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ABSTRACT. In this paper, we extend a FETI-DP method with mortar discretiza-
tions developed in [7] to three dimensional elliptic problems. We use the mor-
tar matching condition as the continuity constraints for the FETI-DP formula-
tion. In addition, the redundant continuity constraints are needed to achieve
the same condition number bound as two dimensional problems. We propose
a Neumann-Dirichlet preconditioner for the FETI-DP operator and show that
the condition number of the preconditioned FETI-DP operator is bounded by
C maxi=1,··· ,N

{
(1 + log (Hi/hi))

2
}

, where Hi and hi are sizes of domain
and mesh for each subdomain, respectively, and the constant C is independent
of Hi and hi and may depend on coefficients of the elliptic problems. Numerical
results are included.

1. INTRODUCTION

FETI-DP methods were introduced by Farhat et al. [4] and applied to solve ellip-
tic problems with conforming discretizations both in two and three dimensions [5].
In three dimensions, subdomains intersect with neighboring subdomains on faces,
edges, or at corners, while they intersect on edges or at corners in two dimensions;
the continuity of solution is imposed on faces and edges with dual variables and at
corners with primal variables in the dual-primal FETI (FETI-DP) methods. How-
ever, numerical results in [4, 5] show that we need redundant continuity constraints
for three dimensional problems to attain the same efficiency as two dimensional
problems. For these constraints, additional Lagrange multipliers are introduced
and they are treated as primal variables in the FETI-DP formulation. FETI-DP
methods with various redundant constraints have been studied and their condition
number bound was analyzed by Klawonn et al. [9, 10] for elliptic problems with
heterogeneous coefficients. Further, numerical results were provided in [8].

Recently FETI-DP methods have been applied to mortar finite elements meth-
ods [2, 3, 7, 14]. In [2, 3], the condition number bound of FETI-DP operator was
analyzed for various types of preconditioners but it depends on ratios of mesh sizes
between neighboring subdomains. In [7], a Neumann-Dirichlet preconditioner was
proposed and analyzed for elliptic problems with heterogeneous coefficients. In
this case, the condition number bound does not depend on the mesh sizes and the
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coefficients. Moreover, numerical results show that the Neumann-Dirichlet pre-
conditioner works much more efficiently than other FETI-DP preconditioners for
elliptic problems with highly discontinuous coefficients. For three dimensional
problems, FETI methods with mortar discretizations were developed and their nu-
merical results were provided in [13]. To our best knowledge, there is no condition
number bound analysis for three dimensional problems with mortar discretizations.

The primary contribution of our work is the extension of the FETI-DP method in
[7] to three dimensional problems. In the FETI-DP formulation, we need redundant
continuity constraints to get the same condition number bound as two dimensional
problems. The redundant constraints are that averages of the solution across sub-
domain interfaces are the same, which is so called face constraints in [10]. With the
similar idea to the previous work in [7], we propose a Neumann-Dirichlet precon-
ditioner for the FETI-DP operator, which is obtained from the augmented FETI-DP
formulation with mortar constraints and face constraints, and show that the condi-
tion number bound is Cmaxi=1,··· ,N

{
(1 + log (Hi/hi))

2
}

for elliptic problems
whose coefficients do not change rapidly across subdomain interfaces. Here, Hi

and hi are sizes of domain and mesh for each subdomain, respectively, and the con-
stant C is independent of Hi and hi and may depend on the coefficients of elliptic
problems. Further, with an assumption on mesh sizes according to the magnitude
of coefficients, we get the same condition number bound for elliptic problems with
discontinuous constant coefficients. In this case, the constant C does not depend
on the coefficients.

This paper is organized as follows. In Section 2, we introduce finite element
spaces and norms and in Section 3, we derive the FETI-DP operator with the mortar
matching constraints and redundant constraints, and propose a Neumann-Dirichlet
preconditioner. Section 4 is devoted to the condition number bound analysis of the
preconditioned FETI-DP operator. Numerical results are provided in Section 5.

2. FINITE ELEMENT SPACES AND NORMS

2.1. A model problem and Sobolev spaces. Let Ω be a bounded polyhedral do-
main in R

3 and L2(Ω) be the space of square integrable functions defined in Ω
equipped with the norm ‖ · ‖0,Ω:

‖v‖2
0,Ω :=

∫

Ω
v2 dx.

The space H1(Ω) is the set of functions, which are square integrable up to the first
weak derivatives, and the norm is given by

‖v‖1,Ω :=

(∫

Ω
∇v · ∇v dx+

1

d2
Ω

∫

Ω
v2 dx

)1/2

,

where dΩ denotes the diameter of Ω.
We consider a FETI-DP method on nonmatching grids for the following elliptic

problem:
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For f ∈ L2(Ω), find u ∈ H1(Ω) such that

−∇ · (A(x)∇u(x)) + β(x)u(x) = f(x) in Ω,

u(x) = 0 on ΓD,(2.1)

n · (A(x)∇u(x)) = 0 on ΓN .

Here, A(x) = (αij(x)) for i, j = 1, · · · , 3 and n is the outward unit vector normal
to ΓN . We assume that αij(x), β(x) ∈ L∞ (Ω),A(x) is uniformly elliptic, β(x) ≥
0 for all x ∈ Ω and |ΓD| 6= 0, where |ΓD| denotes the measure of ΓD.

Let Ω be partitioned into nonoverlapping polyhedral subdomains {Ωi}
N
i=1. We

assume that the partition is geometrically conforming, which means that the sub-
domains intersect with neighboring subdomains on a whole face, a whole edge or
at a vertex. The subdomain Ωi is equipped with a quasi uniform triangulation Ωh

i ,
which consists of tetrahedrons. The quasi-uniformity means that there exist con-
stants γ and σ such that γhi ≤ dτ ≤ σρτ for all τ ∈ Ωh

i , where ρτ is the diameter
of the sphere inscribed in τ , dτ is the diameter of τ and hi = maxτ∈Ωh

i
dτ . These

triangulations need not to be aligned across subdomain interfaces.
For each subdomain Ωi, we introduce a finite element space

Xi := {v ∈ H1
D(Ωi) : v|τ ∈ P1(τ), τ ∈ Ωh

i },

where H1
D(Ωi) := {v ∈ H1(Ωi) : v = 0 on ΓD ∩ ∂Ωi} and P1(τ) is a set of

polynomials of degree ≤ 1 in τ . For (ui, vi) ∈ Xi ×Xi, we define a bilinear form

ai(ui, vi) :=

∫

Ωi

A(x)∇ui · ∇vi dx+

∫

Ωi

β(x)uividx.

To get the FETI-DP formulation, we need a finite element space in Ω as follows:

X :=

{
v ∈

N∏

i=1

Xi : v is continuous at subdomain vertices

}
.

By restricting the space Xi on the boundaries of each subdomain, we define

Wi := Xi|∂Ωi ∀i = 1, · · · , N.

Then we let

W :=

{
w ∈

N∏

i=1

Wi : w is continuous at subdomain vertices

}
.

In this paper, we will use the same notation for finite element functions and the
corresponding vectors of nodal values. For example, wi is used to denote a finite
element function or the vector of nodal values of that function. The same applies
to the notations for function spaces such as Wi, X , W , etc.

We define Si as the Schur complement matrix obtained from the bilinear form
ai(·, ·) over the finite elements Xi (see p. 50 in [12]). Using this operator, a semi-
norm is defined for wi ∈Wi:

|wi|
2
Si := 〈Siwi, wi〉,
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where 〈·, ·〉 is the l2-inner product of vectors. Since w ∈ W is continuous at
subdomain vertices, we define a norm for w by summing up semi-norms

(2.2) ‖w‖2
W :=

N∑

i=1

|wi|
2
Si , wi = w|∂Ωi .

Now, we introduce Sobolev spaces defined on the boundaries of subdomains.
The space H1/2(∂Ωi) is the trace space of H1(Ωi) equipped with the norm

‖wi‖
2
1/2,∂Ωi

:= |wi|
2
1/2,∂Ωi

+
1

dΩi

‖wi‖
2
0,∂Ωi

,

where

|wi|
2
1/2,∂Ωi

:=

∫

∂Ωi

∫

∂Ωi

|wi(x) − wi(y)|
2

|x− y|3
ds(x) ds(y).

For any Γij ∈ ∂Ωi, H
1/2
00 (Γij) is the set of functions in L2(Γij) whose zero exten-

sion into ∂Ωi is contained in H1/2(∂Ωi). For v ∈ H
1/2
00 (Γij), let

|v|2
H

1/2

00
(Γij)

:= |v|21/2,Γij
+

∫

Γij

v2(x)

dist(x, ∂Γij)
ds

and the norm is given by

‖v‖
H

1/2

00
(Γij)

:=

(
|v|2

H
1/2

00
(Γij)

+
1

dΩi

‖v‖2
0,Γij

)1/2

.

From Section 4.1 in [18], we have the following relation for v ∈ H
1/2
00 (Γij):

(2.3) C1‖ṽ‖1/2,∂Ωi
≤ ‖v‖

H
1/2

00
(Γij)

≤ C2‖ṽ‖1/2,∂Ωi
,

where the constants C1 and C2 are independent of dΩi and ṽ denotes the zero
extension of v into ∂Ωi.

2.2. Mortar matching conditions. We note that the space X is not contained in
H1(Ω). In order to approximate the solution of the problem (2.1) in the noncon-
forming finite element space X , we impose the mortar matching condition on X ,
for which jumps of a function in X across a common face are orthogonal to a
Lagrange multiplier space.

Let Γij := ∂Ωi ∩ ∂Ωj be the common face of subdomains Ωi and Ωj . On Γij ,
we distinguish Ωh

i |Γij and Ωh
j |Γij as in Figure 1 and choose one as a mortar side

and the other as a nonmortar side. In each subdomain Ωi, we define sets

mi := {j : |Γij | 6= 0, Ωh
j |Γij is a mortar side of Γij},

si := {j : |Γij | 6= 0, Ωh
j |Γij is a nonmortar side of Γij}.

For j ∈ mi, Ωh
i |Γij is the nonmortar side of Γij and from the finite elements on

the nonmortar side, we get

Wij := {v|Γij : v ∈ Xi}.
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FIGURE 1. Mortar and nonmortar sides of Γij

Furthermore, we define

W 0
ij := {v ∈Wij : v = 0 on ∂Γij}

and

W 0 =

N∏

i=1

∏

j∈mi

W 0
ij .

For wij ∈ W 0
ij , we define w̃ij ∈ Wi by the zero extension of wij into ∂Ωi. Let

w̃i =
∑

j∈mi
w̃ij and w̃ = (w̃1, · · · , w̃N ). Since w̃ is continuous at subdomain

vertices, w̃ is contained in the space X , and a norm for w ∈W 0 is given by

(2.4) ‖w‖W 0 := ‖w̃‖W .

Let us assume that a suitable Lagrange multiplier space Mij is chosen on each
interface Γij equipped with a triangulation from the nonmortar side. Then we take
the Lagrange multiplier space

M :=
N∏

i=1

∏

j∈mi

Mij

and impose the following mortar matching condition on X , i.e., v ∈ X satisfies

(2.5)
∫

Γij

(vi − vj)λij ds = 0 ∀ λij ∈Mij , i = 1, · · · , N, j ∈ mi.

In our FETI-DP formulation, we use (2.5) as continuity constraints and define a
bilinear form b(·, ·) : W ×M → R as

b(w, µ) :=
N∑

i=1

∑

j∈mi

∫

Γij

(wi − wj)µij ds ∀(w, µ) ∈W ×M.

For |∂Ωi ∩ ∂Ωj | 6= 0, we denote ∂Ωi ∩ ∂Ωj as Γij if Ωh
i |Γij is a nonmortar side

and as Γji, otherwise. We assume that Ωh
i |Γij is the nonmortar side and Ωh

j |Γij is

the mortar side of Γij . Denote basis for Mij by {ξijk }
Nij

k=1 and, let {φijk }
Ni
k=1 and
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{φjik }
Nj

k=1 be basis functions for Wi|Γij and Wj |Γij , respectively. From these basis
functions, we obtain matrices Bij

i and Bij
j with entries

(
Bij
i

)
lk

=

∫

Γij

ξijl φ
ij
k ds, for l = 1, · · · , Nij , k = 1, · · · , Ni,

(
Bij
j

)
lk

= −

∫

Γij

ξijl φ
ji
k ds, forl = 1, · · · , Nij , k = 1, · · · , Nj .

Then we rewrite (2.5) as

(2.6) Bij
i w

ij
i +Bij

j w
ij
j = 0,

where wiji = vi|Γij and wijj = vj |Γij .
Now define Eij : Mij →M , an extension operator from Mij to M by zero and

Rlij : Wl →Wl|Γij for l = i, j, a restriction operator. Let

Bi =
∑

j∈mi

EijB
ij
i R

i
ij +

∑

j∈si

EjiB
ji
i R

i
ji,

B =
(
B1 · · · BN

)
,

w =



w1
...
wN


 ,

where wi = vi|∂Ωi . Then the mortar matching condition (2.5) becomes

(2.7) Bw = 0.

To guarantee the optimal order approximation of the mortar finite elements, we
need the following abstract conditions on the space Mij ;

(A.1) The basis {ξijk }
Nij

k=1 are locally supported, that is, the number of elements
in Ωh

i |Γij , which have nonempty intersections with the simply connected support
of ξijk , is bounded independently of mesh sizes and Γij .
(A.2) W 0

ij and Mij have the same dimension.
(A.3) There is a constant C such that

‖φ‖0,Γij ≤ C sup
ψ∈Mij

∫
Γij
φψ ds

‖ψ‖0,Γij

∀φ ∈W 0
ij .

(A.4) For µ ∈ Hk−1/2(Γij), there exists µh ∈Mij such that

‖µ− µh‖
2
0,Γij

≤ Ch2k−1
i |µ|2k−1/2,Γij

,

where k is the order of finite elements in Xi.
The condition (A.4) implies that 1 ∈ Mij . In the following, we assume that

the Lagrange multiplier space Mij satisfies the above conditions; the standard La-
grange multiplier space in [1] and the Lagrange multipliers with dual basis in [6]
are those examples.



A PRECONDITIONER FOR THE FETI-DP FORMULATION WITH MORTAR METHODS 7

3. FETI-DP FORMULATION

3.1. FETI-DP operator. In this section, we formulate the FETI-DP operator for
the problem (2.1) with the mortar matching condition as constraints. For 3D el-
liptic problems, it was shown from the numerical results in [4, 5] that using the
primal variables at corners is not enough to get the same condition number bound
as 2D problems. Hence, redundant continuity constraints are added to the coarse
problem to accelerate the convergence of the FETI-DP method.

For the 3D elliptic problems with conforming discretizations, Klawonn et al. [9]
developed FETI-DP methods with various redundant constraints. They introduced
additional continuity constraints on edges or on faces to achieve the same condition
number bound as 2D elliptic problems. The continuity constraints on edges are that
the averages of functions across a common edge are the same. The same is applied
to faces also. In [10], they extended the results to a case with face constraints only.
Since the constraints on edges are not redundant to the mortar matching condition,
we will only impose the face constraints as the redundant constraints

∫

Γij

vi ds =

∫

Γij

vj ds ∀i = 1, · · · , N, j ∈ mi.

From 1 ∈ Mij , the above constraints are redundant to the mortar constraints (2.5)
and they are written into the following algebraic equations:

(3.1) RtBw = 0,

where the matrix R has 0 or 1 as its entries and Rtλ = 0 means that sum of λ|Γij

is zero on each interface Γij .
For wi ∈Wi we write

wi =

(
wir
wic

)
,

where r and c stand for the nodal values on faces or edges, and at vertices, respec-
tively. These notational conventions hold throughout this paper.

Let Wr be a space which consists of vectors

wr =



w1
r

...
wNr


 .

Define Wc as a set of vectors which have d.o.f. corresponding to the union of
subdomain vertices, that is, global corner points. Sincew = (w1, · · · , wN ) ∈W is
continuous at subdomain vertices, there exists wc ∈Wc such that Licwc = wic ∀i =
1, · · · , N , where the matrix Lic consists of 0 and 1 and restricts the value of wc on
the vertices of subdomain Ωi. For w = (w1, · · · , wN ) ∈W , we write

wi =

(
wir
Licwc

)
∀i, for some wc ∈Wc.

Recall that Si is the Schur complement matrix obtained from the bilinear form
ai(·, ·) and let gi be the Schur complement forcing vector obtained from

∫
Ωi
fvi dx.
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The matrix Si and vector gi are ordered in the following way:

Si =

(
Sirr Sirc
Sicr Sicc

)
, gi =

(
gir
gic

)
.

LetBi,r andBi,c be matrices that consist of the columns ofBi corresponding to the
nodal points on faces or edges, and at vertices, respectively. Let U be a Lagrange
multiplier space corresponding to the redundant constraints (3.1). Then, we have
the following mixed formulation of the problem (2.1) with the constraints (2.7) and
(3.1):

Find (wr, wc, µ, λ) ∈Wr ×Wc × U ×M satisfying

Srrwr + Srcwc +Bt
rRµ+Bt

rλ = gr,

Scrwr + Sccwc +Bt
cRµ+Bt

cλ = gc,

RtBrwr +RtBcwc = 0,

Brwr +Bcwc = 0,

(3.2)

where

Srr = diagi=1,··· ,N

(
Sirr
)
,

Src =




S1
rcL

1
c

...
SNrcL

N
c


 ,

Scr = Strc,

Scc =
N∑

i=1

(Lic)
tSiccL

i
c,

Br = (B1,r, · · · , BN,r) , Bc =
N∑

i=1

Bi,cL
i
c,

gr =




g1
r
...
gNr


 , gc =

N∑

i=1

(Lic)
t gic, wr =




w1
r

...
wNr


 .

In the above equations, we regard w̃c =

(
wc
µ

)
as primal variables in the FETI-DP

formulation and follow the augmented FETI-DP formulation introduced in [5]. Let

Krr = Srr,

Krc =
(
Src Bt

rR
)
, Kcr = Kt

rc,

Kcc =

(
Scc Bt

cR
RtBc 0

)
,

B̃c =
(
Bc 0

)
, g̃c =

(
gc
0

)
.
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Then we have

(3.3)



Krr Krc Bt

r

Kcr Kcc B̃t
c

Br B̃c 0





wr
w̃c
λ


 =



gr
g̃c
0


 .

Since Krr is invertible, after eliminating wr in (3.3), we obtain
(
−Fcc Fcl
Flc Fll

)(
w̃c
λ

)
=

(
−dc
dl

)
,

where

Fcc = Kcc −KcrK
−1
rr Krc,

Flc = BrK
−1
rr Krc − B̃c, Fcl = F tlc,

Fll = BrK
−1
rr B

t
r

dl = BrS
−1
rr gr, dc = g̃c −KcrK

−1
rr gr.

From the fact that Bt
rR has a full column rank, we can show that Fcc is invert-

ible. Hence, eliminating w̃c in the above equation, the FETI-DP equation of (3.2)
follows:

(3.4) FDPλ = dl − FlcF
−1
cc dc,

with FDP = Fll + FlcF
−1
cc Fcl. we call FDP the FETI-DP operator. Since, we

added the redundant mortar matching constraints to the FETI-DP formulation, the
solution of FETI-DP equation is not uniquely determined in M . Let us define a
subspace

MR :=
{
λ ∈M : Rtλ = 0

}
.

In Section 4, we will show that FDP is symmetric and positive definite (s.p.d.) on
MR. Hence, the solution λ ∈MR is uniquely determined.

3.2. Preconditioner. Since FDP is s.p.d. on MR, we will solve (3.4) by the pre-
conditioned conjugate gradient method using a suitable preconditioner. We derive
a preconditioner from the similar idea to [7], in which a Neumann-Dirichlet pre-
conditioner is derived from a dual norm on the Lagrange multiplier space by using
a duality pairing between the Lagrange multiplier space and finite elements on
nonmortar sides. In the following, the idea is provided in more detail.

Let us define the following subspaces equipped with norms induced from W
and W 0:

WR :=
{
w ∈W : RtBw = 0

}
,

W 0
R :=

{
w ∈W 0 : RtBw̃ = 0

}
,

where w̃ is the zero extension of w ∈ W 0 into the space W . A duality pairing
between the spaces MR and W 0

R is defined as

〈λ,w〉m =
N∑

i=1

∑

j∈mi

∫

Γij

λijwij ds.
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Then, a dual norm on λ ∈MR is given by

(3.5) ‖λ‖MR
:= max

w∈W 0

R

〈λ,w〉m
‖w‖W 0

.

Similarly to the 2D problems in [7], we will find an operator F̂DP which gives

(3.6) 〈F̂DPλ, λ〉 = ‖λ‖2
MR

and propose F̂−1
DP as a preconditioner for the operator FDP .

In order to obtain a matrix form of the operator F̂−1
DP , we need some projections,

restrictions and extensions. We let PW 0

R
: W 0 → W 0

R and PMR
: M → MR be

l2-orthogonal projections. From the definitionsW 0
R andMR, we observe that these

projections are composed of diagonal blocks of projections

PW 0

R
= diagNi=1diagj∈mi

(P ij
W 0

R
),

PMR
= diagNi=1diagj∈mi

(P ijMR
),

where P ij
W 0

R
: W 0|Γij → W 0

R|Γij and P ijMR
: M |Γij → MR|Γij are l2-orthogonal

projections restricted on Γij . We introduce the following restriction and extension

Rij : W 0 →W 0
ij ,

Eiij : W 0
ij →Wi,

and recall the matrices Bij
i and Bij

j in (2.6). We obtain the matrices Bij
i,r from Bij

i

after deleting columns corresponding to the d.o.f. on the boundary of Γij . Let

Ŝ =
N∑

i=1

(
∑

j∈mi

EiijRij)
tSi(

∑

j∈mi

EiijRij),

B̂ = diagNi=1diagj∈mi
(Bij

i,r).

By using the above matrices, the norm on the space W 0
R and the duality pairing

between MR and W 0
R are written into

‖w‖2
W 0 = 〈Ŝpw,w〉 for w ∈W 0

R,

〈λ,w〉m = λtB̂pw for λ ∈MR, w ∈W 0
R,

where

Ŝp = P tW 0

R
ŜPW 0

R
,

B̂p = P tMR
B̂PW 0

R
.

It can be shown that Ŝp and B̂p are invertible on W 0
R and B̂t

p is invertible on MR.
Hence, the maximum in (3.5) occurs when Ŝpw = B̂t

pλ and this gives

〈B̂pŜ
−1
p B̂t

pλ, λ〉 = ‖λ‖2
MR

for λ ∈MR.
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As a result, we have F̂DP = B̂pŜ
−1
p B̂t

p. From the observation that B̂p is composed
of invertible block matrices B̂ij

p = (P ijMR
)tBij

i,rP
ij
W 0

R
, we get

F̂−1
DP =

N∑

i=1

(
∑

j∈mi

Eiij(B̂
ij
p )−1Rij)

tSi(
∑

j∈mi

Eiij(B̂
ij
p )−1Rij).

Hence, the computation of F̂−1
DPλ can be done parallely in each subdomain.

4. CONDITION NUMBER ESTIMATION FOR THE PRECONDITIONED FETI-DP
OPERATOR

The following well-known result is given when ai(u, v) =
∫
Ωi

∇u · ∇v dx (see
Theorem 4.1.3 in [12]). With slight modification, we can obtain the similar result
for a general case.

Lemma 4.1. For wi ∈Wi, we have

C1|wi|
2
1/2,∂Ωi

≤ 〈Siwi, wi〉 ≤ C2‖wi‖
2
1/2,∂Ωi

,

where C1 and C2 are constants depending on A(x) and β(x), but not depending
on Hi and hi.

In the following, we obtain a formula that is useful to analyze the condition
number bound and the result is the same as Lemma 4.3 of Mandel and Tezaur [11].

Lemma 4.2. For λ ∈MR, we have

max
w∈WR\{0}

〈Bw, λ〉2

‖w‖2
W

= 〈FDPλ, λ〉.

Proof. The problem (3.3) is equivalent to solving the following saddle-point prob-
lem

max
λ∈B(WR)

min
w∈WR

(
1

2
wtSw + wtg + λtBw

)
,

where g is a vector obtained from the vectors gr and gc in (3.2). It can be shown
easily that B(WR) = MR. Let PWR

: W → WR be an l2-orthogonal projection.
Then, Euler-Lagrange equations from the above problem are

Spw +Bt
pλ = P tWR

g,

Bpw = 0,
(4.1)

where

Sp = P tWR
SPWR

,

Bp = P tMR
BPWR

.

Since Sp is s.p.d. on WR, we eliminate w in (4.1) and get

BpS
−1
p Bt

pλ = d,
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where d = BpS
−1
p P tWR

g. Notice that this equation is obtained from the prob-
lem (3.3) by eliminating unknowns other than λ. Hence, we have

(4.2) FDP = BpS
−1
p Bt

p.

Using the identity
‖w‖2

W = 〈Sw,w〉

and the projections PWR
and PMR

, we can see that

(4.3) max
w∈WR\{0}

〈Bw, λ〉2

‖w‖2
W

= 〈BpS
−1
p Bt

pλ, λ〉 for λ ∈MR.

From (4.2) and (4.3), we prove the lemma. �

Remark 4.1. For λ ∈ MR, Bt
pλ = 0 gives λ = 0 and Sp is s.p.d. on WR.

Hence,we can see that FDP is s.p.d. on MR from (4.2).

Now, we estimate the lower bound of the operator FDP , which gives a lower
bound for the smallest eigenvalue of the preconditioned FETI-DP operator.

Lemma 4.3. For any λ ∈MR, we have

max
w∈WR\{0}

〈Bw, λ〉2

‖w‖2
W

≥ ‖λ‖2
MR

.

Proof. Let w̃ ∈ W be the zero extension of w ∈ W 0
R. Then, we can see that

w̃ ∈WR. From the definitions of ‖λ‖MR
, ‖w‖W 0 and 〈λ,w〉m, we get

‖λ‖2
MR

= max
w∈W 0

R\{0}

〈λ,w〉2m
‖w‖2

W 0

= max
w∈W 0

R\{0}

〈Bw̃, λ〉2

‖w̃‖2
W

≤ max
w∈WR\{0}

〈Bw, λ〉2

‖w‖2
W

.

This completes the proof. �

To estimate the upper bound of the operator FDP , we define an interpolation
Ii0wi ∈Wi corresponding to a face F ⊂ ∂Ωi by

(I i0wi)(x) =





wi(x), x ∈ ∂F ∩ ∂Ωh
i ,

CF (wi), x ∈ F ∩ ∂Ωh
i ,

0, on the remaining nodes,

where ∂Ωh
i is the set of nodes on the boundary of Ωi and CF (wi) is the average of

wi on the face F ⊂ ∂Ωi, that is,

CF (wi) =

∫
F wi ds∫
F ds

.

Note that faces and edges are open sets which do not include their boundaries. In
the following, C is a generic constant which does not depend on mesh sizes or the
number of subdomains but may depend on A(x) and β(x). Recall the definition of
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norms ‖ · ‖
H

1/2

00
(F )

and ‖ · ‖1/2,∂Ωi
in Section 2.1. From the Hölder inequality, we

obtain

(4.4) |CF (wi)| ≤ CH
−1/2
i ‖wi‖1/2,∂Ωi

.

For a set A ⊂ ∂Ωi, let IhAwi ∈ Wi denote a nodal value interpolation of wi on the
set A ∩ ∂Ωh

i , which means that IhAwi(x) has the same value with wi(x) on nodes
x ∈ A ∩ ∂Ωh

i and has zero value on the remaining nodes.
The interpolation I i0wi has the following approximation properties.

Lemma 4.4. For wi ∈Wi, we have

‖wi − I i0wi‖H1/2

00
(F )

≤ C

(
1 + log

Hi

hi

)
|wi|1/2,∂Ωi

,(4.5)

‖I i0wi − CF (wi)‖0,F ≤ Ch
1/2
i

(
1 + log

Hi

hi

)1/2

|wi|1/2,∂Ωi
.(4.6)

Proof. First, we consider

‖wi − I i0wi‖H1/2

00
(F )

= ‖IhFwi − IhFCF (wi)‖H1/2

00
(F )

≤ ‖IhFwi‖H1/2

00
(F )

+ |CF (wi)| ‖I
h
F 1‖

H
1/2

00
(F )
.

The identity in the above equations follows from the definitions of interpolations
Ii0wi and IhFwi: on the nodes x ∈ F ∩ ∂Ωh

i , (wi − I i0wi)(x) = wi(x) − CF (wi)

and wi − I i0wi = 0 on the nodes in ∂F ∩ ∂Ωh
i .

By applying the Lemma 4.10 and Lemma 4.11 in [18] to IhFwi and IhF 1, and
(4.4), we get

‖wi − I i0wi‖H1/2

00
(F )

≤ C

(
1 + log

Hi

hi

)
‖wi‖1/2,∂Ωi

.

We replace the norm ‖ · ‖1/2,∂Ωi
by the semi-norm | · |1/2,∂Ωi

from the shift invari-
ance of the expression wi − I i0wi.

Now, we consider the second estimate. From the definition of I i0wi and the
quasi-uniform assumption on the triangulation, we get

‖I i0wi − CF (wi)‖0,F = ‖Ih∂F (wi − CF (wi))‖0,F

≤ Ch
1/2
i ‖Ih∂F (wi − CF (wi))‖0,∂F

≤ Ch
1/2
i

∑

E⊂∂F

‖IhE(wi − CF (wi))‖0,E

≤ Ch
1/2
i

(
∑

E⊂∂F

‖wi‖0,E +
∑

E⊂∂F

‖CF (wi)‖0,E

)
,

where E is a closed edge on ∂F . From Lemma 4.9 in [18], we have

(4.7) ‖wi‖0,E ≤ C

(
1 + log

Hi

hi

)1/2

‖wi‖1/2,∂Ωi
,



14 HYEA HYUN KIM

and
‖CF (wi)‖0,E ≤ |E|1/2|CF (wi)|.

The bound (4.4) and |E| ≤ CHi yield

(4.8) ‖CF (wi)‖0,E ≤ C‖wi‖1/2,∂Ωi
.

From (4.7), (4.8) and the shift invariance of the term I i0wi −CF (wi), we complete
the proof of (4.6). �

Definition 4.1. We define a projection πij : H
1/2
00 (Γij) → W 0

ij for v ∈ H
1/2
00 (Γij)

by ∫

Γij

(v − πijv)λij ds = 0 ∀λij ∈Mij .

For the space Mij satisfying the assumptions (A.1)-(A.4), we can show that the
projection πij is continuous on the space H1/2

00 (Γij) (see [6] or [17] );

(4.9) ‖πijv‖H1/2

00
(Γij)

≤ C‖v‖
H

1/2

00
(Γij)

∀v ∈ H
1/2
00 (Γij),

where C is a constant not depending on Hi and hi under quasi-uniform meshes in
each subdomain. Moreover, the projection is continuous on the space L2(Γij).

From Lemma 4.4 and (4.9), we have the following result similarly to the 2D
case in [7].

Lemma 4.5. For w ∈WR, we have

‖πij(wi − wj)‖H1/2

00
(Γij)

≤ C

((
1 + log

Hi

hi

)
|wi|1/2,∂Ωi

+

(
1 +

hj
hi

)1/2(
1 + log

Hj

hj

)
|wj |1/2,∂Ωj

)
.

Proof. By the inverse inequality and the continuity of πij , we get

‖πij(wi − wj)‖H1/2

00
(Γij)

≤ ‖πij(wi − I i0wi)‖H1/2

00
(Γij)

+ ‖πij(wj − Ij0wj)‖H1/2

00
(Γij)

+ ‖πij(I
i
0wi − Ij0wj)‖H1/2

00
(Γij)

≤ C
(
‖wi − I i0wi‖H1/2

00
(Γij)

+ ‖wj − Ij0wj‖H1/2

00
(Γij)

+h
−1/2
i ‖I i0wi − Ij0wj‖0,Γij

)
,

where the interpolations I i0wi and Ij0wj correspond to the common face F (= Γij).
Since w ∈WR, CF (wi) and CF (wj) are the same. Then, we have

‖I i0wi − Ij0wj‖0,Γij ≤ ‖I i0wi − CF (wi)‖0,Γij + ‖Ij0wj − CF (wj)‖0,Γij .

From the above equation and the approximation properties of I i0wi in Lemma 4.4,
we complete the proof. �
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Now, we estimate the upper bound of the operator FDP , which provides an
upper bound for the largest eigenvalue of the preconditioned FETI-DP operator.
Let us define

ri = max
j∈si

{
1 +

hi
hj

}
for i = 1, · · · , N.

Lemma 4.6. For λ ∈MR, we have

max
w∈WR\{0}

〈Bw, λ〉2

‖w‖2
W

≤ C max
i=1,··· ,N

{(
1 + log

Hi

hi

)2

ri

}
‖λ‖2

MR
,

where C is a constant depending on coefficients A(x) and β(x), but not depending
on mesh parameters hi and Hi.

Proof. From the definitions of B and πij , we have

〈Bw, λ〉2 =




N∑

i=1

∑

j∈mi

∫

Γij

πij(wi − wj)λij ds




2

.

We consider z ∈ W 0 such that z|Γij = πij(wi − wj). Since w ∈ WR, we can see
that z ∈W 0

R. Then the above equation is the duality pairing between λ ∈MR and
z ∈W 0

R. Hence, using the definition of dual norm on λ, we get

(4.10) 〈Bw, λ〉2 ≤ ‖λ‖2
MR

‖z‖2
W 0 .

Let z̃ = (z̃1, · · · , z̃N ) ∈ W be the zero extension of z. From (2.4), (2.2),
Lemma 4.1, (2.3), and Lemma 4.5, it follows that

‖z‖2
W 0 =

N∑

i=1

〈Siz̃i, z̃i〉

≤ C
N∑

i=1

‖z̃i‖
2
1/2,∂Ωi

≤ C
N∑

i=1

∑

j∈mi

‖πij(wi − wj)‖
2

H
1/2

00
(Γij)

≤ C
N∑

i=1

∑

j∈mi

((
1 + log

Hi

hi

)2

|wi|
2
1/2,∂Ωi

+

(
1 +

hj
hi

)(
1 + log

Hj

hj

)2

|wj |
2
1/2,∂Ωj

)

≤ C max
i=1,··· ,N

{(
1 + log

Hi

hi

)2

ri

}
‖w‖2

W .

(4.11)

Combining (4.10) and (4.11), we complete the proof. �
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Remark 4.2. When the coefficients A(x) and β(x) do not change rapidly across
subdomain interfaces, it is appropriate to use triangulations which have similar
mesh sizes between neighboring subdomains. Hence, in this case, we may assume
that ri is bounded independently of the mesh sizes.

Now, we consider the following elliptic problem with discontinuous constant
coefficients:

−∇ · (α(x)∇u) = f in Ω,

u = 0 on ∂Ω,
(4.12)

with α(x)|Ωi = ρi(> 0) for all i = 1, · · · , N . Then, we have the similar estimates
to Lemma 4.1:

C1ρi|wi|1/2,∂Ωi
≤ 〈Siwi, wi〉 ≤ C2ρi‖wi‖1/2,∂Ωi

,

where C1 and C2 are constants not depending on ρi, hi and Hi. Using the above
bound, we follow the proofs of Lemma 4.6 and obtain

‖z‖2
W 0 ≤ C

N∑

i=1

∑

j∈mi

((
1 + log

Hi

hi

)2

|wi|
2
Si

+

(
1 +

hj
hi

)
ρi
ρj

(
1 + log

Hj

hj

)2

|wj |
2
Sj

)
,

(4.13)

where C is a constant independent of ρi, hi and Hi. For the same elliptic problem

in 2D, Wohlmuth [15] observed that the optimal ratio hj

hi
tends to become

(
ρj

ρi

)1/4

as an adaptivity strategy is applied successively. At this point, we need a reasonable
assumption on the ratio of meshes for 3D problems.

Assumption on meshes: For each Γij , we assume that

(4.14)
hj
hi

≤ C

(
ρj
ρi

)γ
, with 0 ≤ γ ≤ 1,

where the constant C does not depend on mesh parameters hi,Hi, and coefficients
ρi.

If we choose Ωi with smaller ρi as a nonmortar side on Γij then from the above
assumption on meshes, (4.13) is written into

‖z‖2
W 0 ≤C

N∑

i=1

∑

j∈mi

((
1 + log

Hi

hi

)2

|wi|
2
Si

+ max

{
ρi
ρj
,

(
ρi
ρj

)1−γ
}(

1 + log
Hj

hj

)2

|wj |
2
Sj

)
,
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where C is a constant independent of ρi, hi and Hi. Since the nonmortar side

has smaller ρi’s, in the above equation max

{
ρi

ρj
,
(
ρi

ρj

)1−γ
}

≤ 1. Therefore, we

obtain the following result.

Lemma 4.7. For the elliptic problem (4.12) with the assumption (4.14) on meshes,
we have

max
w∈WR\{0}

〈Bw, λ〉2

‖w‖2
W

≤ C max
i=1,··· ,N

{(
1 + log

Hi

hi

)2
}
‖λ‖2

MR
,

where C is a constant independent of mesh parameters and coefficients.

Remark 4.3. The result is the same as 2D case in [7]. However, we need an
additional assumption on the ratio of meshes for 3D problems.

Now, we restrict ourselves to the elliptic problem (2.1) with coefficients A(x)
and β(x) that do not change rapidly across subdomain interfaces or the elliptic
problem (4.12) with discontinuous constant coefficients ρi’s. From Lemma 4.2,
Lemma 4.3, Lemma 4.6, Remark 4.2 and Lemma 4.7, we have the following result.

Theorem 4.1. For λ ∈MR, we have

‖λ‖2
MR

≤ 〈FDPλ, λ〉 ≤ C max
i=1,··· ,N

{(
1 + log

Hi

hi

)2
}
‖λ‖2

MR
,

where the constant C does not depend on mesh parameters Hi and hi but may
depend on coefficientsA(x) and β(x) for the elliptic problem (2.1). For the elliptic
problem (4.12) with discontinuous coefficients ρi’s, the constant C is independent
of mesh parameters and the coefficients.

From (3.6) and the above theorem, we obtain the condition number bound.

Corollary 4.1. For the elliptic problems (2.1) or (4.12), we have

κ(F̂−1
DPFDP ) ≤ C max

i=1,··· ,N

{(
1 + log

Hi

hi

)2
}
,

where the constant C is the same as one in the above theorem.

5. NUMERICAL RESULTS

In this section, we provide numerical tests for the FETI-DP formulation devel-
oped in this paper. We consider the following model problem:

−∇ · (α(x, y, z)∇u) = f in Ω,

u = 0 on ∂Ω,

where Ω = (0, 1)3 is a unit cube, u(x, y, z) = sin(πx)y(1−y) sin(πz) is the exact
solution, and α(x, y, z) = 1.

We divide the domain Ω into N × N × N cubic subdomains with side length
H = 1/N . Each subdomain is discretized by conforming trilinear finite elements
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FIGURE 2. Hexahedral elements generated by the quasi-uniform
nodes (black dots) along each axis when n = 5

and these elements are nonmatching across subdomain interfaces. To make non-
matching grids, we generate hexahedral elements in each subdomain as follows.
In a subdomain Ωi, we choose n random quasi-uniform nodes along each axis in-
cluding its end points. From these nodes, we generate nonuniform structured grids,
which consists of hexahedrons with mesh parameter hi (see Figure 2). Since the
finite elements are obtained from the quasi-uniform nodes, the mesh parameter hi
is comparable to H/(n − 1). The corresponding Lagrange multiplier is given by
the tensor product of two dimensional multipliers considered in [16]. Even though
the theory provided in the previous section was developed for tetrahedral finite
elements, it extends to the approximation described above without difficulty.

To see the scalability of the preconditioner, we perform two types of experi-
ments. First, we keep the number of subdomain fixed and increase the number of
nodes n along each axis. In the second test, we have the number of subdomain
increasing with a fixed subdomain problem size. We solve the FETI-DP equation
using conjugate gradient method with and without preconditioners. The conjugate
gradient iteration continues until the relative residual norm is reduced below 10−6.

In Table 1, the number of CG iterations and condition numbers are shown when
the number of nodes n increases with the fixed number of subdomains N 3 = 43.
From the result, we observe the log2-growth of the condition number for the pro-
posed preconditioner. It also shows that the preconditioner effectively reduces CG
iterations. Table 2 shows the numerical results when we fix n = 5 and increase the
number of subdomains. As proved in theory, the condition number becomes stable
as the number of subdomains is increasing.
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