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Summary

An issue of combining marginal models is addressed under the assumption that the true model

is graphically decomposable. A main theme which is instrumental throughout the paper is

that decomposability is preserved between a model and its submodel and that some type of

separators in the graph of a model is found in a decomposable graphical model and also in a

collection of its submodels. These separators, which are called prime separators in this paper,

are a guideline for model combination. A theory for the guideline is proposed showing how we

may use prime separators for drawing a blueprint based on which a combined model is formed.

1 Introduction

Fienberg and Kim (1999) considered a problem of combining conditional graphical log-linear

structures and derived a combining rule for them based on the relation between the log-linear

model and its conditional version. A main feature of the relation is that conditional log-linear

structures appear as parts of their original model structure [see Theorems 3 and 4 therein].

The relationship becomes more explicit when the distribution is multivariate normal. Let X

be a normal random vector. The precision matrix of the conditional distribution of a subvector

X1 given the remaining part of X is the same as the X1 part of the precision matrix of X

[Section 3.5, Edwards (1995)]. Marginals of a joint probability distribution are not in general

represented as parts of the joint distribution. However, there is a way that we can express

explicitly the relationship between joint and marginal distributions under the assumption that

the joint (as against marginal) probability model is graphical and decomposable. This issue

will be addressed in this paper.
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Figure 1: Two marginal models

Suppose that we are given a pair (call it Pair-1) of simple graphical models where one

model is of random variables X1, X2, X3 with their inter-relationship that X1 is independent

of X3 conditional on X2 and the other is of X1, X2, X4 with their inter-relationship that X1

is independent of X4 conditional on X2. From this pair, we can imagine a model structure

for the four variables X1, · · · , X4. The two inter-relationships are pictured in Figure 1. We

will use the notation [·]· · · [·] as used in Fienberg(1980) to represent a model. The left graph

is of the model [12][23] and the right one is of the model [12][24]. X1 and X2 are shared in

both models, and assuming that none of the four variables are marginally independent of the

others, the following models are possible corresponding to Pair-1:

[12][24][23], [12][24][34], [12][23][34], [12][234]. (1)

Note that we can obtain the pair in Figure 1 from each of these models and that among these

four models, the first three are submodels of the last one.

We consider another pair (call it Pair-2) of simple marginals, [12][23] and [24][25], where

only one variable is shared. In this case, we have a longer list of combined models as follows:

[12][24][23][25], [124][23][25], [124][23][35], [124][25][35], [124][235], [125][23][34],
[125][24][34], [125][234].

(2)

Model structures [124][235] and [125][234] are maximal in the sense of set inclusion among

these eight models.

It is important to note that some variable(s) are independent of the others, conditional

on X2 in each of the two pairs of marginals, Pair-1 and Pair-2, and in all the models in (1)

and (2). That conditional independence takes place conditional on the same variable in the

marginal models and also in the combined (or joint) models underlies the main theme of the

paper.

In addressing the issue of combining graphical model structures, we can not help using inde-

pendence graphs and related theories to derive desired results with more clarity and refinement.

The conditional independence embedded in a distribution can be expressed to some level of

satisfaction by a graph in the form of graph-separateness [see, for example, The separation

theorem in p. 67, Whittaker (1990)]. We will show in this paper that the graph-separateness
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is invariant between a set of marginal models and some joint model under the decompos-

ability assumption of the model. This invariance is closely related to the statements that a

decomposable graph is triangulated [Darroch, Lauritzen, Speed (1980); Leimer (1989)] and

that decomposability is preserved in graph-collapsing [Theorem 4.3].

While we will consider a problem of learning decomposable graphical models from a collec-

tion of marginal models, there has been remarkable improvements in learning graphical models

in the form of a Bayesian network [Pearl (1986, 1988)] from data. This learning however is

mainly instrumented by heuristic searching algorithms since the model searching is usually

NP-hard [Chickering (1996)]. A good review is given in Cooper (1999) on structural discovery

of Bayesian or causal networks from data. Since a Bayesian network can be transformed into

a decomposable graph [Lauritzen and Spiegelhalter (1988)], the method of model combination

which is proposed in this paper would lead to an improvement in learning graphical models

from data.

The paper is organized in 7 sections. Section 2 introduces notation and graphical termi-

nologies to use, and defines a type of separator of a decomposable graph which is a useful tool

for combining models. Section 3 discusses properties of distributions that are Markov relative

to an undirected graph and those that are also Markov relative to its subgraphs. In section 4,

we derive theorems on combining decomposable models to a larger decomposable model, and

this section ends with a paragraph which summarizes the main theory of the paper putting

probability models and graph theory together in one expression [i.e., expression (12)]. The

idea of Section 4 is illustrated in section 5 using simple models. Larger models are used in

Section 6 for another illustration. Some issues are discussed further, in section 7, concerning

the model-combination based on graph theory,

2 Preliminaries

We will consider only undirected graphs in the paper. We denote a graph by G = (V, E),

where V is the set of the indexes of the variables involved in G and E is a collection of ordered

pairs, each pair representing that the nodes of the pair are connected by an edge. Since G is

undirected, that (u, v) is in E is the same as that (v, u) is in E. We say that a set of nodes of

G forms a complete subgraph of G if every pair of nodes in the set are connected by an edge.

A maximal complete subgraph is called a clique of G, where the maximality is in the sense of

set-inclusion. We denote by C(G) the set of cliques of G.
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Graph G can be represented in the same way as a graphical log-linear model is represented

in terms of generators [Fienberg (1980)]. If G consists of cliques C1, · · · , Cr, we will write

G = [C1] · · · [Cr].

For instance, if G is of five nodes and C1 = {1, 2}, C2 = {2, 3}, C3 = {3, 4, 5}, then G =

[12][23][345]. In this context, the terms graph and model structure will be used in the same

sense. All the notation and graphical terminology that are used in this paper are summarized

in Appendix A.

For a subset A ⊆ V , we denote by GA = (A,EA) the subgraph of G = (V, E) confined to A

where

EA = (E ∩A×A) ∪ {(u, v) ∈ A×A; u and v are not separated by A \ {u, v} in G}. (3)

In particular, we will call GA the Markovian subgraph of G confined to A.

While a Markovian subgraph GA of G is used to represent a submodel for (Xi)i∈A, an

induced subgraph is simply a part of G. For A ⊂ V , an induced subgraph of G confined to

A is defined as Gind
A = (A, E ∩ (A × A)). For A ⊂ V , we denote by JA the collection of the

connectivity components in Gind
Ac and let

β(JA) = {bd(B); B ∈ JA}. (4)

Then EA in (3) can be expressed as

EA = [E ∪ {B ×B; B ∈ β(JA)}] ∩A×A.

Note that, if we regard {B ×B; B ∈ β(JA)} as a set of edges, the set makes the boundary of

Ac complete.

If G = (V, E), G′ = (V, E′), and E′ ⊆ E, then we say that G′ is an edge-subgraph of G and

write G′ ⊆e G. A subgraph of G is either a Markovian subgraph, an induced subgraph, or an

edge-subgraph of G. If G′ is a subgraph of G, we call G a supergraph of G′.

According to the definition of a decomposable graph (see Definition A.2 in Appendix A), we

can find a sequence of cliques C1, · · · , Ck of a decomposable graph G which satisfies the following

condition [see Proposition 2.17 of Lauritzen (1996)]: with C(j) = ∪j
i=1Ci and Sj = Cj ∩C(j−1),

for all i > 1, there is a j < i such that Si ⊆ Cj . (5)
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By this condition for a sequence of cliques, we can see that Sj is expressed as an intersection

of neighboring cliques of G. If we denote the collection of these Sj ’s by χ(G), we have, for a

decomposable graph G, that

χ(G) = {a ∩ b; a, b ∈ C(G), a 6= b}. (6)

Since Sj is obtained as intersection of neighboring cliques, we will call the Sj ’s connectors of

cliques or prime separators (“c” for clique) for short.

3 Distribution, interaction graph, and Markovian subgraph

We will use a boldface for a random vector, and so XA denotes a vector of random variables Xi,

i ∈ A. We use the symbol ·⊥⊥·|·, following Dawid (1979), to represent conditional independence.

A distribution P is said to be globally Markov with respect to an undirected graph G if, for a

triple (A, B, S) of disjoint subsets A,B, S of V ,

XA⊥⊥XB|XS (7)

whenever A is separated from B by S in G. For convenience’ sake, we will write (7) simply as

A⊥⊥B|S.

In addition to the global Markov property, we will consider another property for a probabil-

ity distribution. A distribution P with probability function f is said to be factorized according

to G [Lauritzen (1996), section 3.2] if for all c ∈ C(G) there exist non-negative functions ψc

that depend on x through xc only such that

f(x) =
Y

c∈C(G)

ψc(x).

We will denote the collection of the distributions that are globally Markov with respect to G
by MG(G), and by MF (G) the collection of the distributions that are factorized according to

G.

When G is decomposable, the two sets are closely related as in

Theorem 3.1. Let G be decomposable. Then

MF (G) = MG(G).
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Figure 2: Some undirected graphs

Proof: See Proposition 3.19 in Lauritzen (1996).

For a probability distribution P of XV we denote by G(Γ(P )) = (V, E) the interaction

graph of P which satisfies, under the hierarchy assumption for probability models, that

(u, v) ∈ E ⇐⇒ interaction is permitted between Xu and Xv under P. (8)

For a probability distribution P of XV , let the logarithm of the density of P be expanded

into interaction terms and let the set of the maximal domain sets of these interaction terms be

denoted by Γ(P ), where maximality is in the sense of set-inclusion. We will call the set, Γ(P ),

the generating class of P and denote by G(Γ(P )) = (V, E) the interaction graph of P which

satisfies, under the hierarchy assumption for probability models,

(u, v) ∈ E ⇐⇒ {u, v} ⊆ a for some a ∈ Γ(P ). (9)

When confusion is not likely, we will use Γ instead of Γ(P ).

Theorem 3.2. For a distribution P ,

P ∈ MF (G(Γ(P ))) and P ∈ MG(G(Γ(P ))).

Proof: By definition, Γ(P ) ¹ C (G(Γ(P ))). Thus it follows that P ∈ MF (G(Γ(P ))), and so

does P ∈ MG(G(Γ(P ))) by Proposition 3.8 in Lauritzen (1996).

If graph (a) in Figure 2 is G = G(Γ(P )) for some distribution P and A = {1, 2, 3, 4}, there

are two sets, {2, 5} and {3, 5}, in Γ(P ), which have 5 as an element in common. If we write

the density f of P for the graph in a factorized form,

f(x) = g12(x)g13(x)g24(x)g34(x)g25(x)g35(x),

where guv(x) is a non-negative function and x depends upon the set {Xu, Xv} through the

vector x{u,v}. The density of the marginal distribution for XA is

f(xA) = g12(x)g13(x)g24(x)g34(x)
�Z
X5

g25(x)g35(x)dµ(x5)
�
,
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where X5 is the support of X5 and µ is a measure on X5. The integral can be interpreted as

a sum when X5 is discrete. The bracket is a function of X2 and X3 at the most, which we

denote by g′23(x). Inserting this into the above expression yields

f(xA) = g12(x)g13(x)g24(x)g34(x)g′23(x).

From this, we can see that the largest possible generating class of PA is given by

Γ̄(PA) = (Γ(P ) \ {{2, 5}, {3, 5}}) ∪ {{2, 3}}
= {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}}.

Graph (b) in Figure 2 is G(Γ̄(PA)).

We can formally define Γ̄(PA) as

Γ̄(PA) = (Γ(P ) ∩A) ∪ β(JA), (10)

where β(JA) is defined in (4).

From this, it follows that

β(JA) ¹ Γ̄(PA) ¹ C(G(Γ̄(PA))).

The second ¹ holds since it is possible that, for some B ∈ JA, bd(B) is a strict subset of a

clique in G(Γ̄(PA)).

The following result is immediate from (10).

Theorem 3.3. For a distribution P of XV and A ⊆ V ,

G(Γ̄(PA)) = G(Γ(P ))A,

where G(Γ(P ))A is the Markovian subgraph of G(Γ) confined to A.

Proof: By definition, the interaction graph corresponding to the right hand side of (10) is

G(Γ(P ))A. Thus the result follows.

From this theorem and the fact that Γ(PA) ¹ Γ̄(PA), we have

Corollary 3.4. For a distribution P of XV and A ⊆ V ,

PA ∈ MG(G(Γ(P ))A).
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From Theorem 3.3, we can also derive a result concerning both the relationship between a

distribution P and a graph G and the relationship between PA and GA.

Corollary 3.5. For a distribution P of XV and A ⊆ V , suppose that P ∈ MG(G) for an

undirected graph G. Then

PA ∈ MG(GA).

Proof: Since P ∈ MG(G), we have G(Γ(P )) ⊆e G. This implies that G(Γ(P ))A ⊆e GA. So,

by Corollary 3.4, we have the desired result.

It is well known in literature [Pearl and Paz (1987)] that if a probability distribution on XV

is positive, then the three types of Markov property, pairwise Markov (PM), locally Markov

(LM), and globally Markov (GM) properties relative to an undirected graph, are equivalent.

Furthermore, for any probability distribution, it holds that

(GM) =⇒ (LM) =⇒ (PM)

[see Proposition 3.8 in Lauritzen (1996)]. So, we will write M(G) instead of MG(G) and we

will simply say that a distribution P is Markov with respect to G when P ∈ M(G). From the

perspective of Corollary 3.4, we have called and will call GA a Markovian subgraph of G and

G a Markovian supergraph of GA

For A ⊆ V , we define M(G)A and L(GA) as

M(G)A = {PA; P ∈ M(G)}

and

L(GA) = {P ; PA ∈ M(GA)}.

M(G)A is the set of the marginal distributions on XA of a distribution P which is Markov with

respect to G; L(GA) is the set of the distributions of XV whose marginal PA on XA is Markov

with respect to GA.

By definition and Corollary 3.5, we have the following:

L(G) = M(G),

M(G) ⊆ L(GA), (by Corollary 3.5) (11)

P ∈ L(GA) ⇐⇒ PA ∈ M(GA)



Combining decomposable model-structures 9

and

M(G)A ⊆ M(GA).

The last expression holds since, if a distribution Q is in M(G)A, it means that Q = PA for

some distribution P in M(G), and so, by Corollary 3.5, it follows that Q ∈ M(GA).

It follows from (11) that, for A,B ⊆ V ,

M(G) ⊆ L(GA) ∩ L(GB).

We will derive a generalized version of this result below.

Let V be a set of subsets of V . We will define another collection of distributions,

L̃(GA, A ∈ V) = {P ; PA ∈ M(GA), A ∈ V}.

L̃(GA, A ∈ V) is the collection of the distributions each of whose marginals is Markov with

respect to its corresponding Markovian subgraph of G.

Theorem 3.6. For a collection V of subsets of V with an undirected graph G,

M(G) ⊆ L̃(GA, A ∈ V).

Proof: Let P ∈ M(G). Then, by (11), P ∈ L(GA) for A ∈ V. By definition, PA ∈ M(GA).

Since this holds for all A ∈ V, it follows that P ∈ L̃(GA, A ∈ V). This completes the proof.

The set M(G) of the probability distributions each of which is Markov with respect to G is

contained in the set L̃(GA, A ∈ V) of the distributions each of which has its marginals Markov

with respect to their corresponding Markovian subgraphs GA, A ∈ V. This result sheds light

on our efforts in searching for M(G) since it can be found as a subset of L̃(GA, A ∈ V). In

subsequent sections, we will explore how GA, A ∈ V, are used in search of G.

4 Combined model structures

Let G = (V, E) be the graph of a decomposable model and let V1, V2, · · · , Vm be subsets of

V . The m Markovian subgraphs, GV1 ,GV2 , · · · ,GVm , may be regarded as the structures of m

submodels of the decomposable model. In this context, we may refer to a Markovian subgraph

as a marginal model structure or a marginal model. These terms reflect that our goal is to

find the model structure G based on a collection of marginal models. For simplicity, we write

Gi = GVi .
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Definition 4.1. Suppose there are m Markovian subgraphs, G1, · · · ,Gm. Then we say that

graph H of a set of variables V is a combined model structure (CMS) corresponding to

G1, · · · ,Gm, if the following conditions hold:

(i) ∪m
i=1Vi = V.

(ii) HVi = Gi, for i = 1, · · · ,m. That is, Gi are Markovian subgraphs of H.

We will call H a maximal CMS corresponding to G1, · · · ,Gm if adding any edge to H
invalidates condition (ii) for at least one i = 1, · · · ,m. Since H depends on G1, · · · ,Gm, we

denote the collection of the maximal CMSs formally by MXS(G1, · · · ,Gm).

According to this definition, a CMS is a Markovian supergraph of each Gi, i = 1, · · · , m.

There may be many CMSs that are obtained from a collection of Markovian subgraphs as we

saw in (1) and (2) corresponding to Pair-1 and Pair-2 of marginals, respectively.

In the lemma below, CG(A) is the collection of the cliques which include nodes of A in the

graph G. The proof is intuitive. The symbol, 〈·| · |·〉, is explained in Appendix A.

Lemma 4.2. Let G′ = (V ′, E′) be a Markovian subgraph of G and suppose that, for three

disjoint subsets A,B, C of V ′, 〈A|B|C〉G′. Then

(i) 〈A|B|C〉G;

(ii) For W ∈ CG(A) and W ′ ∈ CG(C), 〈W |B|W ′〉G.

The following theorem is similar to Corollary 2.8 in Lauritzen (1996), but it is different

in that an induced subgraph is considered in that corollary while a Markovian subgraph is

considered here.

Theorem 4.3. Every Markovian subgraph of a decomposable graph is decomposable.

Proof: Suppose that a Markovian subgraph GA of a decomposable graph G is not decompos-

able. Then there must exist a chordless cycle, say C, of length ≥ 4 in GA. Denote the nodes on

the cycle by ν1, · · · , νl and assume that they form a cycle in that order where ν1 is a neighbor

of νl.

We need to show that C itself forms a cycle in G or is contained in a chordless cycle of

length > l in G. By Lemma 4.2, there is no edge in G between any pair of non-neighboring
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nodes on the cycle. If C itself forms a cycle in G, our argument is done. Otherwise, we will

show that the nodes ν1, · · · , νl are on a cycle which is larger than C. Without loss of generality,

we may consider the case where there is no edge between ν1 and ν2. If there is no path in

G between the two nodes other than the path which passes through ν3, · · · , νl, then, since C

forms a chordless cycle in GA, there must exist a path between v1 and v2 other than the path

which passes through v3, · · · , vl. Thus the nodes ν1, · · · , νl must lie in G on a chordless cycle

of length > l. This completes the proof.

This theorem and expression (6) imply that, as for a decomposable graph G, the prime

separators are always given in the form of a complete subgraph in G and in its Markovian

subgraphs. This property may help us in searching for a graphical model based on a collection

of the graphs of its submodels.

Lemma 4.2 states that a separator of a Markovian subgraph of G is also a separator of G.

We will next see that every maximal CMS is decomposable provided that all the Markovian

subgraphs, G1, · · · ,Gm, are decomposable.

Theorem 4.4. Let G1, · · · ,Gm be decomposable. Then every MXS(G1, · · · ,Gm) is also decom-

posable.

Proof: Suppose that there is a maximal CMS, say H, which contains an n-cycle (n ≥ 4) and

let A be the set of the nodes on the cycle. Since H is maximal, we can not add any edge to it.

This implies that no more than three nodes of A are included in any of the Vi’s, since any four

or more nodes of A that are contained in a Vi form a cycle in Gi, which is impossible due to

the decomposability of the Gi’s. Hence, the cycle in H may become a clique by edge-additions

on the cycle, contradicting that H is maximal. Therefore, H must be decomposable.

Theorem 4.4 does not hold for a CMS. For example, in Figure 6, graph G is not de-

composable. However, the Markovian subgraphs G1 and G2 are both decomposable. And

χ(G) = {{4}, {7}}, χ(G1) = {{2, 3}, {5, 6}, {8, 9}}, and χ(G2) = {{4}, {7}}. Note that, for

H in the figure, χ(H) = χ(G1) ∪ χ(G2), which holds true in general as is shown in Theorem

4.7 below. The theorem characterizes a maximal CMS and the proposed method of model

combination is rooted in that theorem. Before stating the theorem, we will show that if a set

of nodes is a prime separator in a Markovian subgraph, then it is not intersected in another.

Theorem 4.5. Let G be a decomposable graph and G1 and G2 be Markovian subgraphs of G.

Suppose that a set C ∈ χ(G1) and that C ⊆ V2. Then C is not intersected in G2 by any other
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Figure 3: An example of a non-decomposable graph (G) whose Markovian subgraphs (G1, G2)
are decomposable. Graph H is a maximal CMS of G1 and G2 which is defined in section 3.

subset of V2.

Proof: Suppose that there are two nodes u and v in C that are separated in G2 by a set

S. Then, by Lemma 4.2, we have 〈u|S|v〉G . Since C ∈ χ(G1) and G1 is decomposable, C is an

intersection of some neighboring cliques of G1 by equation (6). So, S can not be a subset of

V1 but a proper subset of S can be. This means that there are at least one pair of nodes, v1

and v2, in G1 such that all the paths between the two nodes are intersected by C in G1, with

v1 appearing in one of the neighboring cliques and v2 in another.

Since v1 and v2 are in neighboring cliques, each node in C is on a path from v1 to v2 in

G1. From 〈u|S|v〉G , it follows that there is an l-cycle (l ≥ 4) that passes through the nodes u,

v, v1, and v2 in G. This contradicts the assumption that G is decomposable. Therefore, there

can not be such a separator S in G2.

This theorem states that, if G is decomposable, a prime separator in a Markovian subgraph

of G is either a prime separator or a complete subgraph in any other Markovian subgraph of

G. If the set of the prime separator is contained in only one clique of a Markovian subgraph,

the set is embedded in the clique. For a subset V ′ of V , if we put G1 = G and G2 = GV ′ in

Theorem 4.5, we have the following corollary:

Corollary 4.6. Let G be a decomposable graph and suppose that a set C ∈ χ(G) and that

C ⊆ V ′ ⊂ V . Then C is not intersected in a Markovian subgraph GV ′ of G by any other subset

of V ′.

Recall that if Gi, i = 1, 2, · · · ,m are Markovian subgraphs of G, then G is a CMS. For a

given set S of Markovian subgraphs, there may be many maximal CMSs, and they are related
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with S through prime separators as in the theorem below.

Theorem 4.7. Let there be Markovian subgraphs Gi, i = 1, 2, · · · , m, of a decomposable

graph G. Then

(i) ∪m
i=1χ(Gi) ⊆ χ(G);

(ii) for any maximal CMS H,

∪m
i=1χ(Gi) = χ(H).

Proof: See Appendix B.

For a given set of Markovian subgraphs, we can readily obtain the set of prime separators

under the decomposability assumption. By (6), we can find χ(G) for any decomposable graph

G simply by taking all the intersections of the cliques of the graph. An apparent feature of a

maximal CMS in contrast to a CMS is stated in Theorem 4.7.

For a set M of Markovian subgraphs of a graph G, there can be more than one maximal

CMS of M. But there is only one such maximal CMS that contains G as its edge-subgraph.

Theorem 4.8. Suppose there are m Markovian subgraphs G1, · · · ,Gm of a decomposable graph

G. Then there exists a unique maximal CMS H∗ of the m Markovian subgraphs such that

G ⊆e H∗.

Proof: By Theorem 4.7 (i), we have

∪m
i=1χ(Gi) ⊆ χ(G).

If ∪m
i=1χ(Gi) = χ(G), then since G is decomposable, G itself is a maximal CMS. Otherwise,

let χ′ = χ(G) − ∪m
i=1χ(Gi) = {A1, · · · , Ag}. Since A1 6∈ ∪m

i=1χ(Gi), we may add edges so that

∪C∈CG(A1)C becomes a clique, and the resulting graph G(1) becomes a CMS of G1, · · · ,Gm with

χ(G(1))− ∪m
i=1χ(Gi) = {A2, · · · , Ag}.

We repeat the same clique-merging process for the remaining Ai’s in χ′. Since each clique-

merging makes the corresponding prime separator disappear into the merged, new clique while

maintaining the resulting graph as a CMS of G1, · · · ,Gm, the clique-merging creates a CMS

of G1, · · · ,Gm as an edge-supergraph of the preceding graph. Therefore, we obtain a maximal

CMS, say H∗, of G1, · · · ,Gm at the end of the sequence of the clique-merging processes for all

the prime separators in χ′. H∗ is the desired maximal CMS as an edge-supergraph of G.
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Since the clique-merging begins with G and, for each prime separator in G, the set of the

cliques which meet at the prime separator only is uniquely defined, the uniqueness of H∗
follows.

The unique existence of maximal CMS for a given model structure provides us with a useful

guideline for searching, based on a set of marginal model structures, the maximal CMS which

contains the actual model structure as an edge-subgraph. Since the maximal CMS is at least

as large as the actual model G, we have only to work with the maximal CMS to find G by

removing edges as a measure of goodness-of-fit suggests.

Let P be a distribution of XV and V be a collection of subsets of V . Result (ii) of Theorem

4.7 is useful in searching for G(Γ(P )) from a collection of graphs G(Γ̄(PA)), A ∈ V, which,

by Theorem 3.3, is the same as the collection S of G(Γ(P ))A, A ∈ V. Note that G(Γ)A are

Markovian subgraphs of G(Γ). Thus, under the decomposability assumption, there is a unique

maximal CMS, H∗, by Theorem 4.8, based on S which contains G(Γ(P )) as an edge-subgraph.

SinceH∗A = G(Γ(P ))A, if we put G = G(Γ(P )) in Theorem 3.6, we end up with the summarizing

expression

M(G(Γ(P ))) ⊆ M(H∗) ⊆ L̃ (G(Γ(P ))A, A ∈ V) , (12)

where the first inequality follows since G(Γ(P )) ⊆e H∗. Since P ∈ M(G(Γ(P ))), expression

(12) implies that P is also Markov relative to the maximal CMS, H∗. In reality, G(Γ(P ))A’s

are determined based on data. Once we obtain H∗, the model for XV can be determined by

removing edges from H∗ as the data suggest.

Expression (12) holds if the separateness of nodes in G(Γ)A, A ∈ V, is preserved in H∗.
Since H∗ is a CMS of G(Γ)A, A ∈ V, the separateness in H∗ must also be preserved in G(Γ)A,

A ∈ V. We will call this condition of preservation of separateness between a set of Markovian

subgraphs and its corresponding maximal CMS the separateness condition. This condition is

of practical use in model combination as will be illustrated in next section.

5 Illustration of model combination with simple models

For an illustration of model combination, we will consider a couple of examples where relatively

simple models are considered. We will make use of result (ii) of Theorem 4.7 for the model

combination by forming a graph of the prime separators based on a given set of Markovian

subgraphs.
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When a graphical model is decomposable, the prime separators of the model structure

each form a complete subgraph, and they are related to each other in the context of graph

separateness. If the model structure is given in the form of an interaction graph, the graph

separateness can be interpreted in terms of conditional independence. Since the prime separa-

tors are themselves separators, they can form an undirected graph where each prime separator

corresponds to a node in the same way as a clique forms a node in a join tree of cliques [Pearl

(1988)]. However, the graph of prime separators cannot be a join tree because, if l (l > 2)

prime separators share a clique, then the prime separators form a clique in the graph of the

prime separators. For simplicity, we will call the “graph of prime separators” GOPS.

We will call a node in a prime separator a connector-node and a node not included in

a prime separator a non-separator node. As for the model G and its Markovian subgraphs,

G1,G2,G3, in Figure 4, we have that χ(G1) = {2}, χ(G2) = {{2}, {4}}, and χ(G3) = {{2}, {7}}.
The GOPS of the prime separators is given in panel (a) of Figure 5, which is obtained from

G1,G2, and G3 in Figure 4 under the separateness condition since the GOPS is the Markovian

subgraph of a maximal CMS of the three Markovian subgraphs in Figure 4. In G2, nodes 2

and 5 are connected by a path, and 〈5|2|7〉G3 holds. Thus, we have the GOPS as in panel

(a) of Figure 5. According to result (12), we have only to observe the separateness condition

in constructing a maximal CMS based on a given set of Markovian sugbgraphs of a model.

Maximal CMSs are constructed by adding the non-separator nodes, 1, 3, 5, 6, 8, and 9, to

the GOPS in Figure 5. Denote one of the maximal CMSs by H and the neighborhood of

G1

1
2

3
4

5

6

7

9

8

G

1
2

3

8

9 1

2

4 6

5 2

7

8

G G32

5

Figure 4: A tree-shape model structure G and its Markovian subgraphs

2

4

7
2

4

7

(b) 32

1

5

8

9 9
1 2

(a) 6

31

33

Figure 5: The GOPS (panel (a)) from G1,G2,G3 in Figure 4 and the corresponding maximal
CMSs (panel (b)). The two nodes, 91 and 92, mean that the two locations are possible for X9,
and similarly for the three nodes of X3.
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Table 1: Neighborship between non-separator node and prime separator node for the Markovian
subgraphs in Figure 4.

Non-separator node (v) prime separators as neighbors of v Relevant Markovian subgraphs
1 {2} G1, G2

3 {2}, {4} G1, G2, G3

5 {4} G2, G3

6 {4} G2

8 {7} G1, G2, G3

9 {2}, {7} G1, G3

node v in H by neH(v). Then, χ(H) = {{2}, {4}, {7}}. From G1 and G2, we can see that

neH(1) ∩ χ(H) = {{2}}. As for node 8, G1 and G3 imply that neH(8) ∩ χ(H) = {{7}}. The

neighborship between prime separator and non-separator node is summarized in Table 1. Note,

in this table, that nodes 3 and 9 can have multiple prime separators as neighbors. For instance,

as for node 3, we can see from the three Markovian subgraphs that node 3 may have some of

nodes 2, 4, 5, and 6 as its neighbors, since nodes 3 is separated from nodes 1 and 8 by node 2

and so are nodes 4, 5, and 6. Table 1 is reflected in panel (b) of Figure 5. Notice that graph

G in Figure 4 is an edge-subgraph of the maximal CMS in panel (b) which consists of nodes

1, 2, 31, 4, · · · , 92.

We combined the Markovian subgraphs in Figure 4, first by constructing a GOPS and then

by adding non-separator nodes to the GOPS. By definition, prime separators are separated by

prime separators only. Thus, if a GOPS is constructed from a set of Markovian subgraphs, the

model combination is done simply by adding the non-separator nodes to the GOPS. However,

the GOPS may not be constructed without considering the separateness of non-separator nodes,

as is shown in constructing the GOPS in Figure 5. In another example with the Markovian

subgraphs in Figure 6, we will see how non-separator nodes are used for the construction of a

GOPS.

As for the three Markovian subgraphs, G1,G2,G3 in Figure 6, we have that χ(G1) = {{2, 3}},
χ(G2) = {{3, 4}}, and χ(G3) = {{2, 3}, {3, 6}}. Thus, if we denote by H′ a maximal CMS of the

three Markovian subgraphs, then χ(H′) = {{2, 3}, {3, 4}, {3, 6}}. There seems no separateness

among the three prime separators if we do not consider the separateness of the non-separators.

We may thus begin with a complete graph of the prime separators and check if the complete

graph violates any separateness that lies in the three Markovian subgraphs. From the three
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Figure 6: A decomposable model (G) and its Markovian subgraphs

2, 3 3, 4

3, 6

1 5

7

2, 3 3, 4

3, 6

(b) (a) 

Figure 7: The GOPS (panel (a)) from G1,G2,G3 in Figure 6 and a node-added GOPS (panel
(b)).

Table 2: Neighborship between non-separator node and prime separator node for the Markovian
subgraphs in Figure 6.

Non-separator node (v) prime separators as neighbors of v Relevant Markovian subgraphs
1 {2, 3} G1, G2, G3

5 {3, 4} G1, G2, G3

7 {3, 6} G1, G3

Markovian subgraphs in Figure 6, we can see that

〈1|{2, 3}|{5, 6, 7}〉, 〈5|{3, 4}|{1, 6}〉, 〈5|{2, 3}|{1, 7}〉, and 〈7|{3, 6}|{1, 2}〉. (13)

From this separateness, we can see that neH′(1) = {2, 3} and neH′(7) = {3, 6}. As for node 5,

the two graph-separations in the middle of (13) suggest a clique of nodes 2, 3, 4, and 5. But

since {3, 4} is a prime separator, 1∼6 in G2, and 1 6∼6 in G3, the GOPS in panel (a) of Figure

7 follows. The three non-separator nodes, 1, 5, and 7, are added to the GOPS in panel (b)

of Figure 7. The neighborship of the non-separator nodes with the three prime separators in

Figure 6 is summarized in Table 2. Note that the graph in panel (b) of Figure 7 is the same

as the G in Figure 6.

We have seen through the two examples that a GOPS is constructed from a given set of

Markovian subgraphs under the separateness condition. Since a non-separator node has at

least one prime separator as neighbors in a maximal CMS, adding non-separator nodes to a

GOPS is relatively easy.
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6 Illustration of model combination with larger models

This section is a continuation of the preceding section in the sense that we consider combining

larger models than those considered in the preceding section. The Markovian subgraphs to

consider are given in Figure 8, where G1 is of 17 nodes and G2 is of 18 nodes. As is described

below, combining larger Markovian subgraphs does not necessarily mean a higher complexity

of the combining process. When Markovian subgraphs share some prime separators or nodes,

the shared nodes can be very informative for locating some of the variables involved in the

Markovian subgraphs in the construction process of a maximal CMS.

As is displayed in Figure 8(a), the prime separators, {12}, {6, 7}, and {7, 13}, form a clique,

and so do the prime separators, {2, 4}, {4, 7}, and {6, 7}. The former three prime separators

form a clique in Figure 8, and so do the latter three prime separators. By Lemma 4.2, we know

that the separateness by prime separators in a subgraph, G′ say, is preserved in a graph for

which G′ is a Markovian subgraph. We may thus combine the GOPSs of the submodels first

and then expand the combined GOPS by adding the non-separator nodes onto the combined

GOPS.

Let us consider combining the two model structures G1 and G2 which are displayed in panels

(a) and (b) of Figure 8, respectively. The GOPS of G2 is given in Figure 9(b). Note that there

are three prime separators common in the two GOPSs. They are {2, 4}, {4, 7}, and {4, 8}.
Considering this node-sharing, we can combine the two GOPSs into the GOPS as in panel (iii)

1 2

3 4

5

6

7

8
9

10

11

12

13

15

16

17

18

30

7

9

21 8

29

25

4

2

27

26

20

19

23

22

14

28

24

(a) G1 (b) G2

Figure 8: Markovian subgraphs G1 and G2. Prime separators are distinguished by thick lines
and a big bullet.
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12

7,13

13,14,15

6,7

2,4 4,7

3,4 4,8

2,25

7,25 2,4

4,7

9,21

4,8 8,22

(a) GOPS of G1 (b) GOPS of G2

Figure 9: The GOPSs of G1 and G2. Thick circled prime separators are shared by both GOPSs.

of Figure 10, which is described below.

We begin with the GOPS of G1 and the combination proceeds by adding the prime sepa-

rators in χ(G2) as follows:

As for prime separators {8, 22} and {9, 21}: From the Markov property among the three

shared prime separators, {2, 4}, {4, 7}, {4, 8}, and the prime separators, {8, 22}, {9, 12},
as appearing in the GOPS of G2, we can add the prime separators, {8, 22} and {9, 21},
as in panel (ii) of Figure 10.

As for prime separators {2, 25} and {7, 25}: According to the GOPS of G2, {2, 25}⊥⊥{4, 8}|{4, 7},
so {2, 25} may form a clique either with {2, 4}, {4, 7}, {6, 7} or with {2, 4}, {3, 4}. But

{2, 25} and {7, 25} share the node 25 and {7, 25} can not form a clique with {2, 4}, {3, 4}
since the set of prime separators {2, 4}, {4, 7}, {6, 7} share the node 7 with the prime sepa-

rator {7, 25}. Thus, {2, 25} must be part of the clique which includes {2, 4}, {4, 7}, {6, 7},
and so must be {7, 25} since the two prime separator share the node 25 and there is no

other prime separator in both of the GOPSs that contains the node. The result is de-

picted in panel (iii) of Figure 10.

Once a combined GOPS is obtained, adding non-separator nodes is relatively straightfor-

ward. For instance, in G1 in Figure 8, nodes 10, 11 are neighbors of the prime separator {4, 8}
only and thus independent of all the other nodes conditional on the prime separator. This is

represented in graph by connecting the nodes directly to the prime separator {4, 8} as in panel

(i) of Figure 11. The other non-separator nodes are added in the same manner.
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13,14,15

4,7

4,8
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7,13
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6,7
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13,14,15
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4,8

2,4

7,13
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6,7

8,22

9,21

3,4

(ii)

13,14,15

4,7

4,8

2,4

7,13
12

6,7

8,22

9,21

3,4

7,25

2,25

(iii)

Figure 10: A graphic display of the combining process of the two GOPSs in Figure 9. The
boxes are the prime separators of G2.

Panel (i) of Figure 11 is a graphic display of the addition of the non-separator nodes,

X1, X5, X10, X11, X16, X17,

of G1, onto the GOPS of χ(G1) ∪ χ(G2); panel (ii) results from a further addition of the non-

separator nodes,

X18, X19, X20, X23, X24, X26, X27, X28, X29, X30,

of G2.

Transforming the graph in panel (ii) of Figure 11 into an undirected graph is done by

unpacking the prime separators in such a way that all the nodes are located properly under

the Markov (or conditional independence) condition that is imposed by the graph in panel (ii).

For instance, the nodes 13, 14, 15, and 16 form a clique and so do the nodes 6, 7, 12, and 13.

The resulting graph is in Figure 13.

Note that nodes 19 and 20 are not included in the graph in Figure 13. There are four

different ways of locating the nodes as displayed in Figure 12. Let the clique {1, 2, 3, 4} be

denoted by C1 and the clique {3, 4, 5} by C2. Then the four ways of node-addition are (i)

making C1 ∪ {19, 20} a clique, (ii) making C2 ∪ {19, 20} a clique, (iii) making C1 ∪ {19} and

C2 ∪ {20} two new cliques, and (iv) making C1 ∪ {20} and C2 ∪ {19} two new cliques. The

node-addition is determined by the conditional independence regarding the nodes 19 and 20

as indicated in G2 of Figure 8:

{19, 20}⊥⊥(V2 \ {2, 4, 19, 20}) | {2, 4}. (14)
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(i) Nodes (bullets) in V1 are added (ii) Nodes (bullets in circles) in V2 are added
to the graph in panel (i).

Figure 11: Addition of the non-separator nodes onto the GOPS of χ(G1) ∪ χ(G2). The circles
represent the prime separators of G1, the boxes the prime separators of G2 only, and the bullets
represent nodes. For the addition of nodes 19 and 20, see Figure 12.
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Figure 12: Four situations of node-addition of X19 and X20 onto the GOPS of χ(G1) ∪ χ(G2)
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Figure 13: The maximal CMS of G1 and G2 with nodes 19 and 20 not included. The boxed
nodes are from G1 and the rest are from G2; some nodes are shared by both marginal models.
Node 12 is an prime separator.
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Figure 14: The parts of graph corresponding to the four node-additions of nodes 19 and 20.
Panels a, b, c, and d correspond respectively to situations (i), (ii), (iii), and (iv) of node-
addition as described in the paragraph which includes expression (14). Replacing each panel
with the cliques of {1, 2, 3, 4, 5} in Figure 13 yields a maximal CMS for G1 and G2.
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Independence graphs corresponding to the four situations (i.e., the four panels of Figure 12)

are given in Figure 14. One of the four structures can be glued onto the bottom-left corner of

Figure 13 as any further information concerning nodes 19 and 20 may suggest.

7 Further discussion and conclusion

In Theorem 4.7, we are given a set of Markovian subgraphs of G. But in reality, we are often

given a set of marginal model structures that are assumed to be interaction graphs of the

marginal models. The interaction graphs may not be Markovian subgraphs of the unknown G.

In this case, derived maximal CMSs may not contain G as an edge-subgraph. Simple examples

of this situation are displayed in Figure 15. In the first row of the figure are two interaction

graphs (G1) for X1, X2, X3 and a subgraph G1
{1,3} which is not Markovian with respect to

G1, and similarly in the second row for X1, · · · , X4. Under the hierarchy assumption for

contingency tables, none of the graphical log-linear models (1a), (2a), and (2a’) is compatible

with the graphical submodels at the right ends of the corresponding rows by Theorem 2.3

of Asmussen and Edwards (1983). The model G1
{1,3} is possible with the graphical log-linear

model (1b) in the figure when

E[(P (X{1,3} = x{1,3}|X2)] = P (X1 = x1)P (X3 = x3) for all x{1,3} ∈ X{1,3}, (15)

where Xi is the support of Xi and Xa =
Q

i∈aXi. The graphical log-linear model G2
{1,3,4} is also

possible from the graphical model (2b) in the figure. Instances of this phenomenon follow.

Example 7.1. We will present contingency tables for which the pair of models, (1b) and G1
{1,3}

in Figure 15, are possible and are the pair of models, (2b) and G2
{1,3,4}.

1

3

41

2

3

4

1

2

3 1

2

3 1 3

1

2

3

4 1

2

3

4

⇐⇒

⇐⇒

(1a) (1b)

Interaction graphs (G1) of X1, X2, X3
Non-Markovian G1

{1,3}

(2a) (2a’) (2b)

Interaction graphs (G2) of X1, · · · , X4

Non-Markovian G2
{1,3,4}

Figure 15: Some simple examples where subgraphs are not Markovian.
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(a) Concerning models (1b) and G1
{1,3}:

x2 x1 x3 P (X = x) x2 x1 x3 P (X = x)
0 0 0 1/24 1 0 0 2/24

1 3/24 1 6/24
1 0 2/24 1 0 1/24

1 6/24 1 3/24

This distribution satisfies that 1⊥⊥3|2 and 1⊥⊥3.

(b) Concerning models (2b) and G2
{1,3,4}:

x2 x3 x1 x4 P (X = x) x2 x3 x1 x4 P (X = x)
0 0 0 0 1/42 1 0 0 0 3/42

1 2/42 1 1/42
1 0 2/42 1 0 6/42

1 4/42 1 2/42
1 0 0 2/42 1 0 0 6/42

1 4/42 1 2/42
1 0 1/42 1 0 3/42

1 2/42 1 1/42

This distribution satisfies the conditional independencies displayed in graph (2b) in Fig-

ure 15. The marginal for X{1,3,4} satisfies the conditional independence 1⊥⊥4|3.

Although we have seen examples where subgraphs of graphical log-linear models are not

Markovian, Markovian subgraphs are usual situations under the hierarchy assumption for

models. As indicated in (15), in order for a subgraph to be non-Markovian, a certain set

of equations must be satisfied between the set of parameters of a joint model and that of

its interested non-Markovian subgraph. This implies that non-Markovian subgraphs are a

rare situation under the hierarchy assumption as long as interaction graphs are concerned.

Furthermore, when the distribution is Normal, we can see by its density function that the

subgraphs are Markovian. Based on this point of view on Markovian subgraphs, we have

assumed in this paper that all the interaction graphs of subsets Vi of random variables are

Markovian. This “Markovian” assumption on subgraphs of interaction graphs is similar to

the faithfulness assumption on distributions with respect to a directed acyclic graph (DAG)
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or a causal graph, which is described in Spirtes et al. (2000). We say that a distribution P is

faithful to a DAG G if all independence and conditional independence relationships that are

embedded in P are displayed in G. The probabilistic independencies that are representable by

a DAG are described in Pearl (1988, section 3.3) and Lauritzen (1966, section 3.2). Robins et

al. (2003) discuss the relationship between a joint distribution and its marginal distribution

under the faithfulness assumption, where data are available for the marginal distribution only.

Finally, Theorem 4.7 is a main result of this paper. The model combination is recommended

to be done in two steps, the first being that we construct a GOPS and the second that we add

non-separator nodes to the GOPS. Several GOPSs are possible from a given set of Markovian

subgraphs, and each of them is obtained in such a way that the separateness lying in a given

set of Markovian subgraphs is preserved in the GOPS. The number of the possible GOPSs

from a set, Q say, of Markovian subgraphs of a model becomes smaller as the set Q has more

information about the model.

In practice, the Markovian subgraphs are often given in the form of interaction graphs.

Suppose that we are given a data set for a set, V say, of random variables, and that, for every

subset A of V with |A| ≤ r for some 0 < r < |V |, we can obtain an interaction graph which is

appropriate to A. Then we can collect information about the model structure of V as much

as possible under the restriction that |A| ≤ r, where the information is presented in the form

of interaction graphs.

Once a maximal CMS is obtained, we may use it as an initial model structure in search of

an appropriate model for data. Bergsma and Rudas (2002) proposed theorems by which we

can use the parameter estimates of marginal models in developing a model for the whole data.

If the data are for mixed continuous and discrete variables, the methods that are instrumental

for modelling the whole data using the maximal CMS as an initial model structure include the

methods of likelihood factorization by Cox and Wermuth (1999) and the application of the

notion of model collapsibility as proposed by Didelez and Edwards (2004).

Appendix A: Graphical terminology

Let G = (V, E) be an undirected graph. If (u, v) ∈ E, we say that u is a neighbor node of v or

vice versa and write it as u ∼ v. A path of length n is a sequence of nodes u = v0, · · · , vn = v

such that (vi, vi+1) ∈ E, i = 0, 1, · · · , n− 1 and u 6= v. If u = v, the path is called an n-cycle.
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If u 6= v and u and v are connected by a path, we write u ­ v. We define the connectivity

component of u as

[u] = {v ∈ V ; v ­ u} ∪ {u}.

So, we have

v ∈ [u] ⇐⇒ u ­ v ⇐⇒ u ∈ [v].

For u ∈ V , we define ne(v) = {u ∈ V ; v ∼ u in G} and, for A ⊆ V , bd(A) = ∪v∈Ane(v)\A.

We say that a path, v1, · · · , vn, v1 6= vn, is intersected by A if A∩{v1, · · · , vn} 6= ∅ and neither

of the end nodes of the path is in A. We say that nodes u and v are separated by A if all the

paths from u and v are intersected by A. In the same context, we say that, for three disjoint

sets A,B, and C, A is separated from B by C if all the paths from A to B are intersected by

C and write 〈A|C|B〉G . The notation 〈·| · |·〉G follows Pearl (1988). A non-empty set B is said

to be intersected by A if B is partitioned into three sets B1, B2, and B ∩ A and B1 and B2

are separated by A in G.

The complement of a set A is denoted by Ac. The cardinality of a set A will be denoted

by |A|. For two collections A, B of sets, if, for every a ∈ A, there exists a set b in B such that

a ⊆ b, we will write A ¹ B.

Although decomposable graphs are well known in literature, we define them here for com-

pleteness.

Definition A.1. A triple (A,B, C) of disjoint, nonempty subsets of V is said to form a

decomposition of G if V = A ∪B ∪ C and the two conditions below both hold:

(i) A and B are separated by C;

(ii) Gind
C is complete.

By recursively applying the notion of graph decomposition, we can define a decomposable

graph.

Definition A.2. G is said to be decomposable if it is complete, or if there exists a decompo-

sition (A,B, C) into decomposable subgraphs Gind
A∪C and Gind

B∪C .

Appendix B: Proof of Theorem 4.7

We will first prove result (i). For a subset of nodes Vj , the following holds:
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(i’) If Vj does not contain a subset which is a prime separator of G, then χ(Gj) = ∅.
(ii’) Otherwise, i.e., if there are prime separators, C1, · · · , Cr, of G as subsets of Vj ,

(ii’-a) if there are no nodes in Vj that are separated by any of C1, · · · , Cr in G, then

χ(Gj) = ∅.
(ii’-b) if there is at least one of the prime separators, say Cs, such that there are a pair

of nodes, say u and v, in Vj such that 〈u|Cs|v〉G , then χ(Gj) 6= ∅.

We note that, since G is decomposable, the condition that Vj contains a separator of G
implies that Vj contains a prime separator of G. As for (i’), every pair of nodes, say u and v,

in Vj have at least one path between them that bypasses Vj \ {u, v} in the graph G since Vj

does not contain any prime separator of G. Thus, (i’) follows.

On the other hand, suppose that there are prime separators, C1, · · · , Cr, of G as a subset

of Vj . The result (ii’-a) is obvious, since for each of the prime separators, C1, · · · , Cr, the rest

of the nodes in Vj are on one side of the prime separator in G.

As for (ii’-b), let there be two nodes, u and v, in Vj such that 〈u|Cs|v〉G . Since G is

decomposable, Cs is an intersection of neighboring cliques in G, and the nodes u and v must

appear in some (not necessarily neighboring) cliques that are separated by Cs. Thus, the two

nodes are separated by Cs in Gj with Cs as a prime separator in Gj . Any proper subset of Cs

can not separate u from v in G and in any of its Markovian subgraphs.

From the results (i’) and (ii’), it follows that

(iii’) if C ∈ χ(G) and C ⊆ Vj , then either C ∈ χ(Gj) or C is contained in only one clique of

Gj .

(iv’) the fact that χ(Gj) = ∅ does not necessarily imply that χ(G) = ∅.

To check if χ(Gj) 6⊆ χ(G) for any j ∈ {1, 2, · · · ,m}, suppose that C ∈ χ(Gj) and C 6∈ χ(G).

This implies, by Lemma 4.2, that C is a separator but not a prime separator in G. Thus, there

is a proper subset C ′ of C in χ(G). By (iii’), C ′ ∈ χ(Gj) or is contained in only one clique of

Gj . However, neither is possible, since C ′ ⊂ C ∈ χ(Gj) and C is an intersection of cliques of

Gj . Therefore,

χ(Gj) ⊆ χ(G) for all j.

This proves result (i) of the theorem.
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We will now prove result (ii). If ∪m
i=1χ(Gi) = ∅, then, since all the Gi’s are decomposable

by Theorem 4.3, they are complete graphs themselves. So, by definition, the maximal CMS

must be a complete graph of V . Thus, the equality of the theorem holds.

Next, suppose that ∪m
i=1χ(Gi) 6= ∅. Then there must exist a marginal model structure, say

Gj , such that χ(Gj) 6= ∅. Let A ∈ χ(Gj). Then, by Theorem 4.5, A is either a prime separator

or embedded in a clique of Gi if A ⊆ Vi for i 6= j. Since a prime separator is an intersection

of cliques by equation (6), the prime separator itself is a complete subgraph. Thus, by the

definition of maximal CMS and by Lemma 4.2, A ∈ χ(H). This implies that ∪m
i=1χ(Gi) ⊆ χ(H).

To show that the set inclusion in the last expression comes down to equality, we will

suppose that there is a set B in χ(H) \ (∪m
i=1χ(Gi)) and show that this leads to a contradiction

to the condition that H is a maximal CMS. H is decomposable by Theorem 4.4. So, B is the

intersection of the cliques in CH(B) which is defined right before Lemma 4.2. By supposition,

B 6∈ χ(Gi) for all i = 1, · · · ,m. This means either (a) that B ⊆ Vj for some j and B ⊆ C for

only one clique C of Gj by Corollary 4.6 or (b) that B 6⊆ Vj for all j = 1, · · · ,m. In both of

the situations, B need not be a prime separator in H, since the Gi are decomposable and so

B ∩ Vi are complete in Gi in both of the situations. In other words, edges may be added to H
so that CH(B) becomes a clique, which contradicts that H is a maximal CMS. This completes

the proof.
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