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SUMMARY

Necessary and sufficient conditions for collapsibility of a recursive model for a con-
tingency table are derived. By applying the conditions, we can easily check collapsibility over
any variable in a given model either by using the joint probability distribution or by using the
graph of the model structure.
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1 INTRODUCTION

The notion of collapsibility is important for the practical and conceptual analysis of contin-

gency tables which includes hypothesis testing, model selection, and data reduction. Contin-

gency tables of high dimension are difficult to deal with for detecting model structure, and cells

are apt to be empty or to have very low frequencies when the dimension is large. Collapsing a

large table into manageable marginal tables might save us from such a difficulty in statistical

analysis. But some parameters describing the interactions among a set of variables may be

affected by summing over the rest of the variables. Discussion of this issue of collapsibility

dates back to the Yule-Simpson paradox (Simpson 1951) and is continued by many investiga-

tors including Darroch (1962), Lewis (1962), Birch (1963), and Plackett (1969), to name only

the first few in this line of work.

The notion of collapsibility is refined into several types of collapsibility. They are graphi-

cal collapsibility (Whittaker 1990), parametric collapsibility (Bishop 1971, Whittemore 1978,

Wermuth 1987, Geng 1992), model collapsibility (Asmussen and Edwards 1983, Frydenberg

1990a, Lauritzen 1996), and test collapsibility (Whittaker 1990). These types of collapsibility

are related to each other in a somewhat hierarchical manner. Among these types, we will con-
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fine our attention to model collapsibility, which may be called commutativity of model-fitting

and marginalization.

We will say that a distribution P is Markov with respect to an undirected graph if, for

three disjoint sets of random variables, A,B, S, A and B are conditionally independent given S

under P whenever S separates A and B in the graph. Frydenberg (1990a) proposes a theorem

(Theorem 5.4 therein) which lists several equivalent conditions of model collapsibility of a

probability distribution P which is Markov with respect to an undirected graph under the

positivity condition of P . According to the theorem, we can interpret collapsibility regarding

an undirected graph in the context of a simple graphical chain model (Lauritzen and Wermuth

1984, 1989) which has two chain components. Didelez and Edwards (2004) propose a theorem

concerning collapsibility with regard to a marked, undirected graph of mixed variables, which

gives necessary and sufficient conditions for collapsibility for graphical CG-regression model.

Asmussen and Edwards (1983) define a causal chain model in terms of model collapsibility

(Theorem 3.3 (a) therein). If every chain component is of a node, the causal chain model

is a recursive model. Consider a recursive model of a set of nodes V = {v1, · · · , vm} where

the arrows run from nodes with lower indexes to nodes with higher indexes. We define the

sets B1 = {v1}, Bi = {vi} ∪ Bi−1 (i = 1, · · · ,m). Asmussen and Edwards proved that a

hierarchical log-linear model is a recursive model if and only if the model is collapsible onto

Bi (i = 1, · · · ,m− 1). Since a recursive model is a particular form of a graphical chain model,

we can say that Asmussen and Edwards (1983) and Frydenberg (1990a) described the model

collapsibility with regard to a recursive model, in a sequential manner, in reversed order of

the node indexes. Our goal in this paper is to extend the notion of model collapsibility with

regard to a recursive model to any subset of V , a set of categorical random variables.

This paper consists of 5 sections. Section 2 presents notation and graph-theoretic termi-

nologies. In section 3, we present a main result of the paper, Theorem 3.2, which describes

two equivalent conditions of collapsibility over a variable in a recursive model. In section 4,

we then compare collapsibility between a recursive model and the moral graph of the model

structure, and discuss collapsibility over a set of variables. Section 5 concludes the paper with

summarizing remarks.

2 GRAPHICAL TERMINOLOGIES AND NOTATION
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A graphical model is a statistical model whose model structure can be represented by a

graph, and we will denote the graph of a graphical model by G = (V, E), where V is the index

set of the nodes involved in the model and E a set of edges between the nodes in V . E is

given as a set of ordered pairs (u, v) such that E ⊆ V × V where (u, v) symbolizes a directed

edge or an arrow from node u to node v in graph G. If both (u, v) and (v, u) are included in

E, this means that there is an undirected edge between nodes u and v. Thus if G = (V, E) is

the model structure of a recursive model and (u, v) ∈ E, then (v, u) 6∈ E. A node in the graph

of a graphical model corresponds to a variable of the model.

We will use a lowercase x to denote the cell location of a contingency table and use xA

for the contingency table of the variables indexed in A. If there is an arrow (u, v), then we

will say that node u is a parent of node v and node v is a child of node u. We will denote

by pa(v) the set of the parents of node v and by ch(v) the set of the children of v and let

fa(v) = {v} ∪ pa(v). For A ⊆ V , we define

pa(A) = ∪v∈Apa(v) \A,

ch(A) = ∪v∈Ach(v) \A,

fa(A) = A ∪ pa(A),

and

clan(v) = fa(ch(v) ∪ {v}) for a node v ∈ V .

For A ⊆ V , an induced subgraph of G confined to A is defined as GA = (A,EA), EA =

E ∩ (A × A). For a set of edges E, we define sym(E) = {(b, a)|(a, b) ∈ E} ∪ E. A graph

G = (V, E) is undirected if E = sym(E). The associated undirected graph of graph G = (V, E)

is an undirected version of G and we will represent it by G∼ = (V, sym(E)).

A node which does not have any child node will be called a terminal node. If (a, b) ∈ E,

we say that node a is adjacent to node b or vice versa. A sequence of nodes u = v1, · · · , vr = v

is called a chain from u to v (or from v to u) if (vi, vi+1) ∈ sym(E), i = 1, 2, · · · , r − 1. If

(vi, vi+1) ∈ E, i = 1, 2, · · · , r− 1, the sequence is called a path of length r from u to v. If there

is a path from u to v, we write u 7−→ v. If, for A ⊆ V ,

u 7−→ v and v 7−→ u for every pair u, v ∈ A,

we call A a connectivity component of G.
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We define the boundary of a node v in G = (V, E) as bd(v) = {u; (u, v) ∈ E}. A graph is

said to be complete if all vertices are adjacent to each other. A complete subgraph is a subgraph

which is complete. A complete subgraph that is maximal in the sense of set-inclusion in G is

called a clique of G.

For A,B ⊆ V , we let PB|A(xB|xA) = P (XB = xB|XA = xA). When A = V , we will write

PA(xA) = P (x). We denote by nA(xA) the cell frequency at the cell-entry xA for a set A of

variables and by n the total frequency. We will denote the collection of all the cell locations

xA, for an index set A, by XA. If confusion is not likely, we will ignore the argument ‘x’ in

nA(xA). The cardinality of a set A will be denoted by |A|.

3 COLLAPSING OVER A VARIABLE

In this section, we will present a theorem which lists a couple of conditions that are equiva-

lent to collapsibility over a variable in a recursive model. We say that a probability distribution

P admits a recursive factorization according to a recursive model G of discrete variables (Lau-

ritzen 1996), if there exist conditional probabilities Pv|pa(v)(·|·), v ∈ V , such that

P (x) =
Y
v∈V

Pv|pa(v)(xv|xpa(v)).

Let a probability distribution P admit a recursive factorization according to G. Then, the

maximum likelihood estimate (MLE) ÒPG(x) of P (x) which is obtained under the model G is

given by ÒPG(x) =
Y
v∈V

ÒPv|pa(v)(xv|xpa(v)) =
Y
v∈V

nfa(v)(xfa(v))
npa(v)(xpa(v))

(1)

where n∅(x∅) = n. If confusion is not likely, we will simply write ÒP (x) instead of ÒPG(x). It is

possible that

pa(v) = fa(v′) (2)

for some nodes v and v′. Thus, cancelling the common terms in the numerator and the

denominator of the right hand side of (1) yieldsÒP (x) =
ρY

i=1

nCi(xCi)
nSi(xSi)

(3)
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where Ci, Si ⊆ V , 1 ≤ i ≤ ρ ≤ |V | and Ci 6= Sj for all i, j with 1 ≤ i, j ≤ ρ and it is possible

that Si = ∅ for some i. Obviously,

{Ci ; i = 1, 2, · · · , ρ} ⊆ {fa(v) ; v ∈ V } and {Si ; i = 1, 2, · · · , ρ} ⊆ {pa(v) ; v ∈ V }. (4)

We will call Si and Ci, respectively, f-separator and f-clique (think of factorization for “f”) of

the recursive model. For convenience’s sake, we will denote

nfa(v)(xfa(v))/n by [fa(v)](xfa(v)),
npa(v)(xpa(v))/n by [pa(v)](xpa(v)),

nCi(xCi)/n by [Ci](xCi),
and nSi(xSi)/n by [Si](xSi).

(5)

When confusion is not likely, we will ignore the arguments in the above bracketed expressions

[·](x·).

Let x(v) be the subvector of x with x{v} only removed; analogously for a subset A of V ,

we will denote by x(A) the subvector of x with xA only removed. Furthermore, we will write

GV \{v} = G(v).

Definition 3.1. Let G = (V, E) be a recursive model. If, at all x(v) ∈ XV \{v},ÒP (x(v)) = ÒPG(v)
(x(v)), (6)

i.e., the marginal, ÒP (x(v)), of ÒP onto V \ {v} is the same as the MLE, ÒPG(v)
(x(v)), of the

marginal of P onto G(v), then we say that P is collapsible over v and call the node v a removable

node of G.

We will use both of the terms, collapsibility and node removability, for convenience and

clarity of expression. For instance, we will simply say that a node is removable from a recursive

model G instead of saying that a distribution P which is global G-Markov (see Appendix A) is

collapsible over a variable (or a node).

Theorem 3.2. Consider a node v∗ in a recursive model G = (V, E). Then the following

statements are equivalent.

(i) The node v∗ is contained in one and only one f-clique of G.

(ii) The nodes in Gclan(v∗) are all adjacent to each other possibly except for the nodes in

pa(v∗).
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Figure 1: A recursive model of three nodes where nodes 2 and 3 are removable but node 1 is
not.

(iii) The node v∗ is removable from G.

Proof: See Appendix B.

Theorem 3.2 says that every terminal node is removable and that, as for a non-terminal

node, we can check easily, by applying condition (ii) of the theorem, whether the node is

removable. We will see two simple examples of removable nodes, the former being simpler

than the latter.

Example 3.3. Consider a recursive model G = (V, E) in Figure 1. We have thatÒP (xV ) =
[{1, 2}][{1, 3}]

n · [{1}] .

In this equation, we can see that nodes 2 and 3 are each contained in one and only one f-clique,

but node 1 is contained in both of f-cliques {1, 2} and {1, 3}. Furthermore, nodes 2 and 3 are

terminal, and clan(1) = {1, 2, 3} cannot be made into a clique in the context of condition (ii)

of Theorem 3.2 as is obvious in Figure 1. Thus node 1 is not removable while nodes 2 and 3

are.

Example 3.4. Consider a recursive model G in panel (a) of Figure 2.ÒP (xV ) =
[{1, 2}][{1, 3}][{2, 3, 4, 5}][{2, 5, 6}]

n · [{1}][{2, 3}][{2, 5}] .

Node 4 is contained only in the f-clique {2, 3, 4, 5}. Furthermore, if pa(4) = {2, 3} is made into

a complete subgraph in the graph, node 4 is contained in the unique clique {2, 3, 4, 5} in graph
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Figure 2: A recursive model G is of six nodes where nodes 4 and 6 are removable and DAG
G(4) is of five nodes where node 4 is removed from G.

G. The induced subgraph G(4) of G is in panel (b). Thus we have at x(4)ÒP (x(4)) =
[{1, 2}][{1, 3}]

�P
x{4} [{2, 3, 4, 5}](x{2,3,4,5})

�
[{2, 5, 6}]

n · [{1}][{2, 3}][{2, 5}]
=

[{1, 2}][{1, 3}][{2, 3, 5}][{2, 5, 6}]
n · [{1}][{2, 3}][{2, 5}]

= ÒPG(4)
(x(4)),

where the last equality is immediate from G(4). We see that the three conditions (i), (ii), (iii)

of Theorem 3.2 are satisfied with graph G in panel (a). Node 4 is thus removable.

4 COLLAPSIBILITY IN MORAL GRAPH AND
SEQUENTIAL NODE-REMOVAL

In this section, we will compare collapsibility between a recursive model and its moralized graph

and show that if a set of nodes are removable, they are removable in a sequential manner. We

will denote the moral graph of a recursive model G = (V, E) by Gm = (V, Em).

Definition 4.1. Consider an undirected graph Gu = (V,Eu). We say that V = (V1, V2) is

graphically collapsible over V2 in Gu if and only if the boundary (of each connectivity compo-

nent) of V2 is complete in Gu.

Note that if V is graphically collapsible over V2 in Gu, then, for a distribution P which is

Markov with respect to Gu, it holds, with respect to Gu, thatÒP (xV1) = ÒPGu
V1

(xV1)
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Figure 3: A recursive model and its moral graph. Nodes 2 and 3 are not sequentially removable

(Theorem 5.4 of Frydenberg (1990a)).

Theorem 4.2. Let the moral graph of a recursive model G = (V, E) be Gm = (V, Em). If a

node v is removable from G, then V is graphically collapsible over v in Gm.

Proof: If node v is removable, then, by Theorem 3.2, clan(v) is the only clique containing

node v in Gm. So, the boundary of a node v is complete in the moral graph, making Gm

graphically collapsible over v.

The converse of this theorem does not hold. For example, Figure 3 displays a recursive

model (G) and its moral graph (Gm). Gm is graphically collapsible over node 2, but the node

is not removable from G.

Consider a recursive model G = (V, E). If all the nodes in A ⊆ V can be removed from G
one after another in some order, we will say that A is sequentially removable from G. Of course,

∅ and V are sequentially removable. However, every subset of a set of sequentially removable

nodes is not necessarily sequentially removable as we see in the example below. To represent

a set of nodes that are sequentially removable, we will use the symbol {·}≺. For example, that

{5, 2, 3}≺ is sequentially removable means that the nodes 5, 2, 3 are sequentially removable in

that order.

Example 4.3. Consider a recursive model G = (V, E) with V = {1, 2, 3, 4} and E = {(1, 2), (1, 3),

(1, 4), (2, 3), (2, 4)} as depicted in Figure 4. Let A1 = {3, 2}≺ and A2 = {4, 2}≺. Then A1 and

A2 are sequentially removable, but A1 ∩A2 = {2} is not.



Collapsibility in Recursive Graphical Models 9
1

2

4

3

Figure 4: A recursive model of four variables

This example illustrates that the intersection of two sets of removable nodes in a recursive

model G is not necessarily removable from G. But, we can easily show that, if G is model-

collapsible onto A and B, then G is model-collapsible onto A ∩ B. A similar result is proved

in Madigan and Mosurski (1990, Lemma 3.4) with regard to graphical log-linear models. By

definition, for any set of removable nodes in a recursive model G, there must exist a sequence

according to which the nodes are removable. We summarize this as a theorem and its proof is

given for interested readers.

Theorem 4.4. For a recursive model G = (V,E), A ⊆ V is removable from G if and only if

A is sequentially removable from G.

Proof: See Appendix B.

It is important to note that, as illustrated in Figure 3, model collapsibility with regard to

a recursive model cannot be determined by using the moralized graph of the recursive model.

Since collapsibility is examined one node after another, we can apply Theorem 3.2 for sequential

checking of the collapsibility.

5 CONCLUDING REMARKS

There is a burgeoning literature on the subject of collapsibility which goes back to Simpson

(1951). This notion became a common word since parametric collapsibility was introduced in

the text by Bishop et al (1975, p. 47). Asmussen and Edwards (1983) derived necessary and

sufficient conditions of model collapsibility with regard to a hierarchical log-linear model for a

multidimensional contingency table. Madigan and Mosurski (1990) combined these necessary

and sufficient conditions with graph-theoretic algorithms to provide useful classes of sub-tables

which are collapsible onto. They extended the results of Asmussen and Edwards to graphical

log-linear models and their interaction graphs and showed that there is a close relationship
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between model collapsibility and graphical collapsibility (see Lemma 3.3 of Madigan and Mo-

surski). Under the positivity assumption of the probability distribution, Frydenberg (1990a)

derived several conditions, with regard to a collection of graphical interaction models and their

corresponding interaction graphs, that are equivalent to model collapsibility.

We have seen in this paper, that the model collapsibility of a recursive model can not

be evaluated with the moralized graph of the recursive model. The two conditions that are

equivalent to model collapsibility with regard to a recursive model are however easy to apply.

A node v is removable in a recursive model G if and only if clan(v) = fa(ch(v) ∪ {v}) forms a

clique in G when the nodes of pa(v) become adjacent to each other. Asmussen and Edwards

(1983) showed that there exists a sequence of nodes in a recursive model that are removable if

the sequence starts from a terminal node. Theorem 3.2 enables us to check if a non-terminal

node in a recursive model G is removable.

APPENDIX A: Markov equivalence among DAGs

In this appendix, we will describe the notion of Markov equivalence among directed acyclic

graphs (DAG’s) and present a theorem which is useful in proving Theorem 3.2.

Let P be a probability distribution defined on a product probability space X =
Q

v∈V Xv,

where each Xv is sufficiently regular to ensure the existence of regular conditional probabilities.

Let X be a random vector with its probability distribution P. For three disjoint subsets A,B

and C of V , we write A ⊥ B|C [P] to mean that XA and XB are conditionally independent

given XC under P. For a DAG G = (V, E) and a subset A ⊆ V , if bd(v) ⊆ A for all

v ∈ A, we say that A is an ancestral set. Thus, the intersection of a collection of ancestral

sets in G is again an ancestral set in G. This implies that, for any subset A of V , there

is a smallest ancestral set containing A, which we will denote by An(A). If, for a DAG G,

G{u,v,w} = ({u, v, w}, {(u, v), (w, v)}), we call the triple (u, v, w) an immorality of G. We say

that DAG’s G1 and G2 are graphically equivalent, and write G1 ∼ G2, if Gu
1 = Gu

2 and they have

the same immoralities. Chickering (1995) proposes an algorithm which is useful for checking

graphical equivalency.

Given a DAG G, we say that a probability measure P on a product space XV is global G-

Markovian if A ⊥ B|S [P] whenever S separates A and B in
�
GAn(A∪B∪S)

�m
. See Proposition

3.25 of Lauritzen (1996) for an equivalent condition of the global G-Markov condition. Two

DAG’s G1 and G2 are Markov equivalent on XV if the classes of global G1-Markovian and global
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G2-Markovian probability measures on XV coincide. If G1 and G2 are Markov equivalent on

every such product space XV , G1 and G2 are said to be Markov equivalent.

The theorem below was discovered by Verma and Pearl (1990, Theorem 1) and, indepen-

dently, by Frydenberg (1990b, Theorem 5.6) for the more general class of chain graphs under

the condition that the probability distribution P satisfies that

A ⊥ B|D ∪ C and A ⊥ C|D ∪B implies A ⊥ B ∪ C|D (A.1)

whenever A,B, C, and D are disjoint subsets of V . Andersson et al. (1996) proved that the

theorem holds even when P does not satisfy (A.1).

Theorem A.1. Two DAG’s G1 and G2 are Markov equivalent if and only if G1 ∼ G2.

APPENDIX B: Proofs of Theorems 3.2 and 4.4

Proof of Theorem 3.2

Let clan(v∗) = {v1, · · · , vm, · · · , vκ} where vi’s are ordered such that vm = v∗ and ch(vm) =

{vm+1, · · · , vκ}. Then we have, for x ∈ XV ,ÒP (x) =
Y
v∈V

[fa(v)]
[pa(v)]

=
� Y

v∈(V \clan(vm))

[fa(v)]
[pa(v)]

�� Y
v∈clan(vm)

[fa(v)]
[pa(v)]

�
=

� Y
v∈(V \clan(vm))

[fa(v)]
[pa(v)]

��m−1Y
i=1

[fa(vi)]
[pa(vi)]

��
[fa(vm)]
[pa(vm)]

�� κY
i=m+1

[fa(vi)]
[pa(vi)]

�
(B.1)

Since vm is contained only in fa(vi), m ≤ i ≤ κ, and pa(vi), m + 1 ≤ i ≤ κ, we consider only

these fa(vi), m ≤ i ≤ κ, and pa(vi), m + 1 ≤ i ≤ κ. For convenience’s sake, let

F =
[fa(vm)]
[pa(vm)]

κY
i=m+1

[fa(vi)]
[pa(vi)]

(B.2)

and

R =
� Y

v∈(V \clan(vm))

[fa(v)]
[pa(v)]

��m−1Y
i=1

[fa(vi)]
[pa(vi)]

�
. (B.3)

First of all, we will prove that conditions (i), (ii), and (iii) are satisfied when vm is a terminal

node. When ch(vm) = ∅,

F =
[fa(vm)]
[pa(vm)]

.
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This means that vm is contained in one and only one f-clique fa(vm) in expression (B.1),

which satisfies condition (i) of the theorem. Since vm is terminal in G, clan(vm) becomes a

clique if pa(vm) is made complete. This satisfies condition (ii) of the theorem. Furthermore,

clan(vm) = fa(vm) andÒP (x) = R · F

=

 � Y
v∈(V \clan(vm))

[fa(v)]
[pa(v)]

��m−1Y
i=1

[fa(vi)]
[pa(vi)]

�!�
[fa(vm)]
[pa(vm)]

�
=

�ÒPG(vm)
(x(vm))

��
[fa(vm)]
[pa(vm)]

�
.

Thus, from fa(vm) = pa(vm) ∪ {vm}, we have at x(vm)ÒP (x(vm)) =
X

x{vm}

ÒP (x) =
�ÒPG(vm)

(x(vm))
�� X

x{vm}

[fa(vm)]
[pa(vm)]

�
= ÒPG(vm)

(x(vm)).

In other words, vm is removable from G. Therefore, nodes which are terminal always satisfy

this theorem.

From now on, we will consider only vm such that ch(vm) 6= ∅. We prove the theorem by

showing, first, equivalence of condition (i) with condition (ii), and then equivalence of condition

(ii) with (iii). We assume condition (ii). From condition (ii) follows that fa(vi) = pa(vi+1),

m ≤ i ≤ κ− 1. So, expression (B.2) becomes

F =
[fa(vκ)]
[pa(vm)]

and in expression (B.1), vm is involved in the term [fa(vk)] only. In other words, vm is contained

in the f-clique, fa(vκ), only.

To prove the sufficiency of condition (i) for condition (ii), we assume that vm is contained

in one f-clique only, say Cvm . Then

F =
[Cvm ]

[pa(vm)]
(B.4)

since vm /∈ pa(vm). Equation (B.4), when multiplied by [pa(vm)], becomes

[fa(vm)]
κY

i=m+1

[fa(vi)]
[pa(vi)]

= [Cvm ]. (B.5)

The left-hand side of (B.5) is a function of the X variables indexed in a set which contains

pa(vm) ∪ {vm, · · · , vκ}. According to the structure of clan(vm), vm+1, · · · , vκ are dependent
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upon vm at the very least. This means that [Cvm ] must be a function of the X variables

indexed in a set which contains {vm, · · · , vκ}. In other words,

{vm, · · · , vκ} ⊆ Cvm . (B.6)

However, vκ /∈ ∪κ−1
i=m+1fa(vi) and vκ ∈ fa(vκ). From (4) and (B.6), it follows that

Cvm ∈ {fa(vi) | m ≤ i ≤ κ}.

This implies that fa(vκ) = Cvm since vκ ∈ Cvm . Thus we have [fa(vκ)] = [Cvm ]. That is,

[fa(vm)]
κY

i=m+1

[fa(vi)]
[pa(vi)]

= [fa(vκ)]. (B.7)

By the definition of f-clique and (B.7), we can see that for each i, m + 1 ≤ i ≤ κ, there exist

j, m ≤ j ≤ κ− 1, such that

pa(vi) = fa(vj).

Thus, for m ≤ i ≤ κ,

pa(vi) ∈ {fa(vj) | m ≤ j ≤ κ− 1}. (B.8)

Since pa(vκ) ⊆ fa(vκ) = Cvm , we have, from (B.6) and the fact that pa(vκ) ∪ {vκ} = fa(vκ),

{vm, · · · , vκ−1} ⊆ pa(vκ). (B.9)

However, vκ−1 /∈ ∪κ−2
j=mfa(vj), and vκ−1 ∈ fa(vκ−1). Thus, by (B.8) and (B.9),

fa(vκ−1) = pa(vκ), (B.10)

which means [fa(vκ−1)] = [pa(vκ)]. Proceeding to vκ−1, we have from (B.8) and (B.10) that

pa(vκ−1) ∈ {fa(vj) | m ≤ j ≤ κ− 2}. (B.11)

Since pa(vκ−1) ⊆ fa(vκ−1) = pa(vκ), we have, from (B.9) and the fact that pa(vκ−1)∪{vκ−1} =

fa(vκ−1),

{vm, · · · , vκ−2} ⊆ pa(vκ−1).

However, vκ−2 /∈ ∪κ−3
j=mfa(vj), and vκ−2 ∈ fa(vκ−2). Thus, by (B.11),

fa(vκ−2) = pa(vκ−1) (B.12)
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since vκ−2 ∈ pa(vκ−1). Hence,

[fa(vκ−2)] = [pa(vκ−1)].

As for vκ−2, we have from (B.8), (B.10), and (B.12),

pa(vκ−2) ∈ {fa(vi) | m ≤ i ≤ κ− 3}.

By applying the same argument as for (B.12), we can have fa(vj) = pa(vj+1) for m ≤ j ≤ κ−3.

Since fa(vj) = pa(vj+1) for m ≤ j ≤ κ − 1, all the nodes in clan(vm) becomes a clique when

pa(vm) is made complete and vm is contained in clan(vm) only since vm is surrounded by

pa(vm) and ch(vm). This completes the proof for the sufficiency of condition (i) for condition

(ii).

We will next prove the sufficiency of (ii) for (iii). Assuming condition (ii), we can construct

a DAG G∗ = (V,E∗) which is the same as G = (V, E) except that (v, vm) is in E∗ whenever

either (v, vm) or (vm, v) is in E. We will show that G∗ ∼ G. Suppose that there is an edge

(vm, v) in G which cannot be replaced with (v, vm) without creating or destroying an immorality

in G. If the replacement creates an immorality, it means that v 6∈ pa(vm) which is impossible

by the definition of clan(vm). If the replacement destroys an immorality, it means that vm

is not adjacent to a parent node of v, which is also impossible by the definition of clan(vm).

Hence, we have G∗ ∼ G.

By Theorem A.1, G∗ and G are Markov equivalent. Since vm is a terminal node in G∗, vm

is removable from G∗, and so is it from G.

Finally, for the proof of the necessity of (ii) regarding (iii), we begin by supposing that

condition (ii) does not hold. Then, without loss of generality, we can think of three possible

situations which are displayed in (a), (b), and (c) in Figure B.1. In the figure, the three

situations are featured by three types of elementary violations of condition (ii). The violations

are no edge between a parent and a child of vm as depicted in panel (a), no edge between

a pair of children of vm as in panel (b), and no edge between vm and a parent of a child of

vm as depicted in panel (c). A general form of violation may be given in a mixture of three

elementary violations.

In other words, a violation of condition (ii) implies existence of at least one of the three

elementary violations in Gclan(vm). Let there be the elementary violation as in panel (a) of

Figure B.1 and let A = {u, vm, w}. It is always possible to find a data set {δ(x), x ∈ XV } for

which it holds that
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(c)

vm

vm

vm

u w

u

(a) (b)

u

w w

Figure B.1: A display of the three elementary violations of condition (ii) is given in panels
(a), (b), and (c). The dotted arrows are needed to satisfy condition (ii).

δ(x)
δ(xA)

=
1

|XV \A|
(B.13)

and X
xvm

δ(xu, xvm)δ(xvm , xw)
δ(xvm)

6= δ(xu)δ(xw)
|δ| , (B.14)

where |δ| = P
x∈XV

δ(x).

Given the data set, we haveÒP (x) =
Y
v∈V

ÒPv|pa(v)(xv|xpa(v)) =
Y

v∈V \A
ÒPv|pa(v)(xv|xpa(v))

Y
v∈A

ÒPv|pa(v)(xv|xpa(v))

=
1

|XV \A|
Y
v∈A

ÒPv|pa(v)(xv|xpa(v)) =
1

|XV \A|
δ(xu, xvm)δ(xvm , xw)

δ(xvm)
.

As for the MLE of the marginal PG(vm)
of P onto G(vm), we haveÒPG(vm)

(x(vm)) =
Y

v∈V \A
ÒP G(vm)

v|pa(v)(xv|xpa(v))
Y

v∈A\{vm}
ÒP G(vm)

v|pa(v)(xv|xpa(v))

=
1

|XV \A|
Y

v∈A\{vm}
ÒPG(vm)

v|pa(v)(xv|xpa(v)) =
1

|XV \A|
δ(xu)δ(xw)

δ

where ÒPG(vm)

v|pa(v) denotes the MLE of Pv|pa(v) under the model structure G(vm), since node u is

not adjacent to node w in G(vm). Thus, (B.14) means thatÒP (x(vm)) 6= ÒPG(vm)
(x(vm)). (B.15)

We can apply the same argument as above for the elementary violation in panel (b). As

for the elementary violation in panel (c), we can find a data set {δ′(x), x ∈ XV } for which

(B.13) holds with δ therein replaced with δ′ as well as

δ′(xu)
X
xvm

δ′(xvm)
δ′(xA)

δ′(xu, xvm)
6= δ′(xu, xw).
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Thus, given the data δ′(x), we end up with (B.15). In a nutshell, it is always possible to find

a data set for which (B.15) holds if condition (ii) is violated.

Proof of Theorem 4.4:

The “if” part is trivial. To prove the “only if” part, we assume the collapsibility condition

given by ÒP (x(A)) = ÒPG(A)
(x(A)), (B.16)

and we will show that there exists a sequence of node-removals from G.

By the collapsibility condition, there must exist at least one removable node, say v1. If not,

every node in A must be contained in two or more f-cliques in the expression of ÒP (x) in (3) by

Theorem 3.2, making equation (B.16) not guaranteed in general. For a removable node, say

v1, we have at x(v1), ÒP (x(v1)) = ÒPG(v1)
(x(v1)). (B.17)

From equation (B.17), we have at x(A)ÒP (x(A)) =
X

xA\{v1}

ÒP (x(v1)) =
X

xA\{v1}

ÒPG(v1)
(x(v1)).

So, from (B.16) follows that ÒPG(A)
(x(A)) =

X
xA\{v1}

ÒPG(v1)
(x(v1)). (B.18)

Equation (B.18) means that A \ {v1} is removable from G(v1). So, there must exist at least

one removable node, say v2 in A \ {v1}. In other words, if we let G(v1) = G1, G({v1,v2}) = G2,

and B2 = {v1, v2}, we have ÒPG1(x(B2)) = ÒPG2(x(B2)). (B.19)

Applying the same argument as is applied to obtain (B.19) to the set of nodes A\B2 yields

a sequence of nodes of A. Let the sequence be v1, v2, · · · , v|A|, and let Bi = {v1, v2, · · · , vi}.
Then, we have a generalized form of (B.19) asÒPG(Bi−1)

(x(Bi)) = ÒPG(Bi)
(x(B2)), i = 2, · · · , |A|.

The corresponding sequence of induced subgraphs is given by G(B1),G(B2), · · · ,G(B|A|).
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