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THE CURVELET TRANSFORM FOR IMAGE
FUSION

Myungjin Choi, Rae Young Kim, Myeong-Ryong NAM, and Hong Oh Kim

Abstract— The fusion of high-spectral/low-spatial resolution
multispectral and low-spectral/high-spatial resolution panchro-
matic satellite images is a very useful technique in various
applications of remote sensing. Recently, some studies showed
that a wavelet-based image fusion method provides high quality
spectral content in fused images. However, most wavelet-based
methods yield fused results with spatial resolution that is less
than that obtained via the Brovey, IHS, and PCA fusion methods.
In this paper, we introduce a new method based on a curvelet
transform, which represents edges better than wavelets. Since
edges play a fundamental role in image representation, one
effective means to enhance spatial resolution is to enhance the
edges. The curvelet-based image fusion method provides richer
information in the spatial and spectral domains simultaneously.
We performed Landsat ETM+ image fusion and found that the
proposed method provides optimum fusion results.

Index Terms— Image Fusion, Multiresolution analysis, Landsat
ETM+ image, Wavelet transform, Curvelet transform.

I. I NTRODUCTION

I N MANY remote sensing and mapping applications, the
fusion of multispectral and panchromatic images is a very

important issue. In this regard, in the field of satellite image
classification, the quality of the image classifier is affected
by the fused image’s quality. To date, many image fusion
techniques and software tools have been developed. The well-
known methods include the Brovey, the IHS (Intensity, Hue,
Saturation) colour model, the PCA (Principal Components
Analysis) method, and the wavelet based method [1]. Assess-
ment of the quality of fused images is another important issue.
Wald et al. proposed an approach utilizing criteria that can be
employed in the evaluation of the spectral quality of fused
satellite images [2].

If the objective of image fusion is to construct synthetic im-
ages that are closer to reality, then the Brovey, IHS, and PCA
fusion methods are satisfactory [1]. However, one limitation
of these methods is some distortion of spectral characteristics
in the original multispectral images. Recently, developments
in wavelet analysis have provided a potential solution to this

The first, second and fourth authors were supported by KRF-2002-070-C0
0004.

M.-J. Choi is with SaTReC, KAIST, 373-1, Guseong-dong, Yuseong-gu,
Daej eon, 305-701, Republic of KOREA (email:prime@satrec.kaist.ac.kr).

R.Y.Kim is with Division of Applied Mathematics, KAIST, 373-1,
Guseong -dong, Yuseong-gu, Daejeon, 305-701, Republic of KOREA
(email:rykim@amath.kaist.ac.kr).

M.-R. NAM is with SaTReC, KAIST, 373-1, Guseong-dong, Yuseong-gu,
Daeje on, 305-701, Republic of KOREA (email:nam@satrec.kaist.ac.kr).

H.O.Kim is with Division of Applied Mathematics, KAIST, 373-1,
Guseong- dong, Yuseong-gu, Daejeon, 305-701, Republic of KOREA
(email:hkim@amath.kaist.ac.kr).

problem. Nunez et al. developed an approach to fuse a high-
resolution panchromatic image with a low-resolution multi-
spectral image based on wavelet decomposition [3]. Ranchin
and Wald designed the ARSIS concept for fusing high spatial
and spectral resolution images based on a multiresolution
analysis of a two-band wavelet transformation.

The wavelet-based image fusion method provides high spec-
tral quality in fused satellite images. However, fused images
by wavelets have much less spatial information than those by
the Brovey, IHS, and PCA methods. In many remote sensing
applications, the spatial information of a fused image is as an
important factor as the spectral information. In other words,
it is necessary to develop an advanced image fusion method
so that fused images have the same spectral resolution as
multispectral images and the same spatial resolution as a
panchromatic image with minimal artifacts.

Recently, other multi-scale systems have been developed,
including ridgelets and curvelets [4]–[7]. These approaches
are very different from wavelet-like systems. Curvelets and
ridgelets take the form of basis elements, which exhibit
very high directional sensitivity and are highly anisotropic.
Therefore, the curvelet transform represents edges better than
wavelets, and is well-suited for multiscale edge enhancement
[7].

In this paper, we introduce a new image fusion method
based on a curvelet transform. The fused image using the
curvelet-based image fusion method yields almost the same
detail as the original panchromatic image, because curvelets
represent edges better than wavelets. It also gives the same
colour as the original multispectral images, because we use
the wavelet-based image fusion method in our algorithm. As
such, this new method is an optimum method for image fusion.
In this study we develop a new approach for fusing Lansat
ETM+ panchromatic and multispectral images based on the
curvelet transform.

The remainder of this paper is organized as follows. The
next section describes the theoretical basis of the ridgelets and
curvelets . A new image fusion approach for Lansat ETM+
panchromatic and multispectral images based on the curvelet
transform is subsequently presented.

This is followed by a discussion of the image fusing exper-
iments. Next, the experimental results are analysed. Finally,
the proposed method is compared with previous methods
developed for image fusion, including the wavelet method and
the IHS method.
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II. R IDGELET AND CURVELET TRANSFORMS

In this section, we review the theory of ridgelet and curvelet
transforms, presented in [5]–[10], which are used in the
subsequent sections.

A. Continuous ridgelet transform

Let ψ be in L2(R) with sufficient decay and satisfying the
admissibility condition,

Kψ :=
∫ |ψ̂(ξ)|2

|ξ|2 dξ < ∞,

In this paper, we adopt Meyer waveletψ, which has high
smoothness and a compact support in the frequency domain.
We refer to [11], [12] for the definition and the basic properties
of Meyer wavelet. We will suppose thatψ is normalized so
that Kψ = 1.

For eacha > 0, b ∈ R, and θ ∈ [0, 2π], ridgelet basis
functions are defined by

ψa,b,θ(x) := a−1/2ψ((x1 cos θ + x2 sin θ − b)/a).

The Radon transform forf ∈ L2(R2) is given by

Rf(θ, t) =
∫

f(x1, x2)δ(x1 cos θ + x2 sin θ − t)dx1dx2,

where δ is the Dirac distribution. Forf ∈ L1(R2), the
continuous ridgelet coefficient is given by

Rf (a, b, θ) =
∫

f(x)ψa,b,θ(x)dx. (1)

Then any functionf ∈ L1(R2) ∩ L2(R2) is represented as a
continuous superposition of ridgelet functions

f(x) =
∫ 2π

0

∫ ∞

−∞

∫ ∞

0

Rf (a, b, θ)ψa,b,θ(x)
da

a3
db

dθ

4π

Notice that (1) is also given by the wavelet transform of the
Radon transformf :

Rf (a, b, θ) =
∫

Rf(θ, t)a−1/2ψ((t− b)/a)dt.

Deans found that the two-dimensional Fourier transform off
is equal to the one-dimensional Fourier transform of the Radon
transform off [13]:

f̂(ξ cos θ, ξ sin θ) =
∫

Rf(θ, t)e−iξtdt.

Hence the Radon transform off is obtained by the one-
dimensional inverse Fourier transform off̂(ξ cos θ, ξ sin θ) as
a function ofξ.

B. Curvelet transform

Let Q denote a dyadic square[k1/2s, (k1 + 1)/2s) ×
[k2/2s, (k2 +1)/2s) and letQs be the collection of all dyadic
squares of scales. We also letwQ be a window nearQ,
obtained by dilation and translation of a singlew, satisfying

∑

Q∈Qs

w2
Q = 1.

We define multiscale ridgelets{wQTQψa,b,θ : s ≥ s0, Q ∈
Qs, a > 0, b ∈ R, θ ∈ [0, 2π)}, where TQf(x1, x2) =
2sf(2sx1 − k1, 2sx2 − k2). Then we have the reconstruction
formula

f =
∑

Q∈Qs

fw2
Q

=
∑

Q∈Qs∫ 2π

0

∫ ∞

−∞

∫ ∞

0

〈f, wQTQψa,b,θ〉wQTQψa,b,θ
da

a3
db

dθ

4π

The curvelet transform is given by filtering and applying mul-
tiscale ridgelet transform on each bandpass filters as follows:

1) Subband Decomposition.The image is filtered into sub-
bands:

f → (P0f, ∆1f, ∆2f, · · · ),
where a filterP0 deals with frequencies|ξ| ≤ 1 and the
bandpass filter∆s is concentrated near the frequencies
[2s, 22s+2], for example,

∆s = Ψ2s ∗ f, Ψ̂2s(ξ) = Ψ̂(2−2sξ);

2) Smooth Partitioning.Each subband is smoothly win-
dowed into “squares” of an appropriate scale

∆sf → (wQ∆sf)Q∈Qs ;

3) Renormalization.Each resulting square is renormalized
to unit scale

gQ = (TQ)−1(wQ∆sf), Q ∈ Qs;

4) Ridgelet Analysis.Each square is analysed via the dis-
crete ridgelet transform.

For improved visual and numerical results of the digital
curvelet transform, Starck et al. presented the following dis-
crete curvelet transform algorithm [6], [14]:

1) apply theà trous algorithm withJ scales:

I(x, y) = CJ(x, y) +
J∑

j=1

wj(x, y),

wherecJ is a coarse or smooth version of original image
I andwj represents “the details of I” at scale2−j ;

2) setB1 = Bmin;
3) for j = 1, · · · , J do

a) partition the subbandwj with a block sizeBj and
apply the digital ridgelet transform to each block;

b) elseBj+1 = Bj .

III. THE IMAGE FUSION METHOD BASED ON THE
CURVELET TRANSFORM

The following is the specific operational procedure for the
proposed curvelet-based image fusion approach. While the
operational procedure may be generally applied , Landsat
ETM+ images are utilized as an example in order to illustrate
the method.

1) The original Landsat ETM+ panchromatic and multispec-
tral images are geometrically registered to each other.



3

Fig. 1. Curvelet-based image fusion method.

2) Three new Landsat ETM+ panchromatic imagesI1, I2

andI3 are produced. The histograms of these images are
specified according to the histograms of the multispectral
imagesR, G andB, respectively.

3) Using the well-known wavelet-based image fusion
method, we obtain fused imagesI1 + R, I2 + G and
I3 + B, respectively.

4) I1, I2 andI3, which are taken from 2), are decomposed
into J + 1 subbands, respectively, by applying “à trous”
subband filtering algorithm. Each decomposed image
includesCJ , which is a coarse or smooth version of the
original image, andwj , which represents “the details of
I” at scale2−j .

5) EachCJ is replaced by a fused image obtained from 3).
For example, (CJ for I1) is replaced by (I1 + R).

6) The ridgelet transform is then applied to each block in
the decomposedI1, I2 andI3, respectively.

7) Curvelet coefficients (or ridgelet coefficients) are mod-
ified using hard-thresholding rule in order to enhance
edges in the fused image.

8) Inverse curvelet transforms (ICT) are carried out forI1, I2

andI3, respectively. Three new images (F1, F2 andF3)
are then obtained, which reflect the spectral information
of the original multispectral imagesR, G andB, and also

the spatial information of the panchromatic image.
9) F1, F2 and F3 are combined into a single fused image

F .
In this approach, we can obtain an optimum fused image that
has richer information in the spatial and spectral domains
simultaneously. Therefore, we can easily find small objects
in the fused image and separate them. As such, the curvelets-
based image fusion method is very efficient for image fusion.

IV. EXPERIMENTAL STUDY AND ANALYSIS

A. Visual analysis

Since the wavelet transform preserves the spectral infor-
mation of the original multispectral images, it has the high
spectral resolution in contrast with the IHS-based fusion result,
which has some colour distortion. But the wavelet-based
fusion result has much less spatial information than that of
the IHS-based fusion result.

To overcome this problem, we use the curvelet transform in
image fusion. Since the curvelet transform is well adapted to
represent panchromatic image containing edges, the curvelet-
based fusion result has both high spatial and spectral resolu-
tion.

From the curvelet-based fusion result in the Landsat ETM+
image fusion presented in Figure 2, it should be noted that both
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(a) (b)

(c) (d)

Fig. 2. (a) Original Landsat ETM+ color image. (b) IHS-based fusion result. (c) Wavelet-based fusion result. (d) Curvelet-based fusion result.

the spatial and the spectral resolutions have been enhanced, in
comparison with the original colour image. That is, the fused
result contains both the structural details of the higher spatial
resolution panchromatic image and the rich spectral informa-
tion from the multispectral images. Moreover, compared with
the fused results obtained by the wavelet and IHS, the curvelet-
based fusion result has a better visual effect, such as contrast
enhancement.

B. Quantitative analysis

In addition to the visual analysis, we conducted a quanti-
tative analysis. The experimental results were analysed based
on the combination entropy, the mean gradient, and the cor-
relation coefficient, as used in [2], [15]–[17].

Table I presents a comparison of the experimental results of
image fusion using the curvelet-based image fusion method,
the wavelet-based image fusion method, and the IHS method
in terms of combination entropy, mean gradient, and correla-
tion coefficient.

The combination entropy of an image is defined as

H(f1, f2, f3) = −
255∑

i=0

Pi1,i2,i3 log2 Pi1,i2,i3 ,

where Pi1,i2,i3 is the combination probability of the image
f1, f2 andf3, in which pixel values arei1, i2 and i3, respec-
tively, for the same position. The combination entropy (C.E.)
represents the property of combination between images. The
larger the combination entropy of an image, the richer the
information contained in the image. In Table I, the combina-
tion entropy of the curvelet-based image fusion is greater than
that of other methods. Thus, the curvelet-based image fusion
method is superior to the wavelet and IHS methods in terms
of combination entropy.

The mean gradient is defined as

g =
1

MN

M∑

i=1

N∑

j=1

√
(∆I2

x + ∆I2
y )/2,

∆Ix;i,j = f(i + 1, j)− f(i, j),∆Iy;i,j = f(i, j + 1)− f(i, j),
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TABLE I

A COMPARISON OF IMAGE FUSION BY THE WAVELETS, THE CURVELETS,

AND IHS METHODS.

Method C.E M. G C.C

Original 14.1035 -

Images 4.1497 17.9416 -

(R,G,B) 13.3928 -

Image fused 15.7327 0.8134

by IHS 2.8135 15.4414 0.9585

(F1, F2, F3 ) 15.0168 0.9303

Image fused 16.5891 0.9013

by Wavelet 5.8611 18.9083 0.9176

(F1, F2, F3 ) 17.0362 0.8941

Image fused 19.5549 0.9067

by Curvelet 5.8682 22.8330 0.9318

(F1, F2, F3 ) 20.9101 0.9119

whereM and N are the length and width, in terms of pixel
number, of an imagef . The mean gradient (M.G.) reflects the
contrast between the detailed variation of pattern on the image
and the clarity of the image.

The correlation coefficient is defined as

Corr(A,B) =

∑
m,n(Amn −A)(Bmn −B)√

(
∑

m,n(Amn −A)2)(
∑

m,n(Bmn −B)2)
,

whereA andB stand for the mean values of the corresponding
data set. The correlation coefficient (C.C.) between the original
and fused image shows similarity in small size structures
between the original and synthetic images. In Table I, the mean
gradient and the correlation coefficient of the curvelet-based
image fusion method are greater than those of the wavelet-
based image fusion method. Hence, we can see that the
curvelet-based fusion method is better than the wavelet-based
fusion method in terms of the mean gradient and correlation
coefficient.

Based on the experimental results obtained from this study,
the curvelet-based image fusion method is very efficient for
fusing Landsat ETM+ images. This new method has yielded
optimum fusion results.

V. CONCLUSION

We have presented a newly developed method based on a
curvelet transform for fusing Landsat ETM+ images. In this
paper, an experimental study was conducted by applying the
proposed method, as well as other image fusion methods,
to the fusion of Landsat ETM+ images. A comparison of
the fused images from the wavelet and IHS method was
made. Based on experimental results pertaining to three in-
dicators - the combination entropy, the mean gradient, and the
correlation coefficient- the proposed method provides better
results, both visually and quantitatively, for remote sensing
fusion. Since the curvelet transform is well adapted to repre-
sent panchromatic images containing edges and the wavelet
transform preserves the spectral information of the original
multispectral images, the fused image has both high spatial
and spectral resolution.
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