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Abstract. The goal of this article is to study the relations among mono-
tonicity properties of real Banach lattices and the corresponding convexity
properties in the complex Banach lattices. We introduce the moduli of mono-
tonicity of Banach lattices. We show that a Banach lattice E is uniformly
monotone if and only if its complexification EC is uniformly complex convex.
We also prove that a uniformly monotone Banach lattice has finite cotype. In
particular, we show that a Banach lattice is of cotype q for some 2 ≤ q < ∞
if and only if there is an equivalent lattice norm under which it is uniformly
monotone and its complexification is q-uniformly PL-convex. We also show
that a real Köthe function space E is strictly (resp. uniformly) monotone and
a complex Banach space X is strictly (resp. uniformly) complex convex if
and only if Köthe-Bochner function space E(X) is strictly (resp. uniformly)
complex convex.

1. Introduction and Preliminaries

The moduli of complex convexity of complex quasi-Banach spaces have been
introduced by Davis, Garling and Tomczak-Jaegermann in [5]. In that paper the
relation between complex convexity and cotype in complex Banach lattices have
been also examined. Recently, Hudzik and Narloch [10] have observed that a real
Köthe function space is strictly (resp. uniformly) monotone if and only if its com-
plexification is strictly (resp. uniformly) complex convex. This observation was a
motivation of our paper, where we investigate a number of monotonicity properties
in real Banach lattices and we study their relations to convex properties in complex
Banach lattices.

In particular, we introduce the moduli of monotonicity of Banach lattices and
study the relations between monotonicity and complex convexity in real Banach
lattices and its complexification. Together with the relations between cotype and
monotonicity in Banach lattices, we can naturally define the monotone versions of
some geometric properties of Banach spaces studied in [6]. We shall also discuss
the lifting properties of complex convexity to Köthe-Bochner function spaces.

For the definitions and characterizations of strict and uniform monotonicity of
various function spaces we refer to [2, 9]. The lifting properties of complex geometric
properties from a continuously quasi-normed space X to Lp(µ,X), for 0 < p < ∞,
were discussed in [8].
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For the rest of the paper we reserve the symbol E for a real Banach lattice (called
also just a Banach lattice), which in particular may be a Köthe function space [12].
The positive cone of E will be denoted by E+ := {x ∈ E : x ≥ 0}. For each pair of
x, y ∈ E, we will use the standard notations:

(1) x ∨ y := sup{x, y}, x ∧ y := inf{x, y};
(2) x+ := x ∨ 0, x− := (−x) ∨ 0;
(3) |x| := x ∨ (−x).

Let 1 ≤ p < ∞. We say that E is strictly p-monotone if for every x, y in E+

with y 6= 0 we have
‖x‖ < ‖(xp + yp)1/p‖.

A Banach lattice E is said to be uniformly p-monotone if for every ε > 0 there is
δ = δ(ε) > 0 such that if x, y ∈ E+ with ‖x‖ = 1, ‖y‖ ≥ ε then

‖(xp + yp)1/p‖ ≥ 1 + δ

holds. For p = 1, strict 1-monotonicity and uniform 1-monotonicity are well known
as strict and uniform monotonicity, respectively [9].

Notice that the Krivine functional calculus guarantees the existence of (xp +
yp)1/p in E+ for x, y ∈ E+ [5, 12]. Notice also that if E is strictly (resp. uniformly)
q-monotone then it is strictly (resp. uniformly) p-monotone for 1 ≤ p < q < ∞.
For more details, see [12]. The complexification EC of a real Banach lattice consists
of x + iy for x, y ∈ E with the norm ‖x + iy‖EC = ‖(|x|2 + |y|2)1/2‖E . Then EC is
a complex Banach space. For more details of complexification of Banach lattices,
see [12, 13]. We call EC a complex Banach lattice if it is a complexification of some
Banach lattice E. It was observed in [5] that the Krivine functional calculus can
be also applied to complex Banach lattices.

The following moduli of complex convexity of complex Banach space X were
introduced in [5]: for 0 < p < ∞ and ε ≥ 0, we define

HX
p (ε) = inf

{(
1
2π

∫ 2π

0

‖x + eiθy‖p dθ

)1/p

− 1 : ‖x‖ = 1, ‖y‖ = ε

}
,

and

HX
∞(ε) = inf

{
sup{‖x + eiθy‖ : 0 ≤ θ ≤ 2π} − 1 : ‖x‖ = 1, ‖y‖ = ε

}
.

Let X be a complex Banach space. A point x of a unit sphere SX of X is called
a complex extreme point of a unit ball BX if ‖x + ζy‖ ≤ 1 for every complex ζ with
|ζ| ≤ 1 implies y = 0. We say that a complex Banach space X is strictly complex
convex if every point of SX is a complex extreme point of BX . A complex Banach
space X is uniformly complex convex if HX

∞(ε) > 0 for all ε > 0 and it is said to be
uniformly PL-convex if HX

p (ε) > 0 for all ε > 0 for some 0 < p < ∞.
Let f and g be non-negative, non-decreasing functions on [0, 1]. We shall write

g ¹ f if there is K ≥ 1 such that g(ε/K) ≤ Kf(ε) for all 0 < ε < 1/K, and we
write f ∼ g if f ¹ g and g ¹ f (f and g are then said to be equivalent at zero). It
is well known that for 0 < p < ∞, the moduli HX

p are all equivalent at zero [5], and
that there exists an absolute constant A > 0 such that for every complex Banach
space X and ε > 0, we have [6],

A(HX
∞(ε))2 ≤ HX

1 (ε) ≤ HX
∞(ε).
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This implies among others that a complex Banach space is uniformly complex
convex if and only if it is uniformly PL-convex.

We shall use the following theorem for characterization of complex extreme
points.

Theorem 1.1. [8] Let X be a complex Banach space and let x ∈ SX . Then the
following conditions are equivalent:

(1) x is a complex extreme point of BX ;
(2) there exists 0 < p < ∞ such that for all non-zero y ∈ X,

1
2π

∫ 2π

0

‖x + eiθy‖pdθ > 1;

(3) for each 0 < p < ∞ and for each non-zero y ∈ X,

1
2π

∫ 2π

0

‖x + eiθy‖pdθ > 1.

For an increasing function g on [0, 1] with g(0) = 0, we shall say that a Banach
space X is g-uniformly PL-convex if HX

1 º g holds. If g(ε) = εr ( where 2 ≤ r < ∞)
we say that X is r-uniformly PL-convex (g-uniformly H∞-convexity and r-uniform
H∞-convexity are defined similarly). These notions are defined and used in [5].

Now let’s sketch briefly the content of the paper. In section two we define
moduli of monotonicity of Banach lattices and we study their basic properties. We
also investigate some properties of strictly (uniformly) p-monotone Banach lattices,
where 1 ≤ p < ∞.

In the third section we investigate the relation between moduli of monotonicity of
Banach lattices and moduli of PL-convexity. In particular we show that a Banach
lattice is uniformly monotone if and only if its complexification is uniformly PL-
convex.

In the fourth section, the relations between uniform monotonicity, uniform PL-
convexity and cotype are studied. In particular, it is shown that a uniformly mono-
tone Banach lattice has finite cotype, and conversely if a Banach lattice has finite
cotype then it admits an equivalent lattice norm under which it is uniformly mono-
tone and its complexification is uniformly PL-convex. It is also proved that there
exists a uniformly monotone renorming of power type in E if E is of finite cotype
(for the uniformly complex convex renorming of power type, see [5]).

In the last section, it is shown that a real Köthe function space E is strictly (resp.
uniformly) monotone and a complex Banach space X is strictly (resp. uniformly)
complex convex if and only if the Köthe-Bochner function space E(X) is strictly
(resp. uniformly) complex convex. The strict complex convexity of a generalized
direct sum of complex Banach spaces is also discussed.

2. Moduli of p-monotonicity

The modulus of p-monotonicity ME
p , 0 < p < ∞, of a Banach lattice E is defined

as follows: for each ε ≥ 0,

ME
p (ε) = inf

{∥∥∥(|x|p + |y|p)1/p
∥∥∥− 1 : x, y ∈ E and ‖x‖ = 1, ‖y‖ ≥ ε

}
.

It is clear that ε 7→ ME
p (ε) is increasing and p 7→ ME

p (ε) is decreasing. Notice
also that E is uniformly p-monotone if and only if ME

p (ε) > 0 for all ε > 0. We
start with the the following elementary observation.
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Proposition 2.1. For each ε > 0,

ME
p (ε) = inf

{∥∥∥(|x|p + |y|p)1/p
∥∥∥− 1 : x, y ∈ E and ‖x‖ = 1, ‖y‖ = ε

}
.

Proof. Letting for each ε > 0,

NE
p (ε) = inf

{∥∥∥(|x|p + |y|p)1/p
∥∥∥− 1 : x, y ∈ E and ‖x‖ = 1, ‖y‖ = ε

}
,

we have that NE
p ≥ ME

p . On the other hand, for each x, y ∈ E with ‖x‖ = 1 and
‖y‖ ≥ ε, take y1 = ε

‖y‖y. Clearly |y1| ≤ |y|, ‖y1‖ = ε and

NE
p (ε) ≤

∥∥∥(|x|p + |y1|p)1/p
∥∥∥− 1 ≤

∥∥∥(|x|p + |y|p)1/p
∥∥∥− 1.

This gives NE
p ≤ ME

p and completes the proof. ¤

Recall that a Banach lattice E is said to be order continuous if every order
bounded increasing sequence converges in the norm topology of E [1, 12, 13].

Proposition 2.2. Let 1 ≤ p < ∞. Every uniformly p-monotone Banach lattice E
is order continuous.

Proof. We have only to show that c0 is not lattice embeddable in E (see Theo-
rem 14.12 in [1]). Suppose that E is uniformly p-monotone and for a contrary
assume that there is a lattice isomorphism T : c0 → E such that there is a positive
constant K with

K‖x‖ ≤ ‖Tx‖ ≤ ‖T‖ ‖x‖
for all x ∈ c0. Then choose a sequence (xn) in Sc0 with ‖Txn‖ ≥ 1

2 ‖T‖ such that
limn→∞ ‖Txn‖ = ‖T‖. Further we choose a sequence (yn) in Bc0 with ‖yn‖c0

≥ 1/2
so that ‖|xn|+ |yn|‖c0

= 1 for all n ∈ N. Thus for every n ∈ N,

‖Txn‖ (1 + ME
p (‖Tyn‖ / ‖Txn‖) ≤

∥∥∥(|Txn|p + |Tyn|p)1/p
∥∥∥

≤ ‖T‖
∥∥∥(|xn|p + |yn|p)1/p

∥∥∥
c0

≤ ‖T‖ ‖|xn|+ |yn|‖c0
≤ ‖T‖ .

By taking the limit we obtain that

lim
n→∞

ME
p (‖Tyn‖ / ‖Txn‖) = 0

. Since 1/2 ≤ ‖yn‖c0
≤ K−1 ‖Tyn‖ we have

ME
p (K/2 ‖T‖) ≤ ME

p (‖Tyn‖/‖Txn‖)
for all n ∈ N. This implies that ME

p (K/2 ‖T‖) = 0, which is a contradiction to the
fact that E is uniformly p-monotone. ¤

Lemma 2.3. Let E be an order continuous Banach lattice or a Köthe function
space. Let x, y be nonzero positive elements in E. Then there are δ = δ(‖x‖, ‖y‖) >
0 and nonzero z ∈ E+ such that z ≤ y, ‖z‖ ≥ ‖y‖/2 and

(xp + yp)1/p ≥ x + δz

. In particular, we can take δ(‖x‖ , ‖y‖) = (2p‖x‖p+‖y‖p)1/p−2‖x‖
‖y‖ .
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Proof. Suppose that E is an order continuous Banach lattice. Let G be a subspace
of E generated by x and y. Then there is an order continuous band F ⊇ G in E
with a weak unit [12]. Now we may assume that F is a Köthe function space on a
probability space Ω (see Theorem 1.b.14 in [12]). Letting now

A =
{

t ∈ Ω : x(t) <
2‖x‖
‖y‖ y(t)

}
,

we clearly get

‖x‖ ≥ ‖xχΩ\A‖ ≥
2 ‖x‖
‖y‖ ‖yχΩ\A‖.

Taking z = yχA, z ≤ y and

‖z‖ ≥ ‖y‖ − ‖yχΩ\A‖ ≥
‖y‖
2

.

On the other hand, notice that for each ε > 0 there is δ1 = δ1(ε) > 0 such that for
each a ≥ ε,

(1 + ap)1/p ≥ 1 + δ1a.

In fact, it is easy to check that we can take

δ1(ε) =
(1 + εp)1/p − 1

ε
.

Hence if we take δ = δ1(‖y‖/‖2x‖) then

(xp + yp)1/p = (xpχA + ypχA)1/p + (xpχΩ\A + ypχΩ\A)1/p

≥ xχA + δyχA + xχΩ\A
= x + δz,

and we obtain the desired result. ¤

Combining Proposition 2.1 and Lemma 2.3, we immediately obtain the following
result.

Proposition 2.4. Let E be a Köthe function space or order continuous Banach
lattice. Then for each 1 ≤ p < ∞, E is strictly p-monotone if and only if E is
strictly monotone.

It is clear that Propositions 2.1, 2.2 and Lemma 2.3 imply the following.

Proposition 2.5. Let E be a Banach lattice. For each 1 ≤ p < ∞, E is uniformly
p-monotone if and only if E is uniformly monotone. In particular we obtain the
following inequalities: for each 1 ≤ p < ∞ and for each ε > 0,

ME
1 (εp) ¹ ME

p (ε) ≤ ME
1 (ε).

Observe that a Banach lattice E is uniformly monotone with ME
p º εr for some

1 ≤ p < ∞ and for some r > 1 if and only if there is an λ > 0 such that

‖(|x|p + |y|p)1/p‖ ≥ (‖x‖r + λ‖y‖r)1/r

holds for all x and y in E. We shall denote the largest possible value of λ by Jr,p(E).
Then, by induction, it is clear that

∥∥∥∥∥(
n∑

k=1

|xk|p)1/p

∥∥∥∥∥ ≥
(
‖x1‖r + Jr,p(E)

n∑

k=2

‖xk‖r

)1/r
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holds for every x1, . . . , xn in E. This is an analogue of the formula in [5] concerning
moduli of r-uniformly PL-convexity. This formula shows that if ME

1 º εq for some
1 < q < ∞, then E satisfies lower q-estimate. We shall use this fact in proof of
Corollary 4.6.

We finish this section with the examples of moduli of monotonicity computed in
R and Lp.

Example 2.6. Let E be a space of real numbers R. Then

MR
p (ε) = (1 + εp)1/p ∼ εp

holds for every ε > 0, and an easy calculation shows that Jq,p(R) = 1 for all 1 ≤
p ≤ q < ∞. Hence we cannot omit the power p in the inequality of Proposition 2.5.

Example 2.7. Let 1 ≤ p, q < ∞ and E be an Lp-space over a measure space
(Ω, Σ, µ). Suppose that 1 ≤ p ≤ q < ∞ holds. Then the Minkowski inequality
shows that for every x, y ∈ E,

‖(|x|q + |y|q)1/q‖p =
(∫

Ω

(|x(t)|q + |y(t)|q)p/qdt

)1/p

≥ (‖x‖q
p + ‖y‖q

p)
1/q ≥ (‖x‖r

p + ‖y‖r
p)

1/r.

Hence MLp

q (ε) º εq and Jr,q(Lp) = 1 hold for all 1 ≤ p ≤ q ≤ r < ∞. Then
MLp

2 (ε) º ε2 for all 1 ≤ p ≤ 2 and MLp

2 (ε) ≥ MLp

p (ε) º εp for all p ≥ 2.

3. Monotonicity and Complex convexity in Banach Lattices

Before we state the main results relating strict (uniform) convexity of a real
Banach lattice E with the strict (uniform) complex convexity of its complexification
EC we need the following preliminary results.

Proposition 3.1. If a complex Banach lattice EC is strictly (resp. uniformly)
complex convex, then E is strictly (resp. uniformly) monotone. In particular, for
each ε > 0,

ME
1 (ε) ≥ HE

∞(ε).

Proof. Suppose that E is not strictly monotone. Then there exist 0 ≤ y ∈ E and
x ∈ E such that

|x| < y and ‖x‖ = ‖y‖ = 1.

Now taking z = y − |x| > 0, for every |ζ| ≤ 1, ζ ∈ C,

|x + ζz| ≤ |x|+ |z| = |x|+ y − |x| = y.

This yields that for every |ζ| ≤ 1, ζ ∈ C,

‖x + ζz‖ ≤ ‖y‖ = 1.

Therefore EC is not strictly complex convex.
In the uniform case, it is easy to see that for each x, y,∈ E with ‖x‖ = 1, ‖y‖ = ε,

‖|x|+ |y|‖ ≥ sup{‖x + ζy‖ : |ζ| ≤ 1} ≥ 1 + HE
∞(ε).

Hence ME
1 (ε) ≥ HE

∞(ε), and the proof is finished. ¤
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Proposition 3.2. Let EC be a complex Banach lattice. Then for all x, y ∈ EC,
1
2

sup{|x + ζy|+ |x− ζy| : |ζ| ≤ 1} = (|x|2 + |y|2)1/2.

1
2π

∫ 2π

0

|x + eiθy| dθ ≥
(
|x|2 +

1
2
|y|2

)1/2

.

Proof. The first equality reults from the Krivine functional calculus [12] for complex
Banach lattices and the following identity on C,

1
2

sup{|z1 + ζz2|+ |z1 − ζz2| : |ζ| ≤ 1} = (|z1|2 + |z2|2)1/2.

For the second identity we refer to Theorem 7.1 in [5]. ¤
Now we can state the relations between moduli of monotonicity and moduli of

complex convexity of Banach lattices.

Proposition 3.3. If E is strictly (resp. uniformly) 2-monotone, then EC is strictly
(resp. uniformly) complex convex. In particular,

ME
1 (ε) ≥ HE

∞(ε) ≥ HE
1 (ε) ≥ ME

2 (ε/
√

2).

Proof. Suppose that E is strictly 2-monotone. Let x ∈ SEC and assume that there
is y ∈ EC such that ‖x + ζy‖ ≤ 1 for all |ζ| ≤ 1, ζ ∈ C. Notice that for all |ζ| ≤ 1,
ζ ∈ C,

2 = 2 ‖x‖ ≤ ‖|x + ζy|+ |x− ζy|‖ ≤ ‖x + ζy‖+ ‖x− ζy‖ ≤ 2.

By the strict monotonicity of E, for every |ζ| ≤ 1, ζ ∈ C,

|x| = 1
2

(|x + ζy|+ |x− ζy|) .

By Proposition 3.2, we get

|x| = 1
2

sup{|x + ζy|+ |x− ζy| : |ζ| ≤ 1} = (|x|2 + |y|2)1/2.

Then the strict 2-monotonicity of E implies y = 0. Therefore strict 2-monotonicity
of E implies strict complex convexity of EC.

For the converse, assume now that E is uniformly 2-monotone. Then by Propo-
sition 3.2, for each x ∈ SEC and y ∈ EC with ‖y‖ ≥ ε, we get

1
2π

∫ 2π

0

|x + eiθy| dθ ≥ (|x|2 +
1
2
|y|2)1/2.

Then
1
2π

∫ 2π

0

‖x + eiθy‖ dθ ≥
∥∥∥∥

1
2π

∫ 2π

0

|x + eiθy| dθ

∥∥∥∥

≥
∥∥∥∥∥
(
|x|2 +

1
2
|y|2

)1/2
∥∥∥∥∥ ≥ 1 + ME

2 (ε/
√

2).

¤
As corollaries of Propositions 2.4, 2.5 and 3.3, we obtain the following two the-

orems. In case when E is a Köthe space they were proved in [10] by using quite
different methods. The characterizations of strict and uniform complex convexity
of Orlicz-Lorentz spaces are studied in [3] with application to density of norm-
attaining operators.
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Theorem 3.4. Let E be a real Köthe function space or order continuous Banach
lattice. Then E is strictly monotone if and only if EC is strictly complex convex.

Theorem 3.5. Let E be a Banach lattice. E is uniformly monotone if and only if
EC is uniformly complex convex (i.e., uniformly PL-convex).

It is well known [6] that unconditional convergence of the series
∑∞

1 xj in a
complex Banach space X implies that

∑∞
j=1 HX

∞(‖xj‖) is convergent. Applying
Proposition 3.3 we obtain immediately the following monotone version of this result.

Corollary 3.6. Suppose that the series
∑∞

1 xj is unconditionally convergent in a
complex Banach lattice EC. Then

∞∑

j=1

ME
2 (‖xj‖) < ∞.

It is also shown in [6] that if EC is a 2-uniformly smooth Banach space such
that lim supε→0 HE

1 (ε)/ε2 > 0, then EC is isomorphic to a Hilbert space. Again by
Proposition 3.3 we obtain its monotone version as follows.

Corollary 3.7. Suppose that EC is a 2-uniformly smooth Banach lattice such that

lim sup
ε→0

ME
2 (ε)
ε2

> 0.

Then EC is isomorphic to a Hilbert space.

4. Relations with cotype

In this section we present some results relating cotype, lower q-estimate and
q-uniform PL-convexity of a complex Banach lattice EC as well as their relations
to q-uniform monotonicity of a real Banach lattices E. For the notions of cotype,
lower q-estimate, q-concavity, we refer to [12].

It is clear that a Banach lattice E satisfying a lower q-estimate for some 1 <
q < ∞ with constant one is uniformly monotone and ME

1 º εq holds. Moreover,
if a Banach lattice E is q-concave for some 2 ≤ q < ∞ with q-concavity constant
one, then ME

q º εq holds. Hence, using Proposition 3.3, we obtain the following
corollaries.

Corollary 4.1. Let 1 < q < ∞ and E be a Banach lattice whose lower q-estimate
constant is equal to one. Then E is uniformly monotone with ME

1 º εq and EC is
2q-uniformly PL-convex.

Corollary 4.2. Let 2 ≤ q < ∞ and E be a Banach lattice whose q-concavity
constant is equal to one. Then E is uniformly q-monotone with ME

q º εq and EC

is q-uniformly PL-convex.

In the proof of Proposition 2.2, a uniformly p-monotone Banach lattice cannot
contain a lattice-isomorphic copy of c0, hence it cannot contain an isomorphic copy
of c0(see [1]). Then Maurey-Pisier theorem gives the following (see Theorem 14.1
in [7]).

Theorem 4.3. Let E be a uniformly monotone Banach lattice. Then E has finite
cotype.
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Corollary 4.4. Suppose that E is a Banach lattice. Then the following properties
are equivalent:

(1) EC is of cotype 2;
(2) E is of cotype 2;
(3) EC is 2-concave;
(4) E is 2-concave;
(5) there is an equivalent uniformly monotone lattice norm on E with ME

2 º ε2

under which EC is 2-uniformly PL-convex.

Proof. The equivalence of (1), (3) is proved in [5]. It is clear that (1) implies (2).
The equivalence of (2) and (4) is well-known (see [12]). Both Theorem 1.d.8 in
[12] and Corollary 4.2 show that (4) implies (5). Finally it is shown in [5] that (5)
implies (1). ¤

Reviewing the proof of Theorem 7.3 in [5], we can obtain the following theorem
so we omit the proof. Notice that for q > 2 it is a stronger result than Corollary 4.1.

Theorem 4.5. Suppose that 2 < q < ∞, and that a Banach lattice E whose lower
q-estimate is equal to one. Then EC is q-uniformly PL-convex.

Corollary 4.6. Suppose that 2 < q < ∞ and that E is a Banach lattice. The
following are equivalent:

(1) EC is of cotype q;
(2) E is of cotype q;
(3) EC satisfies a lower q-estimate;
(4) E satisfies a lower q-estimate;
(5) there is an equivalent lattice norm on E under which EC is q-uniformly

PL-convex;
(6) there is an equivalent lattice norm on E under which E is uniformly mono-

tone with ME
1 º εq.

Proof. The equivalence of (1), (3) and (5) is shown in [5]. It is obvious that (1)
implies (2) and it is well-known that (2) is equivalent to (4) [12]. Recall that a
Banach lattice which satisfies a lower q-estimate can be given an equivalent Banach
lattice norm for which the lower q-estimate constant is one (see [12]). Then both
Theorem 4.5 and the remark above Corollary 4.2 show that (4) implies (5) and (6).
Finally, notice that if a Banach lattice E satisfies ME

1 º εq for 1 < q < ∞ then it
satisfies a lower q-estimate. Hence (6) implies (4) and the proof is complete. ¤

5. Lifting properties of Monotonicity and Complex convexity

Let E be a nontrivial real Köthe space over a complete measure space (Ω, µ) and
X be a nontrivial complex Banach space. Let L0(X) be the set of all X-valued
strongly µ-measurable functions. The Köthe-Bochner function space E(X) is a
Banach space defined by

E(X) = {f ∈ L0(X) : t 7→ ‖f(t)‖X is an element of E},
with the norm

‖f‖ = ‖ ‖f(·)‖X‖E
.

For more details of Köth-Bochner function spaces, see [11].
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Notice that if we choose g ∈ E and a ∈ X such that ‖f‖E = 1 and ‖a‖X = 1,
then both, the map x 7→ g(·)x from X into E(X) and the map f 7→ f(·)a from E
into E(X), are isometries.

Theorem 5.1. The Köthe-Bochner function space E(X) is strictly complex convex
if and only if E is strictly monotone and X is strictly complex convex.

Proof. Suppose that Köthe-Bochner function space E(X) is strictly complex convex
and suppose for a contrary that E is not strictly complex convex. Choose a norm
one element a in X. There exist x, y ∈ E+ such that ‖x‖ = ‖y‖ = 1 and 0 < x < y.
Let z = y − x > 0. Then for every ζ ∈ C with |ζ| ≤ 1,

‖(x(·) + ζz(·))a‖X = |x(·) + ζz(·)| ≤ |y(·)|.
Hence ‖x⊗a+ζz⊗a‖E(X) ≤ ‖y‖E = 1 for all ζ ∈ C with |ζ| ≤ 1, but ‖x⊗a‖E(X) = 1
where z ⊗ a 6= 0. This is a contradiction to the fact that E(X) is strictly complex
convex. The isometric embedding of X into E(X) implies that X is strictly complex
convex if so is E(X).

For the converse, suppose that E is strictly monotone and X is strictly complex
convex. Let f ∈ SE(X). Assume that there is g ∈ E(X) such that ‖f + ζg‖ ≤ 1 for
all |ζ| ≤ 1. Notice that for each |ζ| ≤ 1,

2‖f(·)‖X ≤ ‖f(·) + ζg(·)‖X + ‖f(·)− ζg(·)‖X ,

and
2‖ ‖f(·)‖X‖E ≤ ‖‖f(·) + ζg(·)‖X + ‖f(·)− ζg(·)‖X‖E ≤ 2.

By the strict monotonicity of E, we obtain that for each |ζ| ≤ 1,

2‖f(t)‖X = ‖f(t) + ζg(t)‖X + ‖f(t)− ζg(t)‖X for µ-a.e. t.

Integrating, we get the following

‖f(t)‖X =
1
2π

∫ 2π

0

‖f(t) + eiθg(t)‖X dθ for µ-a.e. t.

The strict complex convexity of X and Theorem 1.1 show that g(t) = 0 for µ-a.e t
and the proof is finished. ¤

Theorem 5.2. The Köthe-Bochner function space E(X) is uniformly complex con-
vex if and only if E is uniformly monotone and X is uniformly complex convex.

Proof. Suppose that E(X) is uniformly complex convex and suppose for a contrary,
that E is not uniformly monotone. So there are sequences (xn), (yn) in E and ε > 0
such that

‖xn‖E = 1, ‖yn‖E = ε, and lim
n
‖ |xn|+ |yn| ‖E = 1.

Let a be a norm one element of X. Then
1
2π

∫ 2π

0

‖xn ⊗ a + eiθyn ⊗ a‖E(X) dθ =
1
2π

∫ 2π

0

‖xn + eiθyn‖E dθ

≤ ‖ |xn|+ |yn| ‖E

holds for all n ∈ N. Notice that ‖xn ⊗ a‖E(X) = 1 and ‖yn ⊗ a‖E(X) = ε. Hence

lim
n

1
2π

∫ 2π

0

‖xn ⊗ a + eiθyn ⊗ a‖E(X) dθ = 1.
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This contradicts the fact that E(X) is uniformly complex convex. By the isometric
embedding of X into E(X), X is uniformly complex convex if E(X) is uniformly
complex convex.

For the converse, suppose that E is uniformly monotone and X is uniformly
complex convex. Let f, g ∈ E(X) with ‖f‖ = 1 and ‖g‖ = 3ε > 0. It is clear that

1
2π

∫ 2π

0

‖f + eiθg‖E(X) dθ ≥
∥∥∥∥

1
2π

∫ 2π

0

‖f(·) + eiθg(·)‖X dθ

∥∥∥∥
E

.

Let

h(t) =
1
2π

∫ 2π

0

‖f(t) + eiθg(t)‖X dθ

A1 = {t : ‖f(t)‖ ≥ ‖g(t)‖ ≥ 0}, A2 = {t : ‖f(t)‖ = 0},
A3 = {t : ‖g(t)‖ > ‖f(t)‖ > 0}, R = support of g.

Then g = gχA1 + gχA2 + gχA3 . So there is Ai such that ‖gχAi
‖ ≥ ε.

Case (1): Assume ‖gχA1‖ ≥ ε. Let

C =
{

t : ‖g(t)‖ ≥ ε

3
‖f(t)‖

}
.

Then

h(t) ≥ ‖f(t)χΩ\(A1∩R)(t)‖X + h(t)χA1∩R(t)

≥ ‖f(t)χΩ\(A1∩R)(t)‖X + h(t)χA1∩R∩C(t) + h(t)χA1∩R\C(t)

≥ ‖f(t)χΩ\(A1∩R)(t)‖X + ‖f(t)‖X(1 + HX
1 (ε/3))χA1∩R∩C(t) + ‖f(t)‖XχA1∩R\C(t)

≥ ‖f(t)‖X + HX
1 (ε/3)‖f(t)‖XχA1∩R∩C(t).

Notice also that

‖fχA1∩R∩C‖ ≥ ‖gχA1∩R∩C‖ = ‖gχA1∩C‖ ≥ ‖gχA1‖ − ‖gχA1\C‖

≥ ‖gχA1‖ −
ε

3
‖fχA1\C‖ ≥

2ε

3
.

Now the uniform monotonicity of E implies that

‖h‖E ≥ ‖ ‖f(·)‖X + HX
1 (ε/3)‖f(·)‖XχA1∩R∩C‖E ≥ 1 + ME

1

(
HX

1

( ε

3

) 2ε

3

)
.

Hence
1
2π

∫ 2π

0

‖f + eiθg‖E(X) dθ ≥ 1 + ME
1

(
HX

1

( ε

3

) 2ε

3

)
.

Case (2): Assume ‖gχA2‖ ≥ ε. Then

h(t) ≥ ‖f(t)χΩ\(A2∩R)(t)‖X + h(t)χA2∩R(t)

= ‖f(t)χΩ\(A2∩R)(t)‖X + (‖f(t)‖X + ‖g(t)‖X)χA2∩R(t)

= ‖f(t)‖X + ‖g(t)‖XχA2(t).

It is clear that the uniform monotonicity of E implies that

‖h‖E ≥ 1 + ME
1 (ε).

Hence
1
2π

∫ 2π

0

‖f + eiθg‖E(X) dθ ≥ 1 + ME
1 (ε).
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Case (3): Assume that ‖gχA3‖ ≥ ε. Then

h(t) ≥ ‖f(t)‖XχΩ\A3(t) + h(t)χA3(t).

Let δ := 1
2 min{ME

1 (ε), 1/2}. If ‖fχA3‖ ≤ δ then ‖fχΩ\A3‖ ≥ 1− δ. Moreover

h(t) ≥ ‖f(t)‖XχΩ\A3(t) + ‖g(t)‖XχA3(t).

Since the uniform monotonicity of E implies that

‖h‖E ≥ (1− δ)(1 + ME
1 (ε))) = 1 + [ME

1 (ε)− (1−ME
1 (ε))δ],

so
1
2π

∫ 2π

0

‖f + eiθg‖E(X) dθ ≥ 1 + [ME
1 (ε)− (1−ME

1 (ε))δ].

If, on the other hand, ‖fχA3‖ ≥ δ, then

h(t) ≥ ‖f(t)‖XχΩ\A3(t) + (1 + HX
1 (1))‖f(t)‖XχA3(t)

= ‖f(t)‖X + HX
1 (1)‖f(t)‖XχA3(t)

Thus by the uniform monotonicity of E,

‖h‖E ≥ 1 + ME
1 (HX

1 (1)δ).

Hence
1
2π

∫ 2π

0

‖f + eiθg‖E(X) dθ ≥ 1 + ME
1 (HX

1 (1)δ).

Combining these three cases and taking

δ̂ = min
{

ME
1

(
H1

( ε

3

) 2ε

3

)
, ME

1 (ε), ME
1 (ε)− (1−ME

1 (ε))δ, ME
1 (HE

1 (1)δ)
}

,

we get
1
2π

∫ 2π

0

‖f + eiθg‖E(X) dθ ≥ 1 + δ̂,

which completes the proof. ¤

It is known that Lp space is uniformly PL-convex for 0 < p < ∞ [5]. Hence we
can obtain the following corollaries.

Corollary 5.3. [5, 8] Let 1 ≤ p < ∞. Lp(X) is strictly complex convex (resp.
uniformly PL-convex) if and only if X is strictly complex convex (resp. uniformly
PL-convex).

As the last topic of this paper we shall discuss the strict complex convexity of a
generalized direct sums of complex Banach spaces (for the case of uniform complex
convexity, see [6]).

Let (Xn, ‖·‖n)∞n=1 be a family of complex Banach spaces with corresponding
moduli of complex convexity Hn

1 , and let E be a real Banach sequence space. The
vector space of sequences x = (xn)∞n=1, with xn ∈ Xn and with (‖xn‖)∞n=1 ∈ E,
becomes a complex Banach space when equipped with the norm ‖x‖ = ‖(‖xn‖)∞1 ‖E .
This space shall be denoted by XE . The natural inclusions jn : Xn → XE given by
the mappings xn 7→ (0, · · · , 0, xn, 0, · · · , ) are isometries.

Theorem 5.4. Let (Xn, ‖ · ‖n)∞n=1 be a family of strictly complex convex Banach
spaces. Suppose that E is strictly monotone Banach sequence space. Then XE is
strictly complex convex.
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Proof. Let x = (xn), y = (yn) ∈ XE with ‖x‖ = 1 and suppose that ‖x + ζy‖ ≤ 1
for all |ζ| ≤ 1. Then

1 ≥ 1
2π

∫ 2π

0

‖x + eiθy‖ dθ

≥
∥∥∥∥∥
(

1
2π

∫ 2π

0

‖xn + eiθyn‖Xn
dθ

)∞

n=1

∥∥∥∥∥
E

≥ ‖ ( ‖xn‖Xn
)∞n=1‖E

= 1.

Notice that for each n ∈ N,

1
2π

∫ 2π

0

‖xn + eiθyn‖Xn
dθ ≥ ‖xn‖Xn

.

Then the strict monotonicity of E implies that

1
2π

∫ 2π

0

‖xn + eiθyn‖Xn dθ = ‖xn‖Xn .

Finally the strict complex convexity of Xn yields that yn = 0 for each n ∈ N, which
completes the proof. ¤
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