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Abstract
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a result of Aldroubi. Our result is another illustration of the so-called

fibre principle of the shift-invariant spaces. Applications to the theory

of biorthogonal multiresolution analyses are discussed.

1 Introduction and main results

The notions of oblique projection and the angle between subspaces are closely

related with the theory of biorthogonal (or non-orthogonal) multiresolution

analyses [1, 2, 22]. The purpose of this article is to clarify further this rela-

tionship. In particular, we do this by using the fibre principle of the shift-

invariant subspaces of L2(Rd).

Let us first introduce the definitions of the various concepts which interest

us. Let U and V be closed subspaces of a separable Hilbert space H over the

complex field C. We say that the oblique projection PU⊥V of H on U along

V ⊥ is well-defined if H = U uV ⊥, that is, if H = U +V ⊥ and U ∩V ⊥ = {0}
[1]. In this case, for any f ∈ H there exist unique u ∈ U and v⊥ ∈ V ⊥ such

that f = u+v⊥. We define PU⊥V f := u. This concept is closely related with

that of the angle between U and V which is defined as follows [1]: The angle

R(U, V ) is defined to be

R(U, V ) := inf
u∈U\{0}

||PV u||
||u|| ,

where PV denotes the orthogonal projection of H onto V . We define R(U, V )

to be 1 if either U or V is trivial. See [1, 23] for the geometric meaning of

this concept and its applications to signal processing, and see [2, 8, 16, 17]

for its applications to the theory of wavelets. Note that, in general, it does
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not hold that R(U, V ) = R(V, U) [8]. The following proposition, which is

Theorem 2.3 of [22], shows the connexion between two concepts.

Proposition 1 ([22]) Let U and V be closed subspaces of H. The following

conditions are equivalent:

(1) H = U u V ⊥;

(2) H = U⊥ u V ;

(3) There exist Riesz bases {ui}i∈I and {vi}i∈I for U and V , respectively,

such that {ui}i∈I is biorthogonal to {vi}i∈I ;

(4) R(U, V ) > 0 and R(V, U) > 0.

The definition of a Riesz basis is found in the next section.

We now introduce the concept of multiresolution analysis which is the

main tool in the construction of wavelets [10, 18]. We refer to [10] for the

applications of multiresolution analyses to the theory of wavelets. Let D :

L2(Rd) → L2(Rd) denote the unitary dyadic dilation operator defined via

Df(x) := 2d/2f(2x). For y ∈ Rd, Ty : L2(Rd) → L2(Rd) denotes the unitary

translation operator such that Tyf(x) := f(x− y).

Definition 2 A sequence of closed subspaces {Vk}k∈Z of L2(Rd) is said to be

a multiresolution analysis if

(1) Vk ⊂ Vk+1, k ∈ Z;

(2) ∪k∈ZVk = L2(Rd), ∩k∈ZVk = {0};

(3) D(Vk) = Vk+1, k ∈ Z;
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(4) There exists a finite set of scaling functions Φ ⊂ V0 such that {Tkϕ :

k ∈ Zd, ϕ ∈ Φ} is a Riesz basis for V0.

Suppose that {Vj}j∈Z and {Ṽj}j∈Z are multiresolution analyses. If their

respective sets Φ and Φ̃ of scaling functions have the same number of elements

and if {Tkϕ : k ∈ Zd, ϕ ∈ Φ} and {Tkϕ̃ : k ∈ Zd, ϕ̃ ∈ Φ̃} are biorthogonal,

then we say that they are biorthogonal multiresolution analyses. This defi-

nition is a direct generalisation of the 1-dimensional definition of Wang [24].

Proposition 1 now implies that this condition is equivalent to the other con-

ditions of Proposition 1. This in turn implies that if we construct a pair

of biorthogonal multiresolution analyses, then the central spaces of the two

multiresolution analyses must satisfy the conditions of Proposition 1. This

result is not only theoretically important, but also often useful in the actual

construction of biorthogonal multiresolution analyses [2].

In some applications, more general multiresolution analyses are consid-

ered. In particular, if Condition (4) of Definition 2 is replaced by

(4′) There exists a finite set of scaling functions Φ ⊂ V0 such that {Tkϕ :

k ∈ Zd, ϕ ∈ Φ} is a frame for V0;

then we say that {Vj}j∈Z is a frame multiresolution analysis. The definition

and the basic properties of a frame are found in the next section. For the

time being we only mention that a Riesz basis is a frame. Hence a frame

multiresolution analysis is a more general concept than a multiresolution

analysis. Benedetto and Li successfully applied the theory of frame multires-

olution analyses in the analysis of narrow band signals [3]. Suppose we try

to define the concept of biorthogonal frame multiresolution analyses. The
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situation is as follows: We have two frame multiresolution analyses {Vj}j∈Z

and {Ṽj}j∈Z. Let Φ and Φ̃ be the sets of scaling functions of the respective

frame multiresolution analyses. It does not have to be that the cardinality of

Φ and that of Φ̃ coincide. Therefore, we cannot use the variant of Condition

(3) of Proposition 1 as the definition of the biorthogonality of two frame

multiresolution analyses. We may, however, use Condition (4) of Proposi-

tion 1 as the definition of the biorthogonality. Hence, we say that they are

biorthogonal if R(V0, Ṽ0) > 0. In [17] Kim et al. developed the 1-dimensional

version of the theory of biorthogonal frame multiresolution analyses in which

the numbers of scaling functions of the two frame multiresolution analyses

concerned are all one. The full analysis of biorthogonal frame multiresolu-

tion analyses is outside the scope of this article. We are merely interested

in finding conditions easier to check than those of Proposition 1. We do this

by using the theory of shift-invariant spaces and the fibre principle which

will be explained briefly in a moment. All of the results on the theory of

shift-invariant spaces we use are contained in [5, 7, 13, 15, 19].

A subspace S ⊂ L2(Rd) is said to be a shift-invariant subspace of L2(Rd)

if it is closed and is invariant under each (multi-)integer translation operator

Tk, k ∈ Zd. In particular, the central space V0 of a multiresolution analysis

or a frame multiresolution analysis is a shift-invariant subspace. For f ∈
L2(Rd), x ∈ Td, we let

f̂||x := (f̂(x + k))k∈Zd ,

which belongs to `2(Zd) almost every x ∈ Td. Here ∧ denotes the Fourier

transform defined by

f̂(x) :=

∫

Rd

f(t)−2πix·t dt
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for f ∈ L1(Rd) ∩ L2(Rd), and extended to be a unitary operator on L2(Rd)

by the Plancherel theorem. For a shift-invariant subspace S and x ∈ Td we

let

Ŝ||x := span{f̂||x : f ∈ S}.

It is known that Ŝ||x, called the fibre of S at x, is a closed subspace of `2(Zd)

for almost every x ∈ Td. The spectrum σ(S) of S is defined to be

σ(S) := {x ∈ Td : Ŝ||x 6= {0}}.

If there exists n ∈ N such that dim Ŝ||x = n for almost every x ∈ T, we say

that S is regular. If Φ is a subset of L2(Rd), then we let

S(Φ) := span{Tkϕ : k ∈ Zd, ϕ ∈ Φ},

which is clearly a shift-invariant subspace. We then say that S(Φ) is a shift-

invariant space generated by Φ. In case Φ is finite, we say that it is finitely

generated. It is known that a shift-invariant subspace of L2(Rd) has a gener-

ator set whose cardinality is at most countable. Moreover, it is shown in [5]

that S is regular if and only if there exists a finite subset Φ of S such that

{Tkϕ : k ∈ Zd, ϕ ∈ Φ} is a Riesz basis for S. The so-called fibre principle

is roughly stated as follows: A property holds for a shift-invariant space S

if and only if it holds for each fibre space of S in a uniform way. It is best

understood by looking at examples. Hence we introduce some examples of

the fibre principle which will be used later in proving our main results.

The following is Proposition 2.10 of [8].

Proposition 3 ([8]) If U and V are shift-invariant subspaces of L2(Rd),

then

R(U, V ) = ess-infx∈Td R(Û||x, V̂||x).
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The following is Theorem 2.3 of [7].

Proposition 4 ([7]) Suppose that Φ ⊂ L2(Rd) is countable. Then {Tkϕ :

k ∈ Zd, ϕ ∈ Φ} is a frame/Riesz basis for S(Φ) with frame/Riesz bounds A

and B if and only if, for almost every x ∈ Td, {ϕ̂||x : ϕ ∈ Φ} is a frame/Riesz

basis for (S(Φ))∧||x with frame/Riesz bounds A and B.

The readers are now convinced that if one is to analyse a shift-invariant

subspace, then it probably is best to analyse the fibre spaces separately and

then to patch up the fibre-wise analyses together to produce a result on the

original shift-invariant space.

There is an elegant theory, called the Gramian/dual Gramian analysis,

that somehow formalises this method [20, 21]. The following is an example.

Suppose that S := S(Φ) is finitely generated. The matrix GΦ(x) :=

(〈ϕ̂||x, ψ̂||x〉)ψ,ϕ∈Φ is called the Gramian of Φ at x ∈ Td. Let λ(x), λ+(x) and

Λ(x) denote the smallest eigenvalue, the smallest non-zero eigenvalue and the

largest eigenvalue of G(x). The proof of the following proposition is found

in [19].

Proposition 5 ([19]) {Tkϕ : k ∈ Zd, ϕ ∈ Φ} is a Riesz basis for S(Φ) with

Riesz bounds A and B if and only if

A ≤ λ(x) ≤ Λ(x) ≤ B

for almost every x ∈ Td. It is a frame for S with frame bounds A and B if

and only if

A ≤ λ+(x) ≤ Λ(x) ≤ B

for almost every x ∈ σ(S(Φ)).
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The following theorem, which is also an illustration of the fibre principle,

is the main result of this article. Here G† denotes the pseudo-inverse of

an operator/matrix G with closed range [11], the theory of which will be

reviewed in the next section.

Theorem 6 Let Φ := {ϕ1, ϕ2, · · · , ϕm}, Ψ := {ψ1, ψ2, · · · , ψn} ⊂ L2(Rd),

and let U := S(Φ), V := S(Ψ). Suppose that {Tkϕj : k ∈ Zd, 1 ≤ j ≤ m}
and {Tkψi : k ∈ Zd, 1 ≤ i ≤ n} are frames for U and V , respectively. Let

G(x) := GΦ,Ψ(x) := (〈ϕ̂j ||x, ψ̂i||x〉)1≤i≤n,1≤j≤m, x ∈ Td.

Then the following assertions are equivalent:

(1) L2(Rd) = U u V ⊥;

(2) rank G(x) = dim Û||x = dim V̂||x for almost every x ∈ Td; and there

exists a positive constant C such that ||G(x)†|| ≤ C for almost every

x ∈ Td.

The matrix G(x) is called the mixed Gramian of Φ and Ψ at x. The

frame condition is not restrictive since it is shown in [5, 7, 19] that any shift-

invariant subspace S has a generator Φ such that {Tkϕ : k ∈ Zd, ϕ ∈ Φ} is

a frame for S. It is, however, generally impossible to find a generator for

S which generates a Riesz basis unless σ(S) = Td [5, 7, 19]. The following

corollary is a special case of one of the main results of Aldroubi [1]. He

considers the subspace of a general Hilbert space H of the form

{
r∑

i=1

∑

j∈Z
ci(j)O

jϕi : ci ∈ `2(Z), 1 ≤ i ≤ r},
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where ϕi ∈ H, 1 ≤ i ≤ r and O is a unitary operator on H. If we let

H := L2(R) and O := T1, then Theorem 3.1 of [1] reduces to the L2(R)

version as in the following corollary.

Corollary 7 Let Φ := {ϕ1, ϕ2, · · · , ϕn}, Ψ := {ψ1, ψ2, · · · , ψn} ⊂ L2(Rd),

and let U := S(Φ), V := S(Ψ). Suppose that {Tkϕj : k ∈ Zd, 1 ≤ j ≤ n} and

{Tkψi : k ∈ Zd, 1 ≤ i ≤ n} are Riesz bases for U and V , respectively. Let

G(x) := GΦ,Ψ(x) := (〈ϕ̂j ||x, ψ̂i||x〉)1≤i,j≤n, x ∈ Td,

be the mixed Gramian of Φ and Ψ. Then the following assertions are equiv-

alent:

(1) L2(Rd) = U u V ⊥;

(2) G(x) is invertible for almost every x ∈ Td; and there exists a positive

real number C such that ||G(x)−1|| ≤ C for almost every x ∈ Td.

Theorem 6 is inspired by Corollary 7, which is the shift-invariant subspace

interpretation of the result of Aldroubi [1]. The method of proof, however,

is rather different, and uses the full power of the fibre principle.

Moreover, we have the following result. For an operator/matrix X, X∗

denotes its adjoint operator/matrix.

Theorem 8 Suppose that the hypotheses of Theorem 6 hold. If any one of

the conditions of Theorem 6 is satisfied, then

R(U, V ) = ess-infx∈σ(U) ||TÛ||x
GΦ,Ψ(x)†T ∗

V̂||x
||−1

= ess-infx∈σ(U) ||GΦ(x)1/2GΦ,Ψ(x)†GΨ(x)1/2||−1

= R(V, U),
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where TÛ||x
and TV̂||x

are pre-frame operators defined in the next section and

GΦ(x) and GΨ(x) are the Gramians of Φ and Ψ at x, respectively.

The following obvious corollary is also a special case of Theorem 3.2 of

[1].

Corollary 9 Suppose that the hypotheses of Corollary 7 hold. If any one of

the conditions of Corollary 7 is satisfied, then

R(U, V ) = R(V, U) = ess-infx∈Td ||GΦ(x)1/2GΦ,Ψ(x)−1GΨ(x)1/2||−1,

where GΦ(x) and GΨ(x) are the Gramians of Φ and Ψ at x, respectively.

Compare the above theorems with Lemma 3.2 in [16] and Lemma 5.11 of

[17].

The rest of the paper is organised as follows: We present preliminary

results on the theory of frames and that of pseudo-inverses in Section 2. The

proofs of the main results are found in Section 3

2 Preliminary discussions

In this section we introduce the relevant definitions and preliminary results

which will be used later.

We first present basic facts about pseudo-inverses. Let H1 and H2 be

Hilbert spaces over C, and X : H1 → H2 a bounded linear operator with

closed range. For each b ∈ H2, {a ∈ H1 : Xa = Pran Xb} is a closed convex

subset of H1, where Pran X denotes the orthogonal projection of H2 onto

ran X. Hence it contains a unique element a of minimal norm. We let
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a := X†b. It is known that the map: X† : H2 → H1 is a bounded linear

operator, called the pseudo-inverse of X [11].

We introduce two results which will be used later.

Proposition 10 ([11]) SupposeH1 andH2 are separable Hilbert spaces over

C. Let X : H1 → H2 be a bounded linear operator with closed range. Then

the following assertions hold:

(1) ran X† = ran X∗;

(2) XX† = Pran X ;

(2) X†X = Pran X†.

Proof. (1) is a part of Theorem 2.1.2 of [11]; and (2) and (3) are parts of

Theorem 2.2.2 of [11]. ¤
The following is Theorem 3.1 of [6].

Proposition 11 ([6]) Let H1,H2,H3 be separable Hilbert spaces over C and

X : H2 → H3, Y : H1 → H2 be bounded linear operators with closed range.

Then (XY )† = Y †X† if and only if

(i) ran XY is closed;

(ii) ran X∗ is invariant under Y Y ∗;

(iii) ran X∗ ∩ ker Y ∗ is invariant under X∗X.

We now introduce the theory of frames briefly. Let H be a separable

Hilbert space over C, and let {fi : i ∈ I} be a sequence in H, where I is a
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countable index set. We say that {fi : i ∈ I} is a frame for H if there exist

positive constants A and B such that

A||f ||2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B||f ||2

for each f ∈ H. A and B are called the lower and upper frame bounds,

respectively. Suppose that {fi : i ∈ I} is a frame for H with frame bounds

A and B. Define T : `2(I) → H via Tα :=
∑

i∈I αifi, where α := (αi)i∈I . It

is known that T , usually called the pre-frame operator, is an onto bounded

linear operator [9, 14]. Moreover, ||T || ≤ B1/2. A direct calculation shows

that T ∗f = (〈f, fi〉)i∈I . Let S := TT ∗. Then S, called the frame operator,

is a strictly positive (and hence self-adjoint) bounded linear operator with

a bounded inverse [12]. More precisely, we have Sf =
∑

i∈I〈f, fi〉fi and

A ≤ S ≤ B. We say that {fi : i ∈ I} is a Riesz basis for H with Riesz

bounds A and B if it is complete and there exist positive constants A and B

such that for any (ci)i∈I ∈ `2(I)

A||f ||2 ≤ ||
∑
i∈I

cifi||2 ≤ B||f ||2.

We refer to [12] for the basic properties of Riesz bases and frames of a sep-

arable Hilbert space. In particular, it is shown there that a Riesz basis is a

frame. Note also that if I is a finite set, then a Riesz basis is just another

ordinary basis treated in Linear Algebra.

Now, let {uj}m
j=1 be a frame for a closed subspace U of H with frame

bounds AU and BU and let {vi}n
i=1 be a frame for a closed subspace V of

H with frame bounds AV and BV . Suppose that r = dim U = dim V .

Then obviously, r ≤ min{m,n}. Let TU : Cm → U and TV : Cn → V
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be the pre-frame operators of {uj}m
j=1 and {vi}n

i=1, respectively. Also let

SU : U → U and SV : V → V be the frame operators of {uj}m
j=1 and {vi}n

i=1,

respectively. Finally, let PV be the orthogonal projection of H onto V , and

P := PV |U : U → V the restriction of PV to U .

Lemma 12 Suppose G : Cm → Cn is the mixed Gramian of the frames

{uj}m
j=1 and {vi}n

i=1 such that Gi,j := 〈uj, vi〉, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then

G = T ∗
V PTU .

Proof. Let α := (α1, α2, · · · , αm)t ∈ Cm.

T ∗
V PTUα = T ∗

V P (
m∑

j=1

αjuj) = T ∗
V (

m∑
j=1

αjPuj)

= (〈
m∑

j=1

αjPuj, vi〉)n
i=1 = (

m∑
j=1

αj〈Puj, vi〉)n
i=1

= (
m∑

j=1

αj〈PV uj, vi〉)n
i=1 = (

m∑
j=1

αj〈uj, PV vi〉)n
i=1

= (
m∑

j=1

αj〈uj, vi〉)n
i=1 = Gα.

¤
We now calculate the pseudo-inverse of G. We need the following fact

which is Theorem 1.6 of [4] (see also [9, Lemma 2.4]).

Proposition 13 ([4]) If T is a bounded linear operator with closed range,

then

(T †)∗ = (T ∗)†.

The following is Theorem 3.1 of [9].

13



Proposition 14 ([9]) If T is the pre-frame operator of a frame {fi}i∈I with

frame bounds A and B, then, for each f ∈ H,

T †f = (〈f, S−1fi〉)i∈I ,

where S denotes the frame operator. In particular, ||T †|| ≤ A−1/2.

Lemma 15 If P : U → V is invertible, then

G† = T †
UP−1(T ∗

V )† = T †
UP−1(T †

V )∗.

Proof. Let X := T ∗
V , Y := PTU . Since ran X and ran Y are finite dimensional,

they are closed. Moreover, ran XY is also finite dimensional, hence closed.

Since ran X∗ = ran TV = V , it is invariant under Y Y ∗. ker Y ∗ = ker(T ∗
UP ∗).

Therefore ran X∗ ∩ ker Y ∗ = ker(T ∗
UP ∗). Since TU is onto, T ∗

U is one-to-one.

Moreover, P ∗ is invertible since P is invertible. Hence ker(T ∗
UP ∗) = {0} which

is clearly invariant under X∗X. We have, by Lemma 12 and Propositions 11

and 13

G† = (PTU)†(T ∗
V )† = (PTU)†(T †

V )∗.

We now apply Proposition 11 once more. Let X := P and Y := TU . X, Y

and XY have closed range since they are finite dimensional operators. Since

ran X∗ = ran P ∗ = U , it is invariant under Y Y ∗. ker Y ∗ = ker T ∗
U = {0},

since TU is onto. Hence it is invariant under X∗X. This shows that (PTU)† =

T †
UP †. Since P is invertible, P † = P−1. ¤

Lemma 16 Suppose that U and V are shift-invariant subspaces of L2(Rd).

If L2(Rd) = U u V ⊥, then dim Û||x = dim V̂||x for almost every x ∈ Td. In

particular, σ(U) = σ(V ).
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Proof. Note that, by [5], V ⊥ is a shift-invariant space since V is. Note

also that (L2(Rd))∧||x = `2(Zd) for almost every x ∈ Td. Now we have

`2(Zd) = Û||xu(V ⊥)∧||x almost everywhere by an argument similar to the proof

of Lemma 3.7 of [17]. This implies that the oblique projection Πx of `2(Zd) on

Û||x along (V ⊥)∧||x is well-defined almost everywhere. Hence, `2(Zd)/ker Πx =

`2(Zd)/(V ⊥)∧||x is isomorphic to ran Πx = Û||x. Now `2(Zd)/(V ⊥)∧||x is obvi-

ously isomorphic to ((V ⊥)∧||x)
⊥. The point-wise projection property of a shift-

invariant space ([5, Result 3.7] or [7, Lemma 1.4]) implies that ((V ⊥)∧||x)
⊥ =

V̂||x. Hence Û||x is isomorphic to V̂||x almost everywhere. In particular, they

are of the same dimension almost everywhere. ¤

3 Proofs of the main results

Proof of Theorem 6: (1) ⇒ (2): Combining Propositions 1 and 3 we see

that there exists a positive constant c such that c ≤ R(Û||x, V̂||x) for almost

every x ∈ Td. Fix such x ∈ Td. Let PV̂||x
denote the orthogonal projection

of `2(Zd) onto V̂||x and Px its restriction to Û||x. Then, for any u ∈ Û||x,

we have c||u|| ≤ ||Pxu||. This shows that Px is one-to-one. It is onto since

dim Û||x = dim V̂||x by Lemma 16. It is now easy to see that ||P−1
x || ≤ c−1.

Propositions 14 and 4 imply that the norms of T †
Û||x

and T †
V̂||x

are bounded

uniformly. Hence the norm of GΦ,Ψ(x)† is bounded uniformly by Lemma 15.

Recall that

GΦ,Ψ(x) = T ∗
V̂||x

PxTÛ||x
.

Since TÛ||x
is onto, ran TÛ||x

= Û||x = dom Px. Since Px is also onto, ran PxTÛ||x
=

ran Px = V̂||x = dom T ∗
V̂||x

. Hence rank GΦ,Ψ(x) = rank T ∗
V̂||x

. Now rank T ∗
V̂||x

=
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rank TV̂||x
= dim V̂||x since TV̂||x

is onto and since ran TV̂||x
= V̂||x. Now,

dim Û||x = dim V̂||x by Lemma 16.

(2) ⇒ (1): Recall that, for almost every x ∈ Td,

GΦ,Ψ(x) = T ∗
V̂||x

PxTÛ||x
.

Fix such x. We first show that the rank condition implies that Px is invertible.

Let r := rank GΦ,Ψ(x) = dim V̂||x = dim Û||x. Since TÛ||x
is onto, ran TÛ||x

=

Û||x = dom Px. Therefore rank T ∗
V̂||x

Px = rank GΦ,Ψ(x) = r. Since rank Px

is at most r and since the rank of the product of two operators is less than

or equal to the minimum of the ranks of two operators, rank Px = r. Hence

Px is onto. It is one-to-one, since its domain and co-domain are of the same

dimension.

Hence, by Lemma 15,

GΦ,Ψ(x)† = T †
Û||x

P−1
x (T ∗

V̂||x
)†.

Proposition 10 implies that

(T ∗
V̂||x

)†(T ∗
V̂||x

) = Pran(T ∗
V̂||x

)† = Pran TV̂||x
= PV̂||x

.

Similarly, we have TÛ||x
T †

Û||x
= PÛ||x

. Therefore,

TÛ||x
GΦ,Ψ(x)†(T ∗

V̂||x
) = TÛ||x

T †
Û||x

P−1
x (T ∗

V̂||x
)†(T ∗

V̂||x
)

= PÛ||x
P−1

x PV̂||x

= P−1
x PV̂||x

= P−1
x . (1)

This implies that the norm of P−1
x is bounded uniformly, say, by c, by Proposi-

tion 4, since, as in the discussion following Proposition 11, ||TÛ||x
|| is less than

16



or equal to the square root of an upper frame bound of {ϕ̂j ||x : 1 ≤ j ≤ m}
and, likewise, ||TV̂||x

|| = ||T ∗
V̂||x
|| is less than or equal to the square root of an

upper frame bound of {ψ̂i||x : 1 ≤ i ≤ n}. It is easy to see that this implies

that c−1 ≤ R(Û||x, V̂||x). We now invoke Proposition 3. ¤
Proof of Corollary 7: We recall that a Riesz basis is a frame. Note that

Proposition 5 implies that the Gramians GΦ(x) and GΨ(x) is invertible al-

most everywhere. Moreover, Proposition 4 implies that dim Û||x = dim V̂||x =

n almost everywhere, since a finite Riesz basis is a basis in the sense of Linear

Algebra.

(1)⇒ (2): Condition (2) of Theorem 6 implies that rank G(x) = n. Therefore

G(x) is invertible almost everywhere, and G(x)−1 = G(x)†. The proof is

complete by Condition (2) of Theorem 6.

(2) ⇒ (1): Trivial. ¤
Proof of Theorem 8: We have σ(U) = σ(V ) by Lemma 16. Suppose

that x /∈ σ(U). Then Û||x and V̂||x are trivial subspace of `2(Zd). Therefore

R(Û||x, V̂||x) = 1. Now fix x ∈ σ(U). Let PV̂||x
be the orthogonal projection

of `2(Zd) onto V̂||x and Px its restriction to Û||x. The proof of Theorem 6

17



implies that Px is invertible almost everywhere. Now

R(Û||x, V̂||x) = inf
u∈Û||x\{0}

||PV̂||x
u||

||u||

= inf
u∈Û||x\{0}

||Pxu||
||u||

= inf
u∈Û||x\{0}

||Pxu||
||P−1

x Pxu||

=

(
sup

u∈Û||x\{0}

||P−1
x Pxu||
||Pxu||

)−1

=

(
sup

v∈V̂||x\{0}

||P−1
x v||
||v||

)−1

= ||P−1
x ||−1.

This proves the first equality by Equation (1) and by Proposition 3.

Now recall that GΦ(x) and GΨ(x) is non-negative definite by definition.

Note that GΦ(x) = T ∗
Û||x

TÛ||x
and GΨ(x) = T ∗

V̂||x
TV̂||x

by Lemma 12.

||P−1
x || = ||P−1

x (P−1
x )∗||1/2

= ||TÛ||x
GΦ,Ψ(x)†T ∗

V̂||x
TV̂||x

(GΦ,Ψ(x)†)∗T ∗
Û||x
||1/2 (by Equation (1))

= ||TÛ||x
GΦ,Ψ(x)†GΨ(x)(GΦ,Ψ(x)†)∗T ∗

Û||x
||1/2

= ||TÛ||x
GΦ,Ψ(x)†GΨ(x)1/2GΨ(x)1/2(GΦ,Ψ(x)†)∗T ∗

Û||x
||1/2

= ||TÛ||x
GΦ,Ψ(x)†GΨ(x)1/2||

= ||GΨ(x)1/2(GΦ,Ψ(x)†)∗T ∗
Û||x

TÛ||x
GΦ,Ψ(x)†GΨ(x)1/2||1/2

= ||GΨ(x)1/2(GΦ,Ψ(x)†)∗GΦ(x)GΦ,Ψ(x)†GΨ(x)1/2||1/2

= ||GΨ(x)1/2(GΦ,Ψ(x)†)∗GΦ(x)1/2GΦ(x)1/2GΦ,Ψ(x)†GΨ(x)1/2||1/2

= ||GΦ(x)1/2GΦ,Ψ(x)†GΨ(x)1/2||,

18



where we have used ||X|| = ||XX∗||1/2 = ||X∗X||1/2 several times. This

proves the second equality. The third is Corollary 2.9 of [8]. ¤
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