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Abstract:

We explore the properties of subgraphs (called Markovian subgraphs) of a decom-
posable graph under some condition. For a decomposable graph G and a collection
γ of its Markovian subgraphs, we show that the set χ(G) of the intersections of all
the neighboring cliques of G contains ∪g∈γχ(g). We also show that χ(G) = ∪g∈γχ(g)
holds for a certain type of G which we call a maximal Markovian supergraph of γ.

Keywords: Edge-subgraph; Markovian subgraph; Markovian supergraph; Prime sep-
arator.

1 Introduction

Graphs are used effectively in representing model structures in a variety of re-
search fields such as statistics, artificial intelligence, data mining, biological science,
medicine, decision science, educational science, etc. Different forms of graphs are
used according to the intrinsic inter-relationship among the random variables in-
volved. Arrows are used when the relationship is causal, temporal, or asymmetric,
and undirected edges are used when the relationship is associative or symmetric.

Among the graphs, triangulated graphs [1] are favored mostly when Markov
random fields ([11, 7]) are considered with respect to undirected graphs. When a
random field is Markov with respect to a triangulated graph, its corresponding prob-
ability model is expressed in a factorized form which facilitates computation over
the probability distribution of the random field [7]. This computational feasibility,
among others, makes such a Markov random field a most favored random field.

The triangulated graph is called a rigid circuit [4], a chordal graph [5], or a
decomposable graph [9]. A survey on this type of graphs is given in [2]. One of
the attractive properties (see Chapter 4 of [6]) of the triangulated graph is that
its induced subgraphs and Markovian subgraphs (defined in section 2) are triangu-
lated. While induced subgraphs are often used in literature (see Chapter 2 of [8]),
Markovian subgraphs are introduced in this paper. We will explore the relation-
ship between a triangulated graph and its Markovian subgraphs and find explicit
expressions for the relationship. The relationship is useful for understanding the
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relationship between a probability model P , which is Markov with respect to the
triangulated graph, and submodels of P . Since the terminology “decomposable
graph” is more contextual than any others as long as Markov random fields are con-
cerned, we will call the triangulated graph a decomposable graph in the remainder
of the paper.

This paper consists of 6 sections. Section 2 presents notation and graphical
terminologies. Markovian subgraphs are defined here. We define decomposable
graphs in Section 3 and introduce a class of separators. In Section 4, we present the
notion of Markovian supergraph and the relationship between Markovian supergraph
and Markovian subgraph. In Section 5, we compare Markovian supergraphs between
a pair of collections of Markovian subgraphs of a given graph. Section 6 concludes
the paper with summarizing remarks.

2 Notation and terminology

We will consider only undirected graphs in the paper. We denote a graph by G =
(V, E), where V is the set of the nodes involved in G and E is a collection of ordered
pairs, each pair representing that the nodes of the pair are connected by an edge.
Since G is undirected, (u, v) ∈ E is the same edge as (v, u). We say that a set of
nodes of G forms a complete subgraph of G if every pair of nodes in the set are
connected by an edge. A maximal complete subgraph is called a clique of G, where
the maximality is in the sense of set-inclusion. We denote by C(G) the set of cliques
of G.

If (u, v) ∈ E, we say that u is a neighbor node of v or vice versa and write it
as u ∼ v. A path of length n is a sequence of nodes u = v0, · · · , vn = v such that
(vi, vi+1) ∈ E, i = 0, 1, · · · , n− 1 and u 6= v. If u = v, the path is called an n-cycle.
If u 6= v and u and v are connected by a path, we write u  v. Note that  is an
equivalence relation. We define the connectivity component of u as

[u] = {v ∈ V ; v  u} ∪ {u}.

So, we have

v ∈ [u] ⇐⇒ u  v ⇐⇒ u ∈ [v].

For v ∈ V , we define ne(v) = {u ∈ V ; v ∼ u in G} and, for A ⊆ V , bd(A) =
∪v∈Ane(v)\A. If we have to specify the graph G in which bd(A) is obtained, we will
write bdG(A). A path, v1, · · · , vn, v1 6= vn, is intersected by A if A∩{v1, · · · , vn} 6= ∅
and neither of the end nodes of the path is in A. We say that nodes u and v are
separated by A if all the paths from u and v are intersected by A, and we call such a
set A a separator. In the same context, we say that, for three disjoint sets A, B,C,
A is separated from B by C if all the paths from A to B are intersected by C, and
we write 〈A|C|B〉G . The notation 〈·| · |·〉G follows [10]. A non-empty set B is said
to be intersected by A if B is partitioned into three sets B1, B2, and B ∩A and B1

and B2 are separated by A in G.
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For A ⊂ V , an induced subgraph of G confined to A is defined as Gind
A = (A, E∩

(A×A)). The complement of a set A is denoted by Ac. For A ⊂ V , we let JA be the
collection of the connectivity components in Gind

Ac and β(JA) = {bd(B); B ∈ JA}.
Then we define a graph GA = (A,EA) where

EA = [E ∪ {B ×B; B ∈ β(JA)}] ∩A×A. (1)

We will call GA the Markovian subgraph of G confined to A and write GA ⊆M G.
JA and β(JA) are defined with respect to a given graph G. Note that EA is not
necessarily a subset of E, while Eind

A ⊆ E. When the graph is to be specified, we
will write them as J G

A and βG(JA).

If G = (V, E), G′ = (V,E′), and E′ ⊆ E, then we say that G′ is an edge-subgraph
of G and write G′ ⊆e G. For us, a subgraph of G is either a Markovian subgraph,
an induced subgraph, or an edge-subgraph of G. If G′ is a subgraph of G, we call
G a supergraph of G′. The cardinality of a set A will be denoted by |A|. For two
collections A, B of sets, if, for every a ∈ A, there exists a set b in B such that a ⊆ b,
we will write A ¹ B.

3 Separators as a characterizer of decomposable graphs

In this section, we will present separators as a tool for characterizing decomposable
graphs. Although decomposable graphs are well known in literature, we will define
them here for completeness.

Definition 3.1. A triple (A,B,C) of disjoint, nonempty subsets of V is said to
form a decomposition of G if V = A ∪ B ∪ C and the two conditions below both
hold:
(i) A and B are separated by C;
(ii) Gind

C is complete.

By recursively applying the notion of graph decomposition, we can define a
decomposable graph.

Definition 3.2. A graph G is said to be decomposable if it is complete, or if there
exists a decomposition (A,B,C) into decomposable subgraphs Gind

A∪C and Gind
B∪C .

According to this definition, we can find a sequence of cliques C1, · · · , Ck of a
decomposable graph G which satisfies the following condition [see Proposition 2.17
of [8]]: with C(j) = ∪j

i=1Ci and Sj = Cj ∩ C(j−1),

for all i > 1, there is a j < i such that Si ⊆ Cj . (2)

By this condition for a sequence of cliques, we can see that Sj is expressed as an
intersection of neighboring cliques of G. If we denote the collection of these Sj ’s by
χ(G), we have, for a decomposable graph G, that

χ(G) = {a ∩ b; a, b ∈ C(G), a 6= b}. (3)
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The cliques are elementary graphical components and the Sj is obtained as
intersection of neighboring cliques. So, we will call the Sj ’s prime separators (PSs)
of the decomposable graph G. The PSs in a decomposable graph may be extended
to separators of prime graphs in any undirected graph, where the prime graphs are
defined in [3] as the maximal subgraphs without a complete separator.

4 Markovian subgraphs

Let G be decomposable and consider its Markovian subgraphs, G1, · · · ,Gm. The m
Markovian subgraphs may be regarded as the graphs of the Markov random fields
of V1, · · · , Vm. In this context, we may refer to a Markovian subgraph as a marginal
graph.

Definition 4.1. Suppose there are m marginal graphs, G1, · · · ,Gm. Then we say
that graph H of a set of variables V is a Markovian supergraph of G1, · · · ,Gm, if
the following conditions hold:
(i) ∪m

i=1Vi = V.
(ii) HVi = Gi, for i = 1, · · · ,m. That is, Gi are Markovian subgraphs of H.

We will call H a maximal Markovian supergraph (MaxG) of G1, · · · ,Gm if adding
any edge to H invalidates condition (ii) for at least one i = 1, · · · ,m. Since H de-
pends on G1, · · · ,Gm, we denote the collection of the MaxGs formally by Ω(G1, · · · ,Gm).

According to this definition, the graph G is a Markovian supergraph of each
Gi, i = 1, · · · ,m. There may be many Markovian supergraphs that are obtained
from a collection of marginal graphs. For the graphs, G,G1, · · · ,Gm, in the definition,
we say that G1, · · · ,Gm are combined into G.

In the lemma below, CG(A) is the collection of the cliques which include nodes
of A in graph G. The proof is intuitive.

Lemma 4.2. Let G′ = (V ′, E′) be a Markovian subgraph of G and suppose that, for
three disjoint subsets A,B, C of V ′, 〈A|B|C〉G′. Then

(i) 〈A|B|C〉G;
(ii) For W ∈ CG(A) and W ′ ∈ CG(C), 〈W |B|W ′〉G.

The following theorem is similar to Corollary 2.8 in [8], but it is different in that
an induced subgraph is considered in the corollary while a Markovian subgraph is
considered here.

Theorem 4.3. Every Markovian subgraph of a decomposable graph is decomposable.

Proof: Suppose that a Markovian subgraph GA of a decomposable graph G is not
decomposable. Then there must exist a chordless cycle, say C, of length ≥ 4 in GA.
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Denote the nodes on the cycle by ν1, · · · , νl and assume that they form a cycle in
that order where ν1 is a neighbor of νl.

We need to show that C itself forms a cycle in G or is contained in a chordless
cycle of length > l in G. By Lemma 4.2, there is no edge in G between any pair of
non-neighboring nodes on the cycle. If C itself forms a cycle in G, our argument
is done. Otherwise, we will show that the nodes ν1, · · · , νl are on a cycle which is
larger than C. Without loss of generality, we may consider the case where there is
no edge between ν1 and ν2. If there is no path in G between the two nodes other
than the path which passes through ν3, · · · , νl, then, since C forms a chordless cycle
in GA, there must exist a path between v1 and v2 other than the path which passes
through v3, · · · , vl. Thus the nodes ν1, · · · , νl must lie in G on a chordless cycle of
length > l. This completes the proof.

This theorem and expression (3) imply that, as for a decomposable graph G, the
PSs are always given in the form of a complete subgraph in G and in its Markovian
subgraphs.

Lemma 4.2 states that a separator of a Markovian subgraph of G is also a sepa-
rator of G. We will next see that if the MaxG is decomposable provided that all the
marginal graphs, G1, · · · ,Gm, are decomposable.

Theorem 4.4. Let G1, · · · ,Gm be decomposable. Then every graph in Ω(G1, · · · ,Gm)
is also decomposable.

Proof: Suppose that there is a MaxG, say H, which contains an n-cycle (n ≥ 4)
and let A be the set of the nodes on the cycle. Since H is maximal, we can not add
any edge to it. This implies that no more than three nodes of A are included in any
of Vi’s, since any four or more nodes of A that are contained in a Vi form a cycle
in Gi, which is impossible due to the decomposability of the Gi’s. Hence, the cycle
in H may become a clique by edge-additions on the cycle, contradicting that H is
maximal. Therefore, H must be decomposable.

Theorem 4.4 does not hold for a Markovian supergraph. For example, in Figure
1, graph G is not decomposable. However, the Markovian subgraphs G1 and G2 are
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Figure 1: An example of a non-decomposable graph (G) whose Markovian subgraphs
(G1, G2) are decomposable. Graph H is a MaxG of G1 and G2.
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both decomposable. And χ(G) = {{4}, {7}}, χ(G1) = {{2, 3}, {5, 6}, {8, 9}}, and
χ(G2) = {{4}, {7}}. Note that, for H in the figure, χ(H) = χ(G1) ∪ χ(G2), which
holds true in general as is shown in Theorem 4.7 below. The theorem characterizes
a MaxG in a most unique way. Before stating the theorem, we will see if a set of
nodes can be a PS in a marginal graph while it is not in another marginal graph.

Theorem 4.5. Let G be a decomposable graph and G1 and G2 Markovian subgraphs
of G. Suppose that a set C ∈ χ(G1) and that C ⊆ V2. Then C is not intersected in
G2 by any other subset of V2.

Proof: Suppose that there are two nodes u and v in C that are separated in G2

by a set S. Then, by Lemma 4.2, we have 〈u|S|v〉G . Since C ∈ χ(G1) and G1 is
decomposable, C is an intersection of some neighboring cliques of G1 by equation
(3). So, S can not be a subset of V1 but a proper subset of S can be. This means
that there are at least one pair of nodes, v1 and v2, in G1 such that all the paths
between the two nodes are intersected by C in G1, with v1 appearing in one of the
neighboring cliques and v2 in another.

Since v1 and v2 are in neighboring cliques, each node in C is on a path from
v1 to v2 in G1. From 〈u|S|v〉G follows that there is an l-cycle (l ≥ 4) that passes
through the nodes u, v, v1, and v2 in G. This contradicts to the assumption that G
is decomposable. Therefore, there can not be such a separator S in G2.

This theorem states that, if G is decomposable, a PS in a Markovian subgraph
of G is either a PS or a complete subgraph in any other Markovian subgraph of
G. If the set of the nodes of the PS is contained in only one clique of a Markovian
subgraph, the set is embedded in the clique. For a subset V ′ of V , if we put G1 = G
and G2 = GV ′ in Theorem 4.5, we have the following corollary.

Corollary 4.6. Let G be a decomposable graph and suppose that a set C ∈ χ(G)
and that C ⊆ V ′ ⊂ V . Then C is not intersected in a Markovian subgraph GV ′ of G
by any other subset of V ′.

Recall that if Gi, i = 1, 2, · · · ,m are Markovian subgraphs of G, then G is a
Markovian supergraph. For a given set S of Markovian subgraphs, there may be
many MaxGs, and they are related with S through PSs as in the theorem below.

Theorem 4.7. Let there be Markovian subgraphs Gi, i = 1, 2, · · · ,m, of a decom-
posable graph G. Then

(i) ∪m
i=1χ(Gi) ⊆ χ(G);

(ii) for any MaxG H,
∪m

i=1χ(Gi) = χ(H).

Proof: See Appendix.

For a given set of marginal graphs, we can readily obtain the set of PSs under the
decomposability assumption. By (3), we can find χ(G) for any decomposable graph
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G simply by taking all the intersections of the cliques of the graph. An apparent
feature of a MaxG in contrast to a Markovian supergraph is stated in Theorem 4.7.

For a set γ of Markovian subgraphs of a graph G, there can be more than one
MaxG of γ. But there is only one such MaxG that contains G as its edge-subgraph.

Theorem 4.8. Suppose there are m Markovian subgraphs G1, · · · ,Gm of a decom-
posable graph G. Then there exists a unique MaxG H∗ of the m node-subgraphs
such that G ⊆e H∗.

Proof: By Theorem 4.7 (i), we have

∪m
i=1χ(Gi) ⊆ χ(G).

If ∪m
i=1χ(Gi) = χ(G), then since G is decomposable, G itself is a MaxG. Otherwise,

let χ′ = χ(G) − ∪m
i=1χ(Gi) = {A1, · · · , Ag}. Since A1 6∈ ∪m

i=1χ(Gi), we may add
edges so that ∪C∈CG(A1)C becomes a clique, and the resulting graph G(1) becomes a
Markovian supergraph of G1, · · · ,Gm with χ(G(1))− ∪m

i=1χ(Gi) = {A2, · · · , Ag}.
We repeat the same clique-merging process for the remaining Ai’s in χ′. Since

each clique-merging makes the corresponding PS disappear into the merged, new
clique while maintaining the resulting graph as a Markovian supergraph of G1, · · · ,Gm,
the clique-merging creates a Markovian supergraph of G1, · · · ,Gm as an edge-supergraph
of the preceding graph. Therefore, we obtain a MaxG, say H∗, of G1, · · · ,Gm at the
end of the sequence of the clique-merging processes for all the PSs in χ′. H∗ is the
desired MaxG as an edge-supergraph of G.

Since the clique-merging begins with G and, for each PS in G, the set of the
cliques which meet at the PS only is uniquely defined, the uniqueness of H∗ follows.

The relationship among Markovian subgraphs is transitive as shown in

Theorem 4.9. For three graphs, G1,G2,G with G1 ⊆M G2 ⊆M G, it holds that
G1 ⊆M G.

Proof: For u, v ∈ bdG(V2 \ V1) ∩ V1 × V1 with u 6∼ v in G1, we have

〈u|(V1 \ {u, v})|v〉G2 (4)

by the condition of the theorem. Expression (4) means that there is no path between
u and v in G2 bypassing V1 \ {u, v}. Since G2 ⊆M G, expression (4) implies that
〈u|(V1 \ {u, v})|v〉G .

Now consider u, v ∈ bdG(V2 \ V1)∩ V1× V1 such that (u, v) ∈ E1 but (u, v) 6∈ E2.
This means that there is a path between u and v in G2 bypassing V1 \ {u, v}. Either
there is at least one path between u and v in Gind

V2
bypassing V1 \ {u, v}, or there is

no such path in Gind
V2

at all. In the former situation, it must be that u ∼ v in G1 as a
Markovian subgraph of G. In the latter situation, at least one path is newly created
in Gind

V2
when Gind

V2
becomes a Markovian subgraph of G. This new path contains an

edge, (v1, v2) say, in {B ×B; B ∈ βG(JV2)} ∩ V2 × V2 where JV2 is the connectivity
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components in Gind
V c
2

. This also implies that there is at least one path between v1

and v2 in G bypassing V2 \{v1, v2}. In a nutshell, the statement that (u, v) ∈ E1 but
(u, v) 6∈ E implies that there is at least one path between u and v in G bypassing
V1 \ {u, v}. This completes the proof.

5 Markovian supergraphs from marginal graphs

Given a collection γ of marginal graphs, a Markovian supergraph of γ may not exist
unless the marginal graphs are Markovian subgraphs of a graph. We will consider
in this section collections of Markovian subgraphs of a graph G and investigate
the relationship of a Markovian supergraph of a collection with those of another
collection.

Let G11 and G12 be Markovian subgraphs of G1 with V11 ∪ V12 = V1, and let G1

and G2 be Markovian subgraphs of G with V1 ∪ V2 = V . For H ∈ Ω(G1,G2), we
have, by Theorem 4.9, that G11 ⊆M H and G12 ⊆M H, since G1 ⊆M H. Thus, H is
a Markovian supergraph of G11,G12, and G2, but may not be a MaxG of them since
χ(G11) ∪ χ(G12) ⊆ χ(G1) by Theorem 4.7 (i). We can generalize this as follows. We
denote by V (G) the set of nodes of G.

Theorem 5.1. Consider two collections, γ1 and γ2, of Markovian subgraphs of G
with ∪g∈γ1V (g) = ∪g∈γ2V (g) = V (G). For every g ∈ γ2, there exists a graph h ∈ γ1

such that g ⊆M h. Then, every H ∈ Ω(γ1) is a Markovian supergraph of γ2.

Proof: For H ∈ Ω(γ1), every h ∈ γ1 is a Markovian subgraph of H. By the
condition of the theorem, for each g ∈ γ2, we have g ⊆M h′ for some h′ ∈ γ1. Thus,
by Theorem 4.9, g ⊆M H. Since ∪g∈γ2V (g) = V (G), H is a Markovian supergraph
of γ2.

From this theorem and Theorem 4.7 we can deduce that, for H ∈ Ω(γ1),

∪g∈γ2χ(g) ⊆ χ(H).

This implies that H cannot be a proper supergraph of any H ′ in Ω(γ2). Since γ1

and γ2 are both from the same graph G, H is an edge-subgraph of some H ′ ∈ Ω(γ2)
when ∪g∈γ2χ(g) ⊂ χ(H). However, it is noteworthy that every pair H and H ′,
H ∈ Ω(γ1) and H ′ ∈ Ω(γ2), are not necessarily comparable as we will see below.

Example 5.2. Consider the graph G in Figure 2 and let V1 = {3, 4, 5, 6, 7, 8} and
V2 = {1, 2, 3, 5, 7, 9}. The Markovian subgraphs G1 and G2 are also in Figure 2. Note
that

χ(G1) ∪ χ(G2) = χ(G) = {{3}, {2, 3}, {5}, {6}, {7}}
and that G ∈ Ω(G1, G2).

Let G11 and G12 be two Markovian subgraphs of G1 as in Figure 2. Then {F1} =
Ω(G11,G12). χ(F1) = {{5}, {6}} and χ(G2) = {{2, 3}, {5}, {7}}. Let γ1 = {F1,G2}.
Then, for every H ∈ Ω(γ1),

χ(H) = {{2, 3}, {5}, {6}, {7}} (5)
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Figure 2: Markovian subgraphs and supergraphs. In graph F , bd(4) = {1, 2, 3} or
{2, 3, 5}. We denote the F by F◦ when bd(4) = {1, 2, 3} and by F• when bd(4) =
{2, 3, 5}.

by Theorem 4.7. In G2, we have 〈{2, 3}|5|7〉; and in F1, 〈5|6|7〉. Thus, the four
PSs in (5) are to be arranged in a path, {2, 3} {5} {6} {7}. The remaining
nodes can be added to this path as the two graphs in γ1 suggest in such a way that
equation (5) may hold. Note that 〈4|5|6〉 in F1. This means that node 4 must form
a clique either with {1, 2, 3} or with {2, 3, 5} because {2, 3} is a PS. This is depicted
in F of Figure 2 representing two possible cliques which include node 4. The two
different MaxGs are denoted by F◦ and F• which are explained in the caption of
Figure 2.

It is worthwhile to note that G is not an edge-subgraph of either of the two MaxGs
in Ω(γ1) while {G} = Ω(G1,G2). This phenomenon seems to contradict Theorem 4.8
which says that there always exists a MaxG which is an edge-supergraph of G. But
recall that F1 is a MaxG of G11 and G12. If we let γ2 = {G11,G12,G2}, Example 5.2
shows that Ω(γ2) is not the same as Ω(γ1).

The F in Figure 2 is obtained first by combining G11 and G12 into F1 and then
by combining the graphs in γ1. This is a sequential procedure. It is apparent from
Example 5.2 that a sequential combination of graphs does not necessarily lead us to
a MaxG which is an edge-supergraph of G. For a collection γ of marginal graphs, it
is desirable that Ω(γ) is obtained by considering the graphs in γ simultaneously.

6 Concluding remarks

In this paper, we have explored the relationship between a decomposable graph
and its Markovian subgraph which is summarized in Theorem 4.7. Let there be a
collection γ of Markovian subgraphs of a decomposable graph G. Theorem 4.8 states
that there always exists a MaxG of γ which contains G as an edge-subgraph.

According to Theorem 5.1, we may consider a sequence of collections, γ1, · · · , γr,
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of Markovian subgraphs of G, where γi and γj , i < j, are ordered such that for every
g ∈ γj , there exists h ∈ γi satisfying g ⊆M h. Every H ∈ Ω(γi) is a Markovian
supergraph of g ∈ γj , but, as shown in Example 5.2, an H ∈ Ω(γj) may not be
a Markovian supergraph of a graph in γi. This implies that if we are interested
in Markovian supergraphs of V (G), the collection γ1 is the best to use among the
collections, γ1, · · · , γr.

Appendix: Proof of theorem 4.7

We will first prove result (i). For a subset of nodes Vj , the followings hold:

(i’) If Vj does not contain a subset which is a PS of G, then χ(Gj) = ∅.
(ii’) Otherwise, i.e., if there are PSs, C1, · · · , Cr, of G as subsets of Vj ,

(ii’-a) if there are no nodes in Vj that are separated by any of C1, · · · , Cr in
G, then χ(Gj) = ∅.

(ii’-b) if there is at least one of the PSs, say Cs, such that there are a pair of
nodes, say u and v, in Vj such that 〈u|Cs|v〉G , then χ(Gj) 6= ∅.

We note that, since G is decomposable, the condition that Vj contains a separator
of G implies that Vj contains a PS of G. As for (i’), every pair of nodes, say u and
v, in Vj have at least one path between them that bypasses Vj \ {u, v} in the graph
G since Vj does not contain any PS of G. Thus, (i’) follows.

On the other hand, suppose that there are PSs, C1, · · · , Cr, of G as a subset of
Vj . The result (ii’-a) is obvious, since for each of the PSs, C1, · · · , Cr, the rest of
the nodes in Vj are on one side of the PS in G.

As for (ii’-b), let there be two nodes, u and v, in Vj such that 〈u|Cs|v〉G . Since G
is decomposable, Cs is an intersection of neighboring cliques in G, and the nodes u
and v must appear in some (not necessarily neighboring) cliques that are separated
by Cs. Thus, the two nodes are separated by Cs in Gj with Cs as a PS in Gj . Any
proper subset of Cs can not separate u from v in G and in any of its Markovian
subgraphs.

From the results (i’) and (ii’) follows that

(iii’) if C ∈ χ(G) and C ⊆ Vj , then either C ∈ χ(Gj) or C is contained in only one
clique of Gj .

(iv’) that χ(Gj) = ∅ does not necessarily implies that χ(G) = ∅.

To check if χ(Gj) 6⊆ χ(G) for any j ∈ {1, 2, · · · ,m}, suppose that C ∈ χ(Gj) and
C 6∈ χ(G). This implies, by Lemma 4.2, that C is a separator but not a PS in G.
Thus, there is a proper subset C ′ of C in χ(G). By (iii’), C ′ ∈ χ(Gj) or is contained
in only one clique of Gj . However, neither is possible, since C ′ ⊂ C ∈ χ(Gj) and C
is an intersection of cliques of Gj . Therefore,

χ(Gj) ⊆ χ(G) for all j.
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This proves result (i) of the theorem.

We will now prove result (ii). If ∪m
i=1χ(Gi) = ∅, then, since all the Gi’s are de-

composable by Theorem 4.3, they are complete graphs themselves. So, by definition,
the MaxG must be a complete graph of V . Thus, the equality of the theorem holds.

Next, suppose that ∪m
i=1χ(Gi) 6= ∅. Then there must exist a marginal model

structure, say Gj , such that χ(Gj) 6= ∅. Let A ∈ χ(Gj). Then, by Theorem 4.5,
A is either a PS or embedded in a clique if A ⊆ Vi for i 6= j. Since a PS is
an intersection of cliques by equation (3), the PS itself is a complete subgraph.
Thus, by the definition of MaxG and by Lemma 4.2, A ∈ χ(H). This implies that
∪m

i=1χ(Gi) ⊆ χ(H).

To show that the set inclusion in the last expression comes down to equality, we
will suppose that there is a set B in χ(H) \ (∪m

i=1χ(Gi)) and show that this leads to
a contradiction to the condition that H is a MaxG. H is decomposable by Theorem
4.4. So, B is the intersection of the cliques in CH(B). By supposition, B 6∈ χ(Gi)
for all i = 1, · · · ,m. This means either (a) that B ⊆ Vj for some j and B ⊆ C for
only one clique C of Gj by Corollary 4.6 or (b) that B 6⊆ Vj for all j = 1, · · · , m. In
both of the situations, B need not be a PS in H, since Gi are decomposable and so
B ∩ Vi are complete in Gi in both of the situations. In other words, edges may be
added to H so that CH(B) becomes a clique, which contradicts that H is a MaxG.
This completes the proof.
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