with d(y, z) + d(z, y) =
d(y, y) holding for all z ∈ Y ), and

(ii) the tight-span of the metric d∞|G(C) is a polytope that is polytope
isomorphic to C.

Moreover, in [11] we described some structural properties of the tight-span of
an antipodal metric. Thus, if every cell in T (d) is X-gated, in which case d is
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called cell-decomposable, it is in principle possible to deduce the structure of
all of its cells. In this paper we apply this strategy to deduce the structure of
the cells of the tight-span of a totally split-decomposable metric. But, before
stating our main result, we recall the definition of such a metric.

A split of X is a bipartition of X, and a set S of splits of X is a split
system (on X). Denote the split system consisting of all possible splits of
X by S(X). For every x ∈ X and any split S of X, we denote by S(x)
the element of S that contains x, and by S(x) the complement of S(x). To
avoid certain non-essential technicalities, in this paper we will assume that
all split systems are non-empty and, for S a split system on X, that, for all
x 6= y, there exists some split S ∈ S with S(x) 6= S(y). A weighting on
a split system S ⊆ S(X) is a map α : S → R>0 : S 7→ αS = α(S), and
such a pair (S, α) is called a weighted split system (on X). We call a split
system S ⊆ S(X) weakly compatible if there exist no three distinct splits
S1, S2, S3 ∈ S and four elements x0, x1, x2, x3 ∈ X such that

Sj(xi) = Sj(x0) if and only if i = j.(1)

Now, a metric d on X is called totally split-decomposable if there exists a
weighted split system (S, α) on X with

d = dS,α =
∑
S∈S

αSδS,

where, for any split S ∈ S(X) and all x, y ∈ X,

δS(x, y) =

{
1 if S(x) 6= S(y),
0 else.

Note that if d is such a metric, then it follows by results in [1] that if d = dS′,α′
for some weakly compatible split system S ′ and weighting α′ on S ′, then
S ′ = S and α′ = α. Totally split-decomposable metrics were introduced in
[1]. Besides having mathematical interest, such metrics play a useful role in
phylogenetic analysis (cf. e.g. [10, 13]).

We now state our main result. Recall that a zonotope is a centrally
symmetric polytope, that is, a polytope P in Rn containing a point c called
the centre of P such that c + x ∈ P if and only if c− x ∈ P , for x ∈ Rn.

Theorem 1.1 Suppose that d is a totally split-decomposable metric. Then
the following statements hold:
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(i) d is cell-decomposable.

(ii) Every cell in T (d) is a zonotope that is polytope isomorphic either to a
hypercube or to the rhombic dodecahedron.

Note that in [12] we showed that an antipodal metric is totally split-
decomposable if and only if it is cell-decomposable (in case |X| ≥ 4), and
conjectured that this result held for general metrics. Part (i) of the last
theorem implies that the ‘only if’ direction of this conjecture holds.

The rest of the paper is organized as follows. In the next section we
present some preliminaries. In particular, we review the definition and some
results concerning a polytopal complex that can be associated to a weighted
split system (S, α) called the Buneman complex, and denoted B(S, α). This
complex was introduced in [5] and subsequently used in [9] to deduce sev-
eral properties of the tight-span of a totally split-decomposable metric. The
Buneman complex will be key in proving our main results.

In Section 3 we present some new results concerning the Buneman com-
plex. In the following section we consider a map, which we call κ, that was
introduced in [6] to relate B(S, α) and T (dS,α). In particular, in Theorem 4.3
we characterize split systems S for which κ(B(S, α)) ⊆ T (dS,α) holds for any
weighting α on S. We call such split systems Teutoburgan. The class of Teu-
toburgan split systems is rich; for example, as we shall see, weakly compatible
split systems and so-called antipodal split systems [8] are all Teutoburgan.
Theorem 4.3 complements the main result of [6] in which it was proven that
T (dS,α) ⊆ κ(B(S, α)) if and only if S is weakly compatible.

In Section 5, we prove a result that will be key in proving our main
theorem (Corollary 5.2), which states that if S is Teutoburgan, then the
map κ induces an injection from the set of maximal cells of B(S, α) into
set of the maximal cells of T (dS,α). As a consequence of this result and [6,
Theorem 3.1], we prove in Section 6 that if S is weakly compatible, then κ
induces a bijection between the set of maximal cells of B(S, α) and the set of
maximal cells of T (dS,α). In addition, we present some new characterizations
of weakly compatible split systems. In the final section we use our various
results together with some results from [11] and [12] to prove Theorem 1.1.
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2 Preliminaries

In this section, we review some properties of the Buneman complex and the
tight-span. We begin by recalling some basic definitions concerning polytopes
and polytopal complexes.

2.1 Polytopal complexes

We follow [15] and [16]. A polyhedron in Rn, n ∈ N, is the intersection of a
finite collection of halfspaces in Rn and a polytope is a bounded polyhedron. A
face of a polyhedron P is the empty-set, P itself, or the intersection of P with
a supporting hyperplane and, if dim(P ) = d, i.e. P is d-dimensional, then
its 0-dimensional faces are called its vertices. The collection of all faces of a
polytope forms a lattice with respect to the ordering given by set inclusion,
and we say that two polytopes are polytope isomorphic if their face-lattices are
isomorphic. A polyhedral complex C is a finite collection of polyhedra (which
we call cells) such that each face of a member of C is itself a member of C,
and the intersection of two members of C is a face of each. If all of the cells in
C are polytopes, we call C a polytopal complex. Given a polyhedral complex
C, we will not usually distinguish between C and its underlying set

⋃
C∈C C.

For any c in the underlying set of C, we let [c] denote the minimal cell in C
(under inclusion of cells), that contains c. Also, if c is in the underlying set
of C and C is a cell in C with C = [c], then we say that c is a generator of C.

2.2 The Buneman complex

We begin by recalling some further definitions concerning splits and split
systems. Recall that X is a finite set. For every proper non-empty subset
A ⊆ X, we denote the split {A, A} by SA. Given a split system S ⊆ S(X),
we define its underlying set U(S) by

U(S) =
⋃
S∈S

S = {A ⊆ X
∣∣ there exists S ∈ S with A ∈ S}.

We call two distinct splits S, S ′ ∈ S(X) compatible if there exists some A ∈ S
and some A′ ∈ S ′ with A ∩ A′ = ∅, otherwise we call S and S ′ incompatible.
We call a split system S ⊆ S(X) incompatible if every pair of distinct splits
in S is incompatible. We also define any split system with cardinality one to
be incompatible.
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Now, given any map φ : U(S) → R, we define

supp(φ) = {A ∈ U(S)
∣∣ φ(A) 6= 0},

and put
S(φ) = {S ∈ S : S ⊆ supp(φ)}.

Given a weighted split system (S, α) on X, put

H(S, α) = {φ ∈ RU(S) : φ(A) ≥ 0 and φ(A)+φ(A) =
αSA

2
for all A ∈ U(S)}.

It is straight-forward to check that this is a polytope in RU(S) that is polytope
isomorphic to an |S|-dimensional hypercube. The subset B(S, α) of H(S, α)
defined by

B(S, α) = {φ ∈ H(S, α) : A1, A2 ∈ supp(φ) and A1∪A2 = X ⇒ A1∩A2 = ∅}
is a polytopal complex called the Buneman complex associated to (S, α). This
complex was introduced in [5] – see also [6] (note in the definition that we
present for H(S, α), we have introduced a factor of 1

2
for scaling purposes).

It can be shown that the map d1 : RU(S) × RU (S) → R≥0 defined, for all
φ, φ′ ∈ RU (S), by

d1(φ, φ′) =
∑

A∈U(S)

|φ(A)− φ′(A)|

restricts to give a metric on both H(S, α) and B(S, α), and that the map
Φ : X → B(S, α) defined, for x ∈ X, by

Φ(x) = φx : U(S) → R≥0 : A 7→
{ αSA

2
if x 6∈ A,

0 else,

is an embedding of (X, dS,α) into (B(S, α), d1) [5, Section 2]. We will make
use of the following results:

(B1) [5, Section 2] If φ ∈ B(S, α), then

[φ] = {ψ ∈ H(S, α)
∣∣ supp(ψ) ⊆ supp(φ)}.

(B2) [5, Lemma 5.2] For all S ′ ⊆ S the (restriction) map

B(S, α) → B(S ′, α) : φ 7→ φ|S′
is surjective.
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(B3) Using (B2) it can be shown that if S ′ ⊆ S is a maximal incompatible
split system, then there exists a unique maximal cell C in B(S, α) with
S(φ) = S ′, for any generator φ of C.

(B4) Using (B2) it can be shown that if φ ∈ B(S, α) with [φ] a maximal cell
of B(S, α), then S(φ) is a maximal incompatible split system in S.

(B5) [5, Section 2] If C is a cell in B(S, α) and φ is any generator of C, then
dim(C) = |S(φ)|.

2.3 The tight-span

Suppose that d is a metric on X. Given f ∈ P (d), we define a graph K(f)
with vertex set X and edge set consisting of those subsets {x, y} of X with
f(x)+f(y) = d(x, y). Proofs for the following statements can be found in [4]:

(TS1) If f ∈ T (d), then

[f ] = {g ∈ T (d) : K(f) ⊆ K(g)}.

(TS2) If f ∈ P (d), then f ∈ T (d) if and only if for all x ∈ X there is some
y ∈ X distinct from x with {x, y} an edge of K(f).

(TS3) If f ∈ T (d) and f(y) = 0 for some y ∈ X, then f = hy.

3 Gates in the Buneman complex

In this section, we prove some results concerning the Buneman complex.
Suppose that (S, α) is any weighted split system on X. In direct analogy with
definition of X-gated cells in the tight-span presented in the introduction,
we say that a cell C in the Buneman complex B(S, α) is X-gated if for every
x ∈ X there is a gate for x in C, i.e. an element γ in C with

d1(φx, ψ) = d1(φx, γ) + d1(γ, ψ)

holding for all ψ ∈ C. Now, for any x ∈ X and any generator φ of C, define

γx
C = γx : U(S) → R≥0 : A 7→

{
φx(A) if A ∈ U(S(φ)),
φ(A) else.

We first prove that γx is a gate for x in C.
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Lemma 3.1 Suppose (S, α) is a weighted split system on X, C is any cell
in B(S, α), and φ ∈ B(S, α) is any generator of C. Then the following
statements hold.
(i) If A ∈ U(S −S(φ)) and ψ ∈ C, then φ(A) ∈ {0, αSA

2
} and ψ(A) = φ(A).

(ii) For any x ∈ X, the map γx defined above is a gate for x in C.
(iii) For all x, y ∈ X,

d1(γ
x, γy) =

∑

S∈S(φ)

αSδS(x, y).

Proof: Suppose x, y ∈ X, C is a cell in B(S, α), and φ ∈ B(S, α) is a
generator of C. It is straight-forward to see that (i) – (iii) all hold in case
C is a vertex. So, without loss of generality, we will assume dim(C) > 0. In
particular, by (B5) S(φ) 6= ∅.
(i): Suppose A ∈ U(S−S(φ)). Then |{A, A}∩supp(φ)| = 1, by the definition
of S(φ). Hence φ(A) ∈ {0, αSA

2
}, as φ ∈ H(S, α). Now suppose ψ ∈ C. By

(B1) it follows that |{A, A} ∩ supp(ψ)| ≤ |{A, A} ∩ supp(φ)| = 1 and so,
again by (B1), ψ(A) = φ(A).
(ii): By (B1) and the definition of γx, φx, and S(φ), it follows that γx is
contained in C. Now suppose ψ is any element of C. By (i) and the definition
of γx,

d1(φx, ψ) =
∑

A∈U(S)

|φx(A)− ψ(A)|

=
∑

A∈U(S−S(φ))

|φx(A)− ψ(A)|+
∑

A∈U (S(φ))

|φx(A)− ψ(A)|

=
∑

A∈U(S−S(φ))

|φx(A)− γx(A)|+
∑

A∈U(S(φ))

|γx(A)− ψ(A)|

= d1(φx, γ
x) + d1(γ

x, ψ).

Hence γx is a gate for x in C.
(iii): By (i), (ii), and the definition of φz and γz, z ∈ X,

d1(γ
x, γy) =

∑

A∈U(S(φ))

|φx(A)− φy(A)|

=
∑

S∈S(φ)

φy(S(x)) +
∑

S∈S(φ)

|αS

2
− φy(S(x))|

=
∑

S∈S(φ)

αSδS(x, y).
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In view of the last lemma, it follows that the Buneman complex B(S, α)
is X-gated i.e., every cell in B(S, α) is X-gated, for all weightings α on S.

Now, for C a cell of B(S, α) with dim(C) > 0, let

Γ(C) = {γx
C : x ∈ X},

noting that this is clearly a finite set. For later use, we now consider what
can be deduced for cells C of the Buneman complex for which the metric
space (Γ(C), d1|Γ(C)) is antipodal (see the introduction for the definition of
this term). In this case, we will say that C is antipodal X-gated and, for
x, y ∈ X, we call γx the antipode of γy in C if γx is the antipode of γy in
(Γ(C), d1|Γ(C)).

Proposition 3.2 Suppose (S, α) is a weighted split system on X, C is a
cell in B(S, α) with dim(C) > 0, and φ is any generator of C. Suppose in
addition that (Γ(C), d1|Γ(C)) is antipodal, and x, y ∈ X distinct. Then the
following statements are equivalent.
(i) γx is the antipode of γy in C.
(ii) S(x) 6= S(y) for all S ∈ S(φ).
(iii) d1(γ

x, γy) = d1(γ
x, ψ) + d1(ψ, γy) for all ψ ∈ C.

(iv) For all S ∈ S(φ) and all ψ ∈ C,
αS =

∑
A∈S |φx(A)− ψ(A)|+ |ψ(A)− φy(A)|.

(v) d1(γ
x, γy) =

∑
S∈S(φ) αS.

Proof: (i) ⇒ (ii): Suppose γx is the antipode of γy in C, and that there is
some S0 ∈ S(φ) with S0(x) = S0(y). Let z ∈ S0(x). Since γx is the antipode
of γy,

d1(γ
x, γy) = d1(γ

x, γz) + d1(γ
z, γy),

and so, by Lemma 3.1, αSδS(x, y) =
∑

A∈S |φx(A)−φz(A)|+ |φz(A)−φy(A)|,
for all S ∈ S(φ). Thus,

0 = αS0δS0(x, y)

=
∑
A∈S0

|φx(A)− φz(A)|+ |φz(A)− φy(A)|

= 2(|φx(S0(x))− φz(S0(x))|+ |φz(S0(x))− φy(S0(x))|)
= 4φz(S0(x)),
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and so φz(S0(x)) = 0. Thus z ∈ S0(x), a contradiction.
(ii) ⇒ (iv): Suppose S ∈ S(φ) and ψ ∈ C. Then

αS = ψ(S(x)) +
αS

2
− ψ(S(x)) +

αS

2
− ψ(S(x)) + ψ(S(x))

=
∑
A∈S

|φx(A)− ψ(A)|+ |φy(A)− ψ(A)|.

(iv) ⇒ (iii): Suppose ψ ∈ C. By Lemma 3.1 (i), γx(A) = γy(A) = φ(A) =
ψ(A) holds for all A ∈ U(S − S(φ)). (iii) now follows.
(iii) ⇒ (i): This is clear since Γ(C) ⊆ C.
(ii) ⇒ (v): This follows by Lemma 3.1(iii).
(v) ⇒ (iv): Suppose ψ ∈ C and that there exists some S ∈ S(φ) with
S(x) = S(y). Then

∑
A∈U(S(φ)) |φx(A) − φy(A)| = d1(γ

x, γy) =
∑

S∈S(φ) αS,

and so there must be some S ′ ∈ S(φ) with

αS′ <
∑

A∈S′
|φx(A)− φy(A)| = 2|φx(S(x))− φy(S(x))| = αS′ ,

which is impossible.

Corollary 3.3 Suppose that the conditions stated in the last proposition all
hold and that in addition the cell C is maximal. Then the following state-
ments hold.
(i) If S(x) 6= S(y) for all S ∈ S(φ), then φ(S ′(x)) = 0 for all S ′ ∈ S − S(φ)
with S ′(x) = S ′(y).
(ii) φx, γ

x, φ, γy, φy is a geodesic in B(S, α) if and only if γx is the antipode
of γy in C.
(iii) Suppose x1, x2, y1, y2 ∈ X and that the antipode of γyi in C is γxj for all
i, j ∈ {1, 2}. Then dS,α(x1, y1) + dS,α(x2, y2) = dS,α(x1, y2) + dS,α(x2, y1).

Proof: (i): Suppose S ′ ∈ S − S(φ) with S ′(x) = S ′(y). Since S(φ) is
maximal incompatible by (B4), there must exist some S ∈ S(φ) which is
compatible with S ′. As y ∈ S ′(x) and S(x) 6= S(y) by assumption, either
S(x) ∪ S ′(x) = X or S(y) ∪ S ′(x) = X. Since S(x), S(y) ∈ supp(φ) and
S(x)∩ S ′(x) 6= ∅ 6= S(y)∩ S ′(y) = S(y)∩ S ′(x), it follows that φ(S ′(x)) = 0.

11



(ii): Suppose φx, γ
x, φ, γy, φy is a geodesic in B(S, α). Then clearly d1(γ

x, γy) =
d1(γ

x, φ) + d1(φ, γy). Hence, by Proposition 3.2, γx is the antipode of γy in
C.

Conversely, suppose that γx is the antipode of γy in C. By (i)

αSδS(x, y) = 2(φ(S(x)) + |φy(S(x))− φ(S(x))|)
for all S ∈ S − S(φ). Now using Lemma 3.1 and Proposition 3.2, it is
straight-forward to check that

d1(φx, φy) =
∑
S∈S

αSδS(x, y)

=
∑

S∈S(φ)

αS +
∑

S∈S−S(φ)

αSδS(x, y)

= d1(γ
x, γy) +

∑

S∈S−S(φ)

2(φ(S(x)) + |φy(S(x))− φ(S(x))|)

= d1(γ
x, γy) +

∑

A∈U(S−S(φ))

(|φx(A)− φ(A)|+ |φy(A)− φ(A)|)

= d1(γ
x, γy) + d1(φx, γ

x) + d1(γ
y, φy)

holds. But by Proposition 3.2, d1(γ
x, γy) = d1(γ

x, φ) + d1(φ, γy). It immedi-
ately follows that φx, γ

x, φ, γy, φy is a geodesic in B(S, α).
(iii): Using (i) and Proposition 3.2 it is straight-forward to show that

dS,α(xi, yj) = d1(φxi
, γxi) + d1(γ

xi , γyj) + d1(γ
yj , φyj

)

holds for all i, j ∈ {1, 2}. But by uniqueness of gates, γx1 = γx2 and γy1 = γy2

and (iii) now easily follows.

4 Teutoburgan split systems

Given a weighted split system (S, α) on X, define a map

κ : RU(S) → RX : φ 7→ (X → R : x 7→ d1(φ, φx)).

The map κ was originally introduced in [6]1. Note that it immediately follows
from this definition that κ(B(S, α)) ⊆ P (dS,α) and that, by (TS3), κ(φx) =

1In [6] this map is denoted by λ. Since our definition of κ is slightly different from the
map λ presented in [6], we use κ as opposed to λ to prevent confusion. It can be easily
checked that the results stated in [6] concerning λ also hold for κ.
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hx, for all x ∈ X. Moreover, using the fact that, for all φ ∈ B(S, α) and
x, y ∈ X,

κ(φ)(x) = 2
∑

A∈U (S), y∈A

|φ(A)− φx(A)|,(2)

it is straight-forward to check that κ induces a non-expanding map from
B(S, α) to P (dS,α), i. e.

d∞(κ(φ), κ(ψ)) ≤ d1(φ, ψ)

holds for all φ, ψ ∈ B(S, α). In this section we will characterize those split
systems S of X for which κ(B(S, α)) ⊆ T (dS,α) holds for any weighting α
on S.

We begin by proving two useful lemmas. Abusing notation, to any
φ ∈ B(S, α) associate the graph K(φ) which has vertex set X and edge set
consisting of those subsets {x, y} of X with d1(φx, φy) = d1(φx, φ)+d1(φ, φy).
It is straight-forward to check that {x, y} is an edge of K(φ) if and only if
{x, y} is an edge of K(κ(φ)).

Lemma 4.1 Let (S, α) be a weighted split system on X. Suppose C is a
maximal cell in B(S, α), φ is any generator of C, and (Γ(C), d1|Γ(C)) is an-
tipodal. Then, for x, y ∈ X distinct, the following statements are equivalent.

(i) γx is the antipode of γy in C.

(ii) {x, y} ⊆ X is an edge of K(κ(φ)) or – equivalently – of K(φ).

(iii) κ(φx), κ(γx), κ(φ), κ(γy), κ(φy) is a geodesic in P (dS,α).

Proof: (i)⇒ (iii): Suppose γx is the antipode of γy in C. By Corollary 3.3(ii),
φx, γ

x, φ, γy, φy is a geodesic in B(S, α). Since κ is non-expanding, it imme-
diately follows that κ(φx), κ(γx), κ(φ), κ(γy), κ(φy) is a geodesic in P (dS,α).

(iii) ⇒ (ii): Suppose κ(φx), κ(γx), κ(φ), κ(γy), κ(φy) is a geodesic in P (dS,α).
Then clearly

d∞(κ(φx), κ(φ)) + d∞(κ(φ), κ(φy)) = d∞(κ(φx), κ(φy)).

But, for any z ∈ X, κ(φz) = hz and so d∞(κ(φz), κ(φ)) = d∞(hz, κ(φ)) =
κ(φ)(z). (ii) now follows immediately.
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(ii)⇒ (i): Suppose {x, y} is an edge of K(κ(φ)). Then d1(φx, φy) = d1(φx, φ)+
d1(φ, φy). Since γx and γy are gates in C for x and y, respectively, it im-
mediately follows that φx, γ

x
C , φ, γy

C , φy is a geodesic in B(S, α). Hence, by
Corollary 3.3(ii), γx

C is the antipode of γy
C in C.

A split system S ⊆ S(X) is called antipodal if for all x ∈ X there exists
some y ∈ X such that S(x) 6= S(y) holds for all S ∈ S. Such split systems
were studied in [8]. We now relate them to antipodal X-gated cells in the
Buneman complex.

Lemma 4.2 Suppose C ⊆ B(S, α) is a cell with dim(C) > 0 and φ is a
generator of C. Then the following statements are equivalent.

(i) C is antipodal X-gated.

(ii) S(φ) is antipodal.

Proof: (i) ⇒ (ii): This follows immediately from Proposition 3.2.
(ii) ⇒ (i): Suppose x ∈ X. Since S(φ) is antipodal by assumption, there is
some y ∈ X with S(x) 6= S(y) holding for all S ∈ S(φ). Note that if y′ ∈ X
distinct from y with S(x) 6= S(y′) for all S ∈ S(φ) then S(y) = S(y′) and so
γy = γy′ follows by the definition of γy and γy′ . Hence, the map which takes,
for any u ∈ X, the gate γu to γv with v ∈ ⋂

S∈S(φ) S(u) is a well-defined

involution on Γ(C). Moreover, for all z ∈ X and all A ∈ U(S(φ)),

|φx(A)− φy(A)| = |φx(A)− φz(A)| − |φz(A)− φy(A)|

and hence, by Lemma 3.1 (i),

d1(γ
x, γy) = d1(γ

x, γz) + d1(γ
z, γy).

Thus (Γ(C), d1|Γ(C)) is antipodal and, therefore, C is antipodal X-gated.

We now give the characterization promised above.

Theorem 4.3 Suppose that S is a split system on X. Then the following
statements are equivalent:

(i) Every maximal incompatible split system in S is antipodal.
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(ii) For every weighting α : S → R>0, every maximal cell in B(S, α) is
antipodal X-gated.

(ii’) For some weighting α : S → R>0, every maximal cell in B(S, α) is
antipodal X-gated.

(iii) For every weighting α : S → R>0, every cell in B(S, α) with non-zero
dimension is antipodal X-gated.

(iii’) For some weighting α : S → R>0, every cell in B(S, α) with non-zero
dimension is antipodal X-gated.

(iv) For every weighting α : S → R>0, κ(B(S, α)) ⊆ T (dS,α).

(iv’) For some weighting α : S → R>0, κ(B(S, α)) ⊆ T (dS,α).

Proof: We will prove (i) ⇒ (ii) ⇒ (ii’) ⇒ (i), (ii) ⇒ (iii) ⇒ (iii’) ⇒ (ii’), and
(ii) ⇒ (iv) ⇒ (iv’) ⇒ (ii’).

The implications (ii) ⇒ (ii’), (iii) ⇒ (iii’), (iv) ⇒ (iv’), and (iii’) ⇒ (ii’)
clearly all hold.
(i) ⇒ (ii): Suppose that α : S → R>0 is a weighting, and C is a maximal
cell in B(S, α) with generator φ. By (B4), S(φ) is maximal incompatible
and so S(φ) must be antipodal, by assumption. Thus, by Lemma 4.2, C is
antipodal X-gated.
(ii) ⇒ (iii): Suppose α : S → R>0 is a weighting, C is a cell in B(S, α)
with dim(C) > 0, and D is any maximal cell containing C. Let φ and ψ be
generators of C and D, respectively. By assumption, D is antipodal X-gated,
and so for any x ∈ X there exists some y ∈ X with γy

D the antipode of γx
D in

D. By Proposition 3.2, S(x) 6= S(y) for all S ∈ S(ψ). By (B1), S(φ) ⊆ S(ψ)
and so S(φ) is antipodal. (iii) now follows by Lemma 4.2.
(ii’) ⇒ (i): Suppose α : S → R>0 is a weighting so that every maximal cell
in B(S, α) is antipodal X-gated. Suppose S ′ ⊆ S is a maximal incompatible
split system. Then, by (B3), S ′ = S(φ) where φ ∈ B(S, α) is a generator of
some maximal cell in B(S, α). Since [φ] is antipodal X-gated by assumption,
S ′ is antipodal by Lemma 4.2.
(ii) ⇒ (iv): Suppose α : S → R>0 is a weighting, C is a maximal cell
in B(S, α), φ is a generator of C, and x ∈ X. Then there must exist some
y ∈ X distinct from x with γy the antipode of γx in C. By Lemma 4.1, {x, y}
is an edge of K(κ(φ)). Since κ(φ) ∈ P (dS,α), (TS2) implies κ(φ) ∈ T (dS,α).
By (TS1), it follows that κ(B(S, α)) ⊆ T (dS,α).
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(iv’)⇒ (ii’): Suppose α : S → R>0 is a weighting with κ(B(S, α)) ⊆ T (dS,α).
Let C be a maximal cell in B(S, α) with generator φ, and let x ∈ X. Since
κ(φ) ∈ T (dS,α), by (TS2) there is some y ∈ X distinct from x with {x, y} an
edge of K(κ(φ)). Hence, for all S ∈ S(φ), we must have S(x) 6= S(y) since,
otherwise, if there were some S ∈ S(φ) with S(x) = S(y) then

0 = αSδS(x, y) =
∑
A∈S

|φx(A)− φ(A)|+ |φy(A)− φ(A)| = 4φ(S(x)),

which is impossible since S ∈ S(φ). Thus S(φ) is antipodal, and so, by
Lemma 4.2, C is antipodal X-gated.

We call a split system S ⊆ S(X) Teutoburgan if every maximal incom-
patible subset of splits in S is antipodal. In view of the last theorem, this
definition is equivalent to the one presented in the introduction. Since every
weakly compatible, yet incompatible split system is antipodal [8], it imme-
diately follows that every weakly compatible split system is Teutoburgan.
Note, however, that a Teutoburgan split system is not necessarily weakly
compatible (e.g. take the split system of cardinality 3 on the set of vertices
of a 3-cube induced by removing collections of parallel edges).

Remark 4.4 If (S, α) is a weighted split system for which the map Φ : X →
B(S, α) maps X surjectively onto the set of vertices of B(S, α), then it is
straight-forward to check that S is Teutoburgan. Moreover, it can be shown
that such a split system can be associated to any median graph (by taking
X to be the vertex set of the graph, and S to be the split system induced by
the ‘parallel classes’ of edges of the median graph). This provides a large
additional class of Teutoburgan split systems.

5 Maximal cells of the tight-span

In this section we shall show that if S is a Teutoburgan split system then, for
any weighting α on S, κ induces an injective map from the set of maximal
cells of B(S, α) into the set of maximal cells of T (dS,α). This is essentially a
consequence of the following result.

Theorem 5.1 Let (S, α) be a weighted split system on X with S Teutobur-
gan. Suppose C is a maximal cell of B(S, α), and φ is any generator of C.
Then the following statements hold.
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(i) For all x ∈ X, κ(γx) ∈ [κ(φ)].

(ii) κ(φ) is a generator of a maximal cell of T (dS,α).

(iii) Suppose ψ ∈ B(S, α). Then ψ ∈ C if and only if κ(ψ) ∈ [κ(φ)].

Proof: (i): Suppose {u, v} is an edge of K(κ(φ)) with u 6= v, which exists by
(TS2). Since S is Teutoburgan, by Lemma 4.1 γu is the antipode of γv in
C. By Proposition 3.2 and Corollary 3.3(ii), φu, γ

u, γz, γv, φv is a geodesic in
B(S, α). Hence, since γu and γv are gates in C for u and v, respectively,

d1(φu, φv) = d1(φu, γ
z) + d1(γ

z, φv) = κ(γz)(u) + κ(γz)(v).

Hence {u, v} is an edge of K(κ(γz)). Thus, K(κ(φ)) ⊆ K(κ(γz)), and so by
(TS1) κ(γz) ∈ [κ(φ)].
(ii): By Theorem 4.3 [κ(φ)] is a cell of T (dS,α). Suppose that [κ(φ)] is not
maximal. Then there exists some f ∈ T (dS,α) with [κ(φ)] ( [f ]. By (TS1),
K(f) ( K(κ(φ)) and so there exist x1, y1 ∈ X with {x1, y1} an edge of
K(κ(φ)) but not of K(f). Note that x1 6= y1. For, if not, then κ(φ) = hx1 by
(TS3), and, taking γz to be the antipode of γx1 in C, for z ∈ X (which exists
by Theorem 4.3), by (i) we obtain κ(γz) = κ(φ) = hx1 . So κ(γz)(x1) = 0,
which is impossible because, since γz is the antipode of γx1 in C,

d1(γ
z, φx1) ≥

∑

A∈U(S(φ))

|γz(A)− φx1(A)| =
∑

A∈U(S(φ))

|γz(A)− γx1(A)| > 0.

Now define

Z = {z ∈ X
∣∣ γz

C = γy1

C }, and

Y = {z ∈ X
∣∣ γz

C is the antipode of γy1

C in C}.
Clearly, y1 ∈ Z and, by Lemma 4.1, x1 ∈ Y . Since f ∈ T (dS,α) and {x1, y1} is
not an edge of K(f), by (TS2) there exist x2, y2 ∈ X with x1 6= y2 and x2 6= y1

such that {x1, y2} and {x2, y1} are edges of K(f). Since K(f) ⊆ K(κ(φ)),
Lemma 4.1 implies x2 ∈ Y and y2 ∈ Z. Hence, by Corollary 3.3 (iii),
dS,α(x1, y1) + dS,α(x2, y2) = dS,α(x1, y2) + dS,α(x2, y1). But then

f(y1) + f(x2) + f(y2) + f(x1) = dS,α(y1, x2) + dS,α(y2, x1)

= dS,α(y1, x1) + dS,α(y2, x2)

≤ f(y1) + f(x2) + f(y2) + f(x1),
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and so dS,α(y1, x1) = f(y1) + f(x1) and dS,α(y2, x2) = f(y2) + f(x2). Hence,
{x1, y1} is an edge of K(f) which is a contradiction.
(iii): Suppose ψ ∈ [φ] and let {x, y} be an edge of K(κ(φ)). By Proposi-
tion 3.2, Corollary 3.3(ii), and Theorem 4.3 φx, γ

x, φ, γy, φy and φx, γ
x, ψ, γy, φy

are geodesics in B(S, α). Thus, since γx and γy are gates in C, for x and y
respectively,

dS,α(x, y) = κ(φ)(x) + κ(φ)(y) = κ(ψ)(x) + κ(ψ)(y)

Hence, {x, y} is an edge of K(κ(ψ)). Thus, by (TS1) κ(ψ) ∈ [κ(φ)].
Conversely, suppose κ(ψ) ∈ [κ(φ)]. We can assume S(φ) 6= S since

otherwise supp(ψ) ⊆ U(S) = supp(φ) and so ψ ∈ [φ]. We first claim that
if S ∈ S − S(φ), then there exist elements x, y ∈ X with S(x) = S(y) and
γx the antipode of γy in [φ]. Indeed, suppose S ∈ S − S(φ). By (B4),
S(φ) is a maximal incompatible split system in S, and so there exists some
S ′ ∈ S(φ) with S ′ and S compatible. Hence there exists some x ∈ X with
S(x) ∪ S ′(x) = X. Since [φ] is antipodal X-gated by Theorem 4.3, there
exists some y ∈ X with γx is the antipode of γy in [φ]. By Proposition 3.2,
y 6∈ S ′(x) and so y ∈ S(x). Hence, S(x) = S(y), which completes the proof
of the first claim.

We now claim that φ(A) = ψ(A) holds for all A ∈ U(S −S(φ)). Suppose
A ∈ U(S − S(φ)). Put S0 = SA. Then, by the claim just above, there
exist elements x, y ∈ X with S0(x) = S0(y) and γx the antipode of γy in [φ].
Hence, by Proposition 3.2 and Corollary 3.3(i), φ(S0(x)) = 0, and, by Lemma
4.1, {x, y} is an edge of K(κ(φ)) ⊆ K(κ(ψ)). Thus, d1(φx, ψ) + d1(ψ, φy) =
dS,α(x, y). Since for all S ∈ S

αSδS(x, y) ≤
∑
A∈S

|φx(A)− ψ(A)|+ |ψ(A)− φy(A)|,

it follows that 0 = αS0δS0(x, y) =
∑

A∈S0
|φx(A) − ψ(A)| + |ψ(A) − φy(A)|.

Thus, φx(A) = ψ(A), for all A ∈ S0, and so ψ(S0(x)) = 0. In particular, it
follows that φ(A) = ψ(A) holds for all A ∈ U(S −S(φ)) which concludes the
proof of the claim. Using (B1), it is now straight-forward to conclude that
ψ ∈ [φ].

In view of the last theorem it follows that the map κ′ = κ′S,α defined
by taking any maximal cell C in B(S, α) to the cell [κ(φ)], where φ is any
generator of C, is a well-defined map from the set of maximal cells of B(S, α)
to the set of maximal cells of T (dS,α). Moreover, we have

18



Corollary 5.2 If (S, α) is a weighted split system on X with S Teutoburgan,
then the map κ′ defined above is injective.

Proof: Suppose that C and C ′ are maximal cells in B(S, α) with κ′(C) =
κ′(C ′). Let φ and φ′ be generators for C and C ′, respectively. Then [κ(φ)] =
[κ(φ′)]. Hence κ(φ) ∈ [κ(φ′)] and so φ ∈ [φ′] by Theorem 5.1 (iii). Thus
[φ] ⊆ [φ′] by (TS1). Interchanging the roles of φ and φ′ yields [φ′] ⊆ [φ].
Therefore C = [φ] = [φ′] = C ′. Hence κ′ is injective.

6 Totally split-decomposable metrics

For (S, α) a weighted split system on X, by the main result of [6] κ(B(S, α)) =
T (dS,α) if and only if S is weakly compatible. We now use this fact to prove
that in case S is a weakly compatible split system, the map κ′ defined at the
end of the last section is a bijection.

Theorem 6.1 Let (S, α) be a weighted split system on X. If S is weakly
compatible, then the map κ′ is a bijection between the set of maximal cells of
B(S, α) and the set of maximal cells of T (dS,α).

Proof: Since any weakly compatible split system is Teutoburgan, by Corol-
lary 5.2 it follows that the map κ′ is injective. Hence it suffices to prove that
κ′ is surjective.

To this end, suppose that Z is a maximal cell in T (dS,α). Let h be any
generator of Z. Since S is weakly compatible κ maps B(S, α) onto T (dS,α)
[6]. Hence, there must be some ψ ∈ B(S, α) with κ(ψ) = h. Suppose C
is a maximal cell in B(S, α) which contains ψ, and let φ be a generator of
C. Since S is Teutoburgan, [κ(φ)] is a maximal cell in T (dS,α) by Theo-
rem 5.1(ii). So h = κ(ψ) ∈ [κ(φ)] by Theorem 5.1(iii), and thus, by (TS1),
Z = [h] ⊆ [κ(φ)]. But Z is maximal, and so Z = [κ(φ)]. Thus κ′ is surjective.

We conclude this section by giving some new characterizations of weakly
compatible split systems (see [6] for some further characterizations). Given
a metric d on a finite set Y , define the underlying graph UG(Y, d) to be the
graph with vertex set Y and edge set consisting of those subsets {x, y} ⊆ Y
for which there is no z ∈ Y distinct from x and y with d(x, y) = d(x, z) +
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d(z, y). In addition, define a split system S ⊆ S(X) to be 3-cube-free if
for all 3-subsets {S1, S2, S3} ⊆ S there exists Ak ∈ Sk for k = 1, 2, 3 with
A1 ∩ A2 ∩ A3 = ∅.
Theorem 6.2 Suppose that S ⊆ S(X) is a Teutoburgan split system. Then
the following statements are equivalent.

(i) S is weakly compatible.

(ii) S is 3-cube-free.

(iii) for every weighting α : S → R>0, if C is a cell in B(S, α) with
dim(C) = 3, then |Γ(C)| ≤ 6.

(iii’) for some weighting α : S → R>0, if C is a cell in B(S, α) with
dim(C) = 3, then |Γ(C)| ≤ 6.

(iv) for every weighting α : S → R>0, if C is a cell in B(S, α) with
dim(C) 6= 0, then d1|Γ(C) is totally split-decomposable.

(iv’) for some weighting α : S → R>0, if C is a cell in B(S, α) with
dim(C) 6= 0, then d1|Γ(C) is totally split-decomposable.

Proof: Clearly (iii) ⇒ (iii’) and (iv) ⇒ (iv’).
(i) ⇒ (iv): Suppose S is weakly compatible, α : S → R>0 is a weighting, C
is a cell of B(S, α) with dim(C) > 0, and φ is a generator of C. Then, by
Lemma 3.1(iii),

d1(γ
x, γy) =

∑

S∈S(φ)

αSδS(x, y)

for all x, y ∈ X. Since S(φ) ⊆ S and S is weakly compatible, S(φ) is weakly
compatible, and hence d1|Γ(C) is totally split-decomposable.
(iv) ⇒ (iii): Suppose α : S → R>0 is a weighting, and that there is some
3-dimensional cell C in B(S, α) with |Γ(C)| ≥ 7. By Theorem 4.3 C is
antipodal X-gated, and, since C has eight vertices, |Γ(C)| = 8. Suppose φ
is a generator of C and x0 ∈ X. Then, by (B5), |S(φ)| = 3. Put S(φ) =
{S1, S2, S3}. Since each vertex of C is a gate,

⋂3
i=1 Ai 6= ∅ for all Ai ∈ Si,

i = 1, 2, 3, and so we can choose some xi ∈ Si(x0) ∩ Sj(x0) ∩ Sk(x0) with
{i, j, k} = {1, 2, 3}. But then, by Lemma 3.1(iii),

d1(γ
x0 , γxi) =

∑

S∈S(φ)

αSδS(x0, xi) = αSi
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holds for i = 1, 2, 3. It follows that γx0 is a vertex in UG(Γ(C), d1|Γ(C))
with degree 3. But, since we are assuming that d1|Γ(C) is totally split-
decomposable, it follows by [12, Theorem 1.2] that UG(Γ(C), d1|Γ(C)) is an
8-cycle. This is a contradiction.
(iv’) ⇒ (iii’): This can be proven using similar arguments to (iv) ⇒ (iii).
(iii) ⇒ (ii): This follows in a straight-forward manner from the definition of
γz, z ∈ X.
(ii) ⇒ (i): Suppose that α : S → R>0 is a weighting and that S is not weakly
compatible. Then there exist distinct splits S1, S2, S3 ∈ S and distinct el-
ements x0, x1, x2, x3 ∈ X so that (1) holds. Note that S ′ = {S1, S2, S3}
is incompatible. Hence, B(S ′, α|S′) = H(S ′, α|S′) by [5, Proposition 3.3],
and so there must exist some φ′ ∈ B(S ′, α|S′) with S(φ′) = S ′. By (B2)
there exists some φ ∈ B(S, α) with φ|S′ = φ′. Without loss of generality,
we may assume that S(φ) = S(φ′) = S ′. Let C = [φ]. Since S is Teu-
toburgan, Theorem 4.3 implies that C is antipodal X-gated and, by (B5),
dim(C) = |S(φ)| = 3. Now by (1), for all i = 1, 2, 3 and all k, l ∈ {1, 2, 3}− i
distinct, xi ∈ Si(x0)∩ Sk(x0)∩ Sl(x0) and so γx0 , γx1 , γx2 , γx3 are all distinct
gates in C and, by Proposition 3.2, for all i, j ∈ {0, 1, 2, 3} the antipode of
γxi in C is not γxj . Hence, |Γ(C)| = 8. But then, by the definition of γxj ,
j = 0, 1, 2, 3,

⋂
i=1,2,3 Ai 6= ∅ where Ai ∈ Si, i = 1, 2, 3. It follows that S is

not 3-cube-free.

7 Proof of Theorem 1.1

Suppose that d is a totally split-decomposable. Let (S, α) be the unique
weighted split system on X with S weakly compatible and d = dS,α. Note
that since S is weakly compatible it is Teutoburgan.

We first show that every cell in T (d) is a zonotope. It clearly suffices
to show that any maximal cell in T (d) is a zonotope, since every face of a
zonotope is again a zonotope [16]. So, suppose Z is a maximal cell of T (d).
We will show that Z is centrally symmetric. Note that since S is weakly
compatible, by Theorem 6.1 there exists a unique maximal cell C in B(S, α)
with κ′(C) = Z. Suppose that ψ is a generator of C, and consider the map

ξ : U(S) → R≥0 : A 7→
{ αSA

4
if A ∈ U(S(ψ)),

ψ(A) else,
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which is contained in [ψ] by (B1). By Theorem 5.1(iii), κ(ξ) is contained
in [κ(ψ)] = Z. We claim that κ(ξ) is a center for Z. We must show that
κ(ξ) + g ∈ [ψ] if and only if κ(ξ) − g ∈ [ψ] holds for all g ∈ T (d). Suppose
f = κ(ξ)+g ∈ [ψ]. Since S is weakly compatible κ must be surjective [6], and
so there exists some map φ in B(S, α) with κ(φ) = f . By Theorem 5.1(iii),
φ ∈ [ψ] and so, by Lemma 3.1(i), for all A ∈ U(S − S(φ)), φ(A) = ψ(A).
Consider the map

φ′ : U(S) → R≥0 : A 7→
{ αSA

2
− φ(A) if A ∈ U(S(ψ)),

ψ(A) else,

which is contained in [ψ] by (B1). A straight-forward computation shows
that, for all A ∈ U(S) and all x ∈ X,

2|ξ(A)− φx(A)| − |φ(A)− φx(A)| = |φ′(A)− φx(A)|.

Now, summing over all A ∈ U(S) and using (2), it follows that 2κ(ξ)−κ(φ) =
κ(φ′). Since φ′ ∈ [ψ] and so, by Theorem 5.1(iii), κ(φ′) ∈ [κ(ψ)], we have

κ(ξ)− g = κ(ξ)− f + κ(ξ) = 2κ(ξ)− κ(φ) = κ(φ′).

Hence κ(ξ)− g ∈ [ψ] and so κ(ξ) is a center for Z. Thus Z is a zonotope.
Now suppose that Z is a maximal cell of T (d). Let C be the maximal

cell in B(S, α) with κ′(C) = Z, which exists by Theorem 6.1. We claim that
if x ∈ X, then κ(γx

C) is a gate for x in Z.
Suppose f ∈ Z and let φ be a generator of C. Then, since κ is surjective,

there must exist some ψ ∈ B(S, α) with κ(ψ) = f . Since C is a maximal
cell, ψ ∈ C by Theorem 5.1(iii). Since S is Teutoburgan, by Theorem 4.3
and Corollary 3.3(ii) there must exist some y ∈ X with φx, γ

x
C , φ, γy

C , φy a
geodesic in B(S, α). By Proposistion 3.2, the fact that κ is a non-expnding
map, and, by Theorem 4.3, it follows that κ(φx), κ(γx), f, κ(γy), κ(φy) is a
geodesic in T (d). But then by (TS4)

d∞(κ(φx), κ(γx)) + d∞(κ(γx), f) = d∞(κ(φx), f) = d∞(hx, f).

Hence κ(γx
C) is a gate for x in Z, as claimed.

Now put d′ := d1|Γ(C) and d′′ := d∞|G(Z). Using the last claim it immedi-
ately follows that Z is X-gated in T (d) and, since κ is a non-expanding map,
that κ induces an isometry between (Γ(C), d′) and (G(Z), d′′).
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We next claim that Z is polytope isomorphic to either a hypercube or a
rhombic dodecahedron. Since Z is X-gated, it immediately follows by [12,
Theorem 1.1] that d′′ is antipodal. Hence, since (Γ(C), d′) and (G(Z), d′′)
are isometric, d′ is antipodal. Thus, by Theorem 6.2, d′ is totally split-
decomposable, and so d′′ is also totally split-decomposable. But by [12,
Theorem 1.2] it immediately follows that T (d′′) is polytope isomorphic to
either a hypercube or a rhombic dodecahedron, which concludes the proof of
the claim.

To conclude the proof of Theorem 1.1 it remains to show that every
cell in T (d) is X-gated. Let W be any cell of T (d). Suppose that Z is
any maximal cell in T (d) containing W , and put d′′ = d∞|G(Z). Since Z is
X-gated, by Claim 4 in the proof of [12, Theorem 1.1] there is a bijective
isometry χ : Z → T (d′′) that induces a polytope isomorphism between Z
and T (d′′). Moreover, since d′′ is antipodal and totally split-decomposable,
by [12, Theorem 1.2] it follows that every cell in T (d′′) is G(Z)-gated.

Now let x ∈ X, and let gx ∈ Z be the gate for x in Z. Let p be the
element of Z that is mapped by χ to the gate for χ(gx) in χ(W ). We claim
that p is a gate for x in W . Let f ∈ W . Since χ is a bijective isometry

d∞(gx, f) = d∞(gx, p) + d∞(p, f),

and, since Z is X-gated,

d∞(x, f) = d∞(x, gx) + d∞(gx, f).

But, since p ∈ Z and Z is X-gated,

d∞(x, p) = d∞(x, gx) + d∞(gx, p).

Using these last three equalities, it immediately follows that d∞(x, f) =
d∞(x, p)+d∞(p, f). Hence p is a gate for x in W , and so W is X-gated. This
concludes the proof of the theorem.
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