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Abstract

It is shown that a Banach space X has Fourier type p with respect to

a locally compact abelian group G if and only if the dual space X ′ has

Fourier type p with respect to G if and only if X has Fourier type p with

respect to the dual group of G. This extends previously known results for

the classical groups and the Cantor group to the setting of general locally

compact abelian groups.

Key words and phrases: Fourier type, vector valued Fourier transform,vector

valued Hausdorff-Young inequality, vector valued harmonic analysis, duality
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1 Introduction and Notation

It is well-known that the Pontrjagin duality for locally compact abelian groups

fits together with the duality of Banach spaces in the study of Hausdorff-Young

inequalities for vector-valued functions. More precisely, if X is a Banach space

with dual space X ′ and G is a locally compact abelian (in short lca) group with

dual group G′, then the validity of a Hausdorff-Young inequality

‖FGf‖LX
p′ (G

′) ≤ c‖f‖LX
p (G) (1)

for all X-valued functions f in LX
p (G) implies a Hausdorff-Young inequality

‖FG′g‖LX′
p′ (G) ≤ c‖g‖LX′

p (G′) (2)

for all g ∈ LX′
p (G′). Here p is a number in the interval [1, 2], p′ is the conjugate

number given by 1/p+1/p′ = 1, and FG and FG′ denote the Fourier transforms

on G and G′, respectively. Proofs of this crucial fact can be found in [1, 2].

Observe that the minimal possible constants c in (1) and (2) coincide.

However, in the case of the classical groups of the real numbers R, the Torus

T and the integers Z, and in the case of the Cantor group D = {0, 1}N, even

more is true. These groups exhibit an autoduality with respect to vector-valued

Hausdorff-Young inequalities in the following sense. If (1) is satisfied for all

X-valued functions f in LX
p (G), where G is one of these groups, then it is also

satisfied for all X ′-valued functions f in LX′
p (G) with possibly different constant

c. This is obvious for G = R for R′ = R and is proved for G = T,Z in [1, 2, 4]

and for G = D in [2].

The main purpose of this paper is to show that this autoduality behavior is

not special to the above mentioned lca groups but is actually true for any lca

group G. The question of a characterization of lca groups with this autoduality

was also raised in [2]. Before we state the result more formally, let us introduce

the necessary notation.

We will work in the framework of an lca group G which comes equipped

with its Haar measure µG. X and Y will always be Banach spaces and T
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a linear and bounded operator from X to Y . The dual operator of T is T ′.

For p ∈ [1,∞], Lp(G) stands for the Lebesgue space Lp(G,µ) and LX
p (G) is

the Bochner-Lebesgue space of p-integrable X-valued functions. For a function

f ∈ L1(G), the Fourier transform FGf is given by

FG(f)(γ) =
∫

G

f(x)γ(x)dµG(x)

for γ ∈ G′. It is a function in C0(G′), the space of continuous functions on G′

vanishing at infinity. The classical Hausdorff-Young inequality for G makes it

possible to define the Fourier transform also for functions in Lp(G) for 1 < p ≤ 2

so that FG defines a bounded operator from Lp(G) into Lp′(G′). We assume the

standard normalization of the Haar measure µG so that Plancherel’s Theorem

holds which means that FG is an isometry from L2(G) onto L2(G′).

From now on, p will always be in the interval [1, 2]. The Banach space X

is said to have Fourier type p with respect to G if the Fourier transform FG,

which is originally defined in the obvious way on the algebraic tensor product

Lp(G) ⊗ X of finite sums
∑

ϕkxk with ϕk ∈ Lp(G) and xk ∈ X, extends to

a bounded linear operator from LX
p (G) into LX

p′ (G
′). This just means that

(1) holds. The operator norm of this operator is denoted by ‖X|FT G
p ‖. This

concept was first introduced by Peetre in [7] for G = R and by Milman in [5] in

the general case.

This definition is easily extended to the case of operators. We will say that

T has Fourier type p with respect to G if the operator FG⊗T originally defined

from Lp(G) ⊗ X to Lp′(G′) ⊗ Y extends to a bounded linear operator from

LX
p (G) to LY

p′(G
′). Again, the operator norm is then denoted by ‖T |FT G

p ‖,
so that ‖IX |FT G

p ‖ = ‖X|FT G
p ‖ where IX is the identity operator on X. The

class of all operators of Fourier type p with respect to G equipped with the

norm ‖ · |FT G
p ‖ form a Banach operator ideal in the sense of Pietsch, see [8].

We denote this ideal by FT G
p . Observe that every operator has Fourier type

1 with respect to any lca group, but that for any infinite lca group G and any

p ∈ (1, 2], there are Banach spaces without Fourier type p with respect to G.

For examples and more information on the notion of Fourier type, we refer the
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reader to [1, 2, 8].

The standard duality result mentioned in the introductory paragraph can

now be formulated as follows. The generalization of the proofs in [1, 2] to the

operator case is straightforward.

Theorem 1. A bounded linear operator T has Fourier type p with respect to the

lca group G if and only if the dual operator T ′ has Fourier type p with respect

to the dual group G′. Moreover, in this case ‖T |FT G
p ‖ = ‖T ′|FT G′

p ‖.

In the language of operator ideals, this says that the dual operator ideal of

FT G
p is FT G′

p with equal norms.

Now we can formulate the main result of this paper, which says that the

operator ideal FT G
p is even symmetric.

Theorem 2. For any bounded linear operator T between Banach spaces and all

lca groups G, the following properties are equivalent:

(i) T has Fourier type p with respect to G.

(ii) T ′ has Fourier type p with respect to G.

(iii) T has Fourier type p with respect to G′.

(iv) T ′ has Fourier type p with respect to G′.

In the next section, we collect some results on Fourier type norms for product

groups which are needed for the proof of Theorem 2. Section 3 contains the

proof, which is first carried out for the case that G is compact or discrete. Then

the result can be extended to general lca groups G with the help of the structure

theory of lca groups.

2 Fourier type with respect to product groups

We start by providing a theorem connecting the Fourier type of an operator

T with respect to a product group G ×H with the Fourier type of the tensor
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product FH ⊗ T : LX
p (H) → LY

p′(H
′). It was observed in [1] that T ∈ FT G×H

p

already implies T ∈ FT H
p , so that the latter operator is well defined. Again,

in [1] only spaces are considered, but the extension of the proof to the operator

case is straightforward.

Theorem 3. Let G and H be lca groups and 1 < p ≤ 2. Then T ∈ FT G×H
p if

and only if T ∈ FT H
p and FH ⊗ T : LX

p (H) → LY
p′(H

′) ∈ FT G
p . Moreover, in

this case

‖FH ⊗ T |FT G
p ‖ = ‖T |FT G×H

p ‖.

Proof. Assume first that T ∈ FT H
p and FH ⊗ T : LX

p (H) → LY
p′(H

′) ∈ FT G
p .

We will prove that

‖T |FT G×H
p ‖ ≤ ‖FH ⊗ T |FT G

p ‖ =: c. (3)

This implies that T ∈ FT G×H
p . By density, to verify (3) it is enough to show

that ∥∥∥
∑

j

(FG×H%j)Txj

∥∥∥
LY

p′ (G
′×H′)

≤ c
∥∥∥

∑

j

%jxj

∥∥∥
LX

p (G×H)

holds for all finite families %j ∈ Lp(G × H) and xj ∈ X. Again by density of

Lp(G)⊗ Lp(H) in Lp(G×H) this is equivalent to the inequality

∥∥∥
∑

j

FG×H(ϕjψj)Txj

∥∥∥
LY

p′ (G
′×H′)

≤ c
∥∥∥

∑

j

ϕjψjxj

∥∥∥
LX

p (G×H)

for all ϕj ∈ Lp(G), ψj ∈ Lp(H) and xj ∈ X. Since

FG×H(ϕjψj)Txj = (FGϕj)(FHψj)Txj = (FGϕj)(FH ⊗ T )(ψj ⊗ xj) (4)

and ∥∥∥
∑

j

ϕjψjxj

∥∥∥
LX

p (G×H)
=

∥∥∥
∑

j

ϕj(ψj ⊗ xj)
∥∥∥

L
LX

p (H)
p (G)

, (5)

this is immediate from the definition of c = ‖FH ⊗ T |FT G
p ‖.

Now assume that T ∈ FT G×H
p . By the remark before the statement of the

theorem, we know that T ∈ FT H
p . We will prove that

‖FH ⊗ T |FT G
p ‖ ≤ ‖T |FT G×H

p ‖ =: d. (6)
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Again density arguments reduce this to the question whether
∥∥∥

∑

j

(FGϕj)(FH ⊗ T )(ψj ⊗ xj)
∥∥∥

L
LY

p′ (H′)
p′ (G′)

≤ d
∥∥∥

∑

j

ϕjψjxj

∥∥∥
L

LX
p (H)

p (G)

holds for all finite families ϕj ∈ Lp(G), ψj ∈ Lp(H) and xj ∈ X. The proof

of (6) is finished by the observation that the definition of d = ‖T |FT G×H
p ‖

together with (4), (5) and
∥∥∥

∑

j

(FGϕj)(FH⊗T )(ψj⊗xj)
∥∥∥

L
LY

p′ (H′)
p′ (G′)

=
∥∥∥

∑

j

(FGϕj)(FHψj)Txj

∥∥∥
LY

p′ (G
′×H′)

imply this inequality. Finally, (3) and (6) also show the claimed equality of

norms.

Corollary 4. Let G1, G2 and H be lca groups and 1 < p ≤ 2. If there exists a

constant c such that

‖T |FT G2
p ‖ ≤ c‖T |FT G1

p ‖

for all operators T ∈ FT G1
p then also

‖T |FT G2×H
p ‖ ≤ c‖T |FT G1×H

p ‖

for all operators T ∈ FT G1×H
p .

Proof. If T ∈ FT G1×H
p , we obtain from Theorem 3 that FH ⊗ T ∈ FT G1

p and

‖T |FT G1×H
p ‖ = ‖FH ⊗ T |FT G1

p ‖.

Now the assumption implies that FH ⊗ T ∈ FT G2
p and

‖FH ⊗ T |FT G2
p ‖ ≤ c‖FH ⊗ T |FT G1

p ‖.

Applying Theorem 3 once more, we find that T ∈ FT G2×H
p and

‖T |FT G2×H
p ‖ = ‖FH ⊗ T |FT G2

p ‖.

Altogether, we proved the claim.

From this corollary, we immediately obtain generalizations of the results of

[1]. These generalizations were already observed in [6], where the results are

shown using close analogues of the proofs in [1, 2].
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Corollary 5. For any d = 1, 2, . . . ,∞ and all lca groups G, the ideals FT Zd×G
p

and FT Z×G
p coincide with equal norms. Also, the ideals FT Td×G

p and FT T×G
p

coincide with equal norms.

Proof. Use Corollary 4 together with Theorem 1.7 in [1] and the following corol-

laries there.

For the next corollaries, we need the Babenko-Beckner constants given by

Bp =
√

p1/p p′1/p′ for 1 < p ≤ 2.

Corollary 6. For any d = 1, 2, . . . and all lca groups G, the ideals FT Rd×G
p

and FT Zd×G
p coincide and the corresponding norms satisfy the inequalities

‖T |FT Rd×G
p ‖ ≤ ‖T |FT Zd×G

p ‖ ≤ B−d
p ‖T |FT Rd×G

p ‖.

Proof. Use Corollary 4 together with the corresponding corollary in [1].

Corollary 7. For any d = 1, 2, . . . and all lca groups G, the ideals FT Zd×G
p

and FT Td×G
p coincide and the corresponding norms satisfy the inequalities

Bp‖T |FT T
d×G

p ‖ ≤ ‖T |FT Zd×G
p ‖ ≤ B−1

p ‖T |FT Zd×G
p ‖.

Proof. Use Corollary 4 together with Theorem 1.8 in [1].

3 Proof of the duality theorem

Since Theorem 2 is trivial for p = 1, we always assume 1 < p ≤ 2 in this section.

We start by recalling the following result from Lemma 3.2 and Proposition 3.3

from [1]. Here Cc(H, X) denotes the space of all compactly supported X-valued

functions on the lca group H.

Proposition 8. Let G be an lca group which contains an open subgroup H.

Then FT G
p ⊂ FT H

p and

∥∥T |FT H
p

∥∥ ≤
∥∥T |FT G

p

∥∥ for all T ∈ FT G
p .
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Furthermore, for any f ∈ Cc(H,X), the extension g to all of G defined by

zero outside of H satisfies

‖FG ⊗ Tg‖LY
p′ (G

′)

‖g‖LX
p (G)

=
‖FH ⊗ Tf‖LY

p′ (H
′)

‖f‖LX
p (H)

.

Now we can prove our main duality result in the case that G is compact or

discrete.

Theorem 9. Let G be a compact or discrete abelian group. Then FT G′
p ⊂ FT G

p

and

‖T |FT G
p ‖ ≤ B−1

p ‖T |FT G′
p ‖

for all T ∈ FT G′
p .

Proof. By the standard duality Theorem 1 it is sufficient to consider the case

that G is discrete. By a density argument, it is then enough to prove

‖(FG ⊗ T )g‖LY
p′ (G

′) ≤ B−1
p ‖T |FT G′

p ‖ ‖g‖LX
p (G) (7)

for functions g with finite support on G. So suppose that g is such a function

with finite support S ⊂ G given by g(a) = xa ∈ X for a ∈ S and g(a) = 0 for

a ∈ G \ S. The finitely generated group H = 〈S〉 is topologically isomorphic to

Zd × F for some d ∈ N ∪ {0} and some finite abelian group F . Then we can

consider the restriction f of g to H. By Proposition 8, we obtain that (7) is

equivalent to

‖(FH ⊗ T )f‖LY
p′ (H

′) ≤ B−1
p ‖T |FT G′

p ‖ ‖f‖LX
p (H). (8)

To prove this inequality, we first observe that by the definition of Fourier

type with respect to H

‖(FH ⊗ T )f‖LY
p′ (H

′) ≤ ‖T |FT H
p ‖ ‖f‖LX

p (H).

Corollary 5 and Corollary 7 imply that

‖T |FT H
p ‖ = ‖T |FT Zd×F

p ‖ = ‖T |FT Z×F
p ‖ ≤ B−1

p ‖T |FT T×F
p ‖.
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Since F is finite the dual group of F is isomorphic to F . Then the standard

duality Theorem 1 and Corollary 5 give

‖T |FT T×F
p ‖ = ‖T ′|FT Z×F

p ‖ = ‖T ′|FT Zd×F
p ‖ = ‖T ′|FT H

p ‖.

Since G is discrete, H is an open subgroup of G. Applying Proposition 8 then

implies together with the standard duality Theorem 1

‖T ′|FT H
p ‖ ≤ ‖T ′|FT G

p ‖ = ‖T |FT G′
p ‖.

Altogether, we obtain (8) which completes the proof of the theorem.

The preceding theorem is already sufficient to prove Theorem 2 for the spe-

cial case of compact or discrete abelian groups. The next theorem brings us a

step closer to the general case, which will then follow from the structure theorem

of lca groups.

Theorem 10. Let G be an lca group which has a compact and open subgroup.

Then FT G′
p ⊂ FT G

p and

‖T |FT G
p ‖ ≤ B−3

p ‖T |FT G′
p ‖ for all T ∈ FT G′

p . (9)

Proof. Let us first assume that G is topologically isomorphic to Zd×K for some

d ∈ N∪{0} and some compact abelian group K. Using in succession Corollaries

5, 7, Theorem 9, and Corollaries 7, 5 again, we get

‖T |FT G
p ‖ = ‖T |FT Zd×K

p ‖ = ‖T |FT Z×K
p ‖ ≤ B−1

p ‖T |FT T×K
p ‖

≤ B−2
p ‖T |FT Z×K′

p ‖ ≤ B−3
p ‖T |FT T×K′

p ‖ = B−3
p ‖T |FT Td×K′

p ‖
= B−3

p ‖T |FT G′
p ‖.

Now assume the general case that we just have an open and compact sub-

group H of G. Let q : G → G/H be the canonical quotient map and observe

that G/H is a discrete abelian group. By a density argument, it is enough to

show that

‖(FG ⊗ T )g‖LY
p′ (G

′) ≤ B−3
p ‖T |FT G′

p ‖ ‖g‖LX
p (G) (10)
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for functions g vanishing outside of q−1(S) for some finite set S ⊂ G/H. So

let g be such a function and let M = q−1(〈S〉) be the preimage of the finitely

generated group 〈S〉 which is topologically isomorphic to Zd × F for some d ∈
N ∪ {0} and some finite abelian group F . Then M is an open subgroup of G

containing H as a subgroup and M/H is topologically isomorphic to Zd × F .

Now it follows from the proof of Theorem 9.8 in [3] that M itself is topologically

isomorphic to Zd×K for some compact abelian group K, so we already proved

(9) for M .

Let f be the restriction of g to M . We apply (9) for M to obtain that

‖(FM ⊗ T )f‖LY
p′ (M

′) ≤ ‖T |FT M
p ‖ ‖f‖LX

p (M) ≤ B−3
p ‖T |FT M ′

p ‖ ‖f‖LX
p (M).

Using the standard duality Theorem 1 and Proposition 8 we find that

‖T |FT M ′
p ‖ = ‖T ′|FT M

p ‖ ≤ ‖T ′|FT G
p ‖ = ‖T |FT G′

p ‖.

Hence

‖(FM ⊗ T )f‖LY
p′ (M

′) ≤ ‖T |FT G′
p ‖ ‖f‖LX

p (M).

Since g vanishes outside of M , (10) follows by Proposition 8, which concludes

the proof.

Now we are prepared for the proof of our main theorem.

Proof of Theorem 2. The equivalence of (i) and (iv) as well as the equivalence of

(ii) and (iii) follows from the standard duality Theorem 1. Then the theorem is

proved if we show that (iii) implies (i) for again this also gives that (ii) implies

(iv) by Theorem 1.

So it is enough to show for any lca group G and all operators T ∈ FT G′
p

that

‖T |FT G
p ‖ ≤ C‖T |FT G′

p ‖ (11)

for some constant C depending only on p and G. We already know this from

Theorem 10 if G contains a compact and open subgroup. The general case will

now follow from the structure theorem for lca groups saying that a general lca
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group is topologically isomorphic to Rd ×H for some d ∈ N∪ {0} and some lca

group H which has a compact and open subgroup. We obtain from Corollary 6

and Theorem 1 that

‖T |FT G
p ‖ = ‖T |FT Rd×H

p ‖ ≤ ‖T |FT Td×H
p ‖.

Since H contains a compact and open subgroup, the same is true for Td ×H.

Applying Theorem 10, we find that

‖T |FT Td×H
p ‖ ≤ B−3

p ‖T |FT Zd×H′
p ‖.

Finally, Corollary 6 gives that

‖T |FT Zd×H′
p ‖ ≤ B−d

p ‖T |FT Rd×H′
p ‖ = B−d

p ‖T |FT G′
p ‖,

so that (11) indeed holds with C = B−d−3
p .
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