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1 Introduction

The reader is referred to the next section for the definitions.
A regular near polygon of order (s, t) is a distance-regular graph of valency s(t+1), diameter

d and ai = ci(s − 1) for all 1 ≤ i ≤ d − 1 such that for any vertex x the subgraph induced by
the neighbors of x is the disjoint union of t + 1 complete graphs of size s.

Let Γ be a regular near polygon of order (s, t). We are looking at small t. If t = 0, then
it is clear that Γ is a complete graph. If t = 1, then Γ is a line graph and they are classified,
see [3] and [9]. In particular it was shown that the numerical girth is bounded by 12. In [6] we
classified the regular near polygons of order (s, 2), and we showed that the numerical girth is
bounded by 8 when s > 1. Hence we may assume that t ≥ 3.

In this note we prove several inequalities for regular near polygons of order (s, t), with t ≥ 3.
We will also discuss its implications for when t equals three.

Theorem 1 Let Γ be a regular near polygon of order (s, t) with t ≥ 3. Let d be the diameter of
Γ and let r := max{i | ci = 1}. Assume r + 2 ≤ d. Let e := min{i | ci = cd−1} and let q be an
integer with r + 1 ≤ q ≤ e such that 2d < 2q + r + 1. Then s < th, where

h := h(d, q, r) =
2(q + d)− (r + 1)
2(q − d) + (r + 1)

.

By putting q = r + 1 in Theorem 1 we have the following corollary.

Corollary 2 Let Γ be a regular near polygon of order (s, t) with t ≥ 3. Let d be the diameter of

Γ and let r := max{i | ci = 1}. Assume r + 2 ≤ d <
3
2
(r + 1). Then s < th

′
, where

h′ := h′(d, r) =
r + 1 + 2d

3(r + 1)− 2d
.

We remark that h′(d, r) = h(d, r + 1, r) ≥ 3 and that

lim
d→r+1

h′(d, r) = 3.

It is well known that s ≤ t3 for the generalized polygons of order (s, t). So our theorem is a
generalization of this inequality for regular near polygons.

We also prove the following results. These are helpful for considering the regular near
polygons of order (s, 3).

Theorem 3 Let Γ be a regular near polygon of order (s, t) with t ≥ 3. Let d be the diameter of

Γ and let r := max{i | ci = 1} ≥ 3. Suppose cr+1 = · · · = cd−1 ≥ 3
4
(t + 1). Then s < t(t + 1).

Theorem 4 Let Γ be a regular near polygon of order (s, t) with t ≥ 3 and s ≥ t(t + 1). Let d be
the diameter of Γ and let r := max{i | ci = 1} ≥ 7. Suppose d ≥ r+3 and cr+2 = · · · = cd−1 = t.
Then t = 3. Moreover if r ≥ 13, then s ≤ 13.

In Section 2 we recall definitions and several known results. We prove Theorems 1, 3 and
4 in Sections 3, 4 and 5 respectively. In Section 6 we consider regular near polygons of order
(s, 3).
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2 Preliminary

Let Γ = (V Γ, EΓ) be a connected graph without loops or multiple edges. For vertices x and y
in Γ we denote by ∂Γ(x, y) the distance between x and y in Γ. The diameter of Γ, denoted by d,
is the maximal distance of two vertices in Γ. We denote by Γi(x) the set of vertices which are
at distance i from x. A connected graph Γ with diameter d is called distance-regular if there
are numbers

ci (1 ≤ i ≤ d), ai (0 ≤ i ≤ d) and bi (0 ≤ i ≤ d− 1)

such that for any two vertices x and y in Γ at distance i the sets

Γi−1(x) ∩ Γ1(y), Γi(x) ∩ Γ1(y) and Γi+1(x) ∩ Γ1(y)

have cardinalities ci, ai and bi, respectively. Then Γ is regular with valency k := b0.
Let Γ be a distance-regular graph with diameter d. The array

ι(Γ) =





∗ c1 · · · ci . . . cd−1 cd

a0 a1 · · · ai . . . ad−1 ad

b0 b1 · · · bi . . . bd−1 ∗





is called the intersection array of Γ. Define r = r(Γ) := max{i | (ci, ai, bi) = (c1, a1, b1)}. The
numerical girth of Γ is 2r + 2 if cr+1 6= 1 and 2r + 3 if cr+1 = 1.

Let ki := |Γi(x)| for all 0 ≤ i ≤ d which does not depend on the choice of x. It is known that
kici = ki−1bi−1 for all 1 ≤ i ≤ d.

By an eigenvalue of Γ we will mean an eigenvalue of its adjacency matrix A. Its multiplicity
is its multiplicity as eigenvalue of A. Define the polynomials ui(x) by

u0(x) := 1, u1(x) := x/k, and
ciui−1(x) + aiui(x) + biui+1(x) = xui(x), i = 1, 2, . . . , d− 1.

Let θ be an eigenvalue of Γ with multiplicity m(θ). It is well-known that

m(θ) =
|V Γ|∑d

i=0 kiui(θ)2
.

For more information on distance-regular graphs we would like to refer to the books [1] [2],
[3] and [4].

A graph Γ is said to be of order (s, t) if Γ1(x) is a disjoint union of t + 1 cliques of size s for
every vertex x in Γ. In this case, Γ is a regular graph of valency k = s(t + 1) and every edge lies
on a clique of size s + 1.

A graph Γ is called ( the collinearity graph of ) a regular near polygon of order (s, t) if it is
a distance-regular graph of order (s, t) with diameter d and ai = ci(s− 1) for all 1 ≤ i ≤ d− 1.

More information on regular near polygons can be found in [3, §6.4–6.6].
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The rest of this section we collect several known results.

Lemma 5 Let Γ be a distance-regular graph of diameter d. Let q be an integer with 1 ≤ q ≤ d−1.
Suppose cq+1 < bq. Then

|V Γ| ≤ kq

(
bq

cq+1

)d−q (
bq

bq − cq+1

)
.

Proof. Let γ =

(
bq

cq+1

)
. Since kici = bi−1ki−1 for 1 ≤ i ≤ d, we have

kq+j = kq
bq · · · bq+j−1

cq+1 · · · cq+j
≤ kq

(
bq

cq+1

)j

= kqγ
j

for all 1 ≤ j ≤ d− q, and

kq−i = kq
cq · · · cq−i+1

bq−1 · · · bq−i
≤ kq

(
cq+1

bq

)i

= kqγ
−i

for all 1 ≤ i ≤ q. It follows that

|V Γ| =
d∑

i=0

ki ≤
d∑

i=0

kqγ
i−q = kqγ

−q

(
γd+1 − 1

γ − 1

)
< kqγ

d−q
(

γ

γ − 1

)
.

The desired result is proved.

Proposition 6 [5, Proposition 3.3] Let Γ be a distance-regular graph with valency k, numerical
girth g such that each edge lies in an (a1 + 2)-clique. Let h be a positive integer and let θ be an

eigenvalue of Γ with multiplicity m(θ). Suppose θ 6= k,− k

a1 + 1
. Then the following hold.

(1) If g ≥ 4h, then m(θ) ≥ kbh−1
1 .

(2) If g ≥ 4h + 2 then m(θ) ≥ (a1 + 2)bh
1 .

Corollary 7 Let Γ be a distance-regular graph of order (s, t) with r := max{i | (ci, ai, bi) =
(c1, a1, b1)}. Let θ be an eigenvalue of Γ with the multiplicity m(θ). Suppose s ≥ t, and θ 6=
s(t + 1),−t− 1. Then

m(θ) ≥
(

t + 1
t

)
(st)

r+1
2 .

Proof. We note that a1 = s− 1, k = s(t + 1) and b1 = st.
If r is odd with r = 2h− 1, then g ≥ 2r + 2 = 4h. Hence Proposition 6 (1) implies

m(θ) ≥ kbh−1
1 =

(
t + 1

t

)
(st)

r+1
2 .

If r is even with r = 2h, then g ≥ 2r + 2 = 4h + 2. Hence Proposition 6 (2) implies

m(θ) ≥ (a1 + 2)bh
1 = (s + 1)(st)

r
2 .

Since s ≥ t, we have
(s + 1)√

s
≥ (t + 1)√

t
. The desired result is proved.
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Lemma 8 Let Γ be a distance-regular graph of diameter d and let j be an integer with 1 ≤ j ≤ d.
Let x be a vertex of Γ and let ∆ be the subgraph induced by Γj(x). Suppose ∆ is not connected.
Then the second largest eigenvalue θ of Γ satisfies θ ≥ aj .

Proof. ∆ is aj-regular with at least two connected components. The assertion follows by
interlacing.

Remark. Let Γ be a regular near polygon of order (s, t) and let x be a vertex of Γ. Then Γd−1(x)
is not connected and thus the second largest eigenvalue θ of Γ satisfies θ ≥ ad−1 = cd−1(s− 1).

The following proposition is an easy application of interlacing. (cf. [8, Theorem 6.2])

Proposition 9 Let Γ be a distance-regular graph of diameter d. Let q and ` be positive integers
with q+` ≤ d such that (cq, aq, bq) = (cq+`−1, aq+`−1, bq+`−1). Then the second largest eigenvalue
θ of Γ satisfies

θ ≥ aq + 2
√

bqcq cos
(

2π

` + 1

)
.

Proposition 10 ([7, Proposition 8].) Let Γ be a distance-regular graph of diameter d and
valency k. For any non-negative integer σ with σ ≤ k let

δ := δ(σ) = min{i | 1 ≤ i ≤ d, σ ≤ ci + ai},

βi := βi(σ) = σ − ci − ai for 0 ≤ i ≤ δ,

κi := κi(σ) =
β0 · · ·βi−1

c1 · · · ci
for 1 ≤ i ≤ δ

and
N(σ) := 1 + κ1 + · · ·+ κδ.

Let h and j be positive integers with h + j ≤ d. Suppose ch = ch+j . Then

N(ah) ≤ bj · · · bh+j−1

c1 · · · ch
.

To close this section we prove the following corollary of the above proposition.

Corollary 11 Let Γ be a distance-regular graph of order (s, t) with s > t ≥ 3. Let r = max{i |
(ci, ai, bi) = (1, s− 1, st)} ≥ 2. Let q and ` be positive integer with ` < r < q and q + ` ≤ d such
that cq = cq+`−1 and aq > cq−1 + aq−1. Then we have

(
st

bq

)`−1

<
st(aq − cq−1 − aq−1)

aq(cq + aq − cq−1 − aq−1)

q−1∏

i=1

(
bi

aq − ci − ai

)
.

Proof. Let a := aq. Put h = q and j = `− 1 in Proposition 10. Then we have

a

[
1 +

a− cq−1 − aq−1

cq

] q−2∏

i=1

(a− ci − ai)
ci+1

= κq−1(a) + κq(a) < N(a) ≤
q∏

i=1

b`−2+i

ci
.

The desired result is proved.
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3 Proof of Theorem 1

In this section we prove Theorem 1. We start from a proposition.

Proposition 12 Let Γ be a distance-regular graph of diameter d. Let θ be the second largest
eigenvalue of Γ. Let i be an integer with 1 ≤ i ≤ d− 1 such that ci ≤ bi and θ > ai + 2

√
bici. Let

αi be the largest root of the equation

fi(X) := biX
2 + (ai − θ)X + ci = 0.

Then ui+1(θ) > (αi)i+1.

Proof. The assertion follows from an easy induction.

Proposition 13 Let Γ be a distance-regular graph of order (s, t) with s > t ≥ 3. Let d be the
diameter of Γ and r := max{i | (ci, ai, bi) = (1, s−1, st)}. Assume d ≥ r +2. Let θ be the second
largest eigenvalue of Γ. Let q be an integer with 1 ≤ q ≤ d − 1 such that cq−1 ≤ bq−1. Suppose
there exists a real number β with 0 < β < 1 such that θ > aq−1 + cq−1β

−1 + bq−1β. Then the
following hold.
(1) uq(θ) > βq.
(2) If cq+1 < bq, then

m(θ) <

(
bq

cq+1

)d−q (
bq

bq − cq+1

)
β−2q.

In particular,
(√

st
)r+1

<
tbq

(t + 1)(bq − cq+1)

(
bq

cq+1

)d−q

β−2q.

Proof. (1) Note that θ > aq−1 + cq−1β
−1 + bq−1β ≥ aq−1 + 2

√
bq−1cq−1. Since fq−1(β) < 0,

we have αq−1 ≥ β. Thus the assertion follows from Proposition 12.
(2) We have

m(θ) =
|V Γ|∑d

i=0 kiui(θ)2
<

|V Γ|
kquq(θ)2

.

The first assertion follows from (1) and Lemma 5.
The second assertion follows from the first and Corollary 7.

Proof of Theorem 1. It is easy to see that h := h(d, q, r) ≥ 3. We may assume that s ≥ t3.
Let θ be the second largest eigenvalue of Γ. Then we have

θ ≥ cd−1(s− 1) ≥ (cq−1 + 1)(s− 1) > aq−1 + tcq−1 +
bq−1

t
.

Since bq ≥ s ≥ t3 > (t + 1)cq+1, we have tbq ≤ (t + 1)(bq − cq+1). Put β =
1
t

in Proposition 13.
Then

(√
st

)r+1
<

(
bq

cq+1

)d−q

β−2q < (st)d−qt2q.

The desired result is proved.
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4 Proof of Theorem 3

Let Γ be a distance-regular graph of order (s, t) with s > t ≥ 3. Let d be the diameter of Γ and
r = max{i | (ci, ai, bi) = ((1, s− 1, st)} ≥ 3.

Assume d ≥ r + 2 and Γ has the following intersection array:

ι(Γ) =





∗ 1 · · · 1 c · · · c cd

0 s− 1 · · · s− 1 a · · · a ad

s(t + 1) st · · · st b · · · b ∗





.

Note that a ≥ c(s− 1). Let θ be the second largest eigenvalue of Γ and let σ :=
(

b

stc

) 1
4

.

Lemma 14 Suppose b ≥ t(t + 1) and θ ≥ (s− 1) + σ−1 + σst. Then 3r + 4 ≤ 2d.

Proof. Put q = r + 1 in Proposition 13. Then we have ur+1(θ) ≥ σr+1 and

(
b

c

) r+1
2

=
(
σ2
√

st
)r+1

<
tb

(t + 1)(b− cr+2)

(
b

cr+2

)d−r−1

≤
(

b

c

)d−r−1

.

The lemma is proved.

Proof of Theorem 3. Suppose s ≥ t(t + 1) and derive a contradiction. Let (c, a, b) :=

(cr+1, ar+1, br+1) and σ :=
(

b

stc

) 1
4

. Since c ≥ 3
4
(t + 1), we have b ≤ 1

4
(t + 1)s. Thus

1√
st
≤ σ ≤ 1√

3
.

It follows by, Lemma 8, that

θ ≥ ad−1 = c(s− 1) ≥ 3
4
(t + 1)(s− 1) ≥ (s− 1) + σ−1 + σst.

Since b ≥ s ≥ t(t + 1), we have 3r + 4 ≤ 2d from Lemma 14.
By putting q = r + 1 and ` = d− r − 1 in Corollary 11 we have

(
4t

t + 1

) r
2 ≤

(
st

b

)`−1

<
st

a

(
st

a− s

)r

<
4st

3(t + 1)(s− 1)

(
4st

3st− 3t− s− 3

)r

as a ≥ 3
4
(t + 1)(s− 1).

If t ≥ 4, then we have (
16
5

) r
2

<
4
3

(
16s

11s− 9

)r

.

This is a contradiction as s ≥ t(t + 1) ≥ 20.
If t = 3, then we have

(3)
r
2 <

s

s− 1

(
3s

2s− 3

)r

.

This is a contradiction as s ≥ t(t + 1) ≥ 12.
The theorem is proved.

6



5 Proof of Theorem 4

Throughout this section Γ denotes a regular near polygon of order (s, t) with t ≥ 3 and s ≥
t(t + 1). Let d be the diameter of Γ and r = max{i | ci = 1} ≥ 3. Assume d ≥ r + 3 and
cr+1 < t = cr+2 = · · · = cd−1. Let ` := d− r − 2 = |{i | ci = t}|.

Let θ be the second largest eigenvalue of Γ and let α := αr be the largest root of the equation

fr(X) := stX2 + (s− 1− θ)X + 1 = 0.

Note that θ ≥ ad−1 = t(s− 1) by Lemma 8. Let β be the largest root of the equation

stX2 − (s− 1)(t− 1)X + 1 = 0.

Then we have α ≥ β.

Lemma 15 (1)
(
α2
√

st
)r+1

<
st(t− 1)

(t + 1)(s− t)

(
s

t

)`+1

.

(2)

t`−1 <
2s

(s− 1)

(
st

st− s− t

)r

.

(3) If t ≥ 4, then r ≤ 2` and r < 7.

Proof. Put q = r + 2 in Lemma 5. Then

|V Γ| ≤ kr+2

(
s

t

)d−r−2 (
s

s− t

)
= kr+1

(
br+1

s− t

) (
s

t

)d−r−1

.

It follows, by Corollary 7 and Proposition 12, that

(
t + 1

t

)
(st)

r+1
2 ≤ m(θ) <

|V Γ|
kr+1ur+1(θ)2

<
br+1

(s− t)α2(r+1)

(
s

t

)`+1

.

Since br+1 = (t + 1− cr+1)s ≤ (t− 1)s, the assertion is proved.
(2) This follows by putting q = r + 2 in Corollary 11.
(3) Suppose 2` + 1 ≤ r. Then, using (1), we have

(
β2t

)4 ≤
(
α2t

)r+1
< (t− 1).

which is a contradiction. Hence r ≤ 2`. It follows, by (2), that
(

st− s− t

s
√

t

)r

<
2st

(s− 1)
.

This implies r < 7. The desired result is proved.

Lemma 16 Suppose t = 3 and s ≥ 14. Then the following hold:
(1) r ≤ 2` + 1.
(2) If r ≥ 8, then 2`− 2 ≤ r ≤ 2`.
(3) If r ≥ 11, then s ≥ 90 and 2` = r.
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Proof. (1) Suppose 2` + 2 ≤ r. Then Lemma 15 (1) implies that

1 <
(
3β2

)r+1 ≤ 3
√

3s

2(s− 3)
.

which is a contradiction. Hence we have r ≤ 2` + 1.
(2) We have ` ≥ 4 from (1). It follows, by putting q = r + 2 in Proposition 9, that

θ ≥ t(s− 1) + 2
√

st cos
(

2π

5

)
.

Since
fr

(
2
3

)
=

1
3

{
7− 4

√
3s cos

(
2π

5

)}
< 0,

we have α >
2
3
. Suppose r = 2` + 1. Then it follows, by Lemma 15 (1), that

(
4
3

)11

≤
(
3α2

)r+1 ≤ 3s

2(s− 3)
.

Hence we have r ≤ 2`.
Suppose r ≤ 2`− 3. Then Lemma 15 (2) implies that

(
2s− 3
s
√

3

)r

<
2s
√

3
3(s− 1)

which is a contradiction. The assertion is proved.
(3) We have ` ≥ 6 from (2). It follows, by putting q = r + 2 in Proposition 9, that

θ ≥ t(s− 1) + 2
√

st cos
(

2π

7

)
.

Suppose s ≤ 89. Then we have

fr

(
2
√

30
15

)
=

1
15

{
24s + 15− 4

√
30(s− 1)− 12

√
10s cos

(
2π

7

)}
< 0

and hence α >
2
√

30
15

. It follows, by Lemma 15 (1), that

(
8
5

)12

≤
(
α2t

)r+1
<

s2
√

3s

6(s− 3)

as 2`− 2 ≤ r. This is a contradiction. Hence we have s ≥ 90.
Suppose r ≤ 2`− 1. Then Lemma 15 (2) implies that

(
2s− 3
s
√

3

)r

<
2s
√

3
(s− 1)

which is a contradiction. Hence we have 2` = r. The desired result is proved.

Proof of Theorem 4. Assume r ≥ 7. Then we have t = 3 from Lemma 15 (3). Suppose
r ≥ 13 and s ≥ 14 to derive a contradiction. Then we have r = 2` from Lemma 16 (3). It
follows, by Lemma 15 (2), that (

2s− 3
s
√

3

)13

<
6s

(s− 1)
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This implies s ≤ 262. It follows, by putting q = r + 2 in Proposition 9, that

θ ≥ t(s− 1) + 2
√

st cos
(

2π

8

)
= 3(s− 1) +

√
6s

as 7 ≤ `. We have

fr

(
1√
2

)
=

1
2

{
2 + 2

√
2− 2

√
3s + (3− 2

√
2)s

}
< 0,

and thus α >
1√
2
. Hence Lemma 15 (1) implies that

(
3
2

)14

≤
(
α2t

)r+1
<

s2

2(s− 3)

This is a contradiction as s ≤ 262. The theorem is proved.

6 Concluding remarks

First we recall the following result.

Proposition 17 [6, Proposition 5] Let Γ be a distance-regular graph with r = max{i | (ci, ai, bi) =
(c1, a1, b1)} and (cr+1, ar+1) = (2, 2a1). If a1 > 0, then cr+2 6= 2.

In this section we discuss the regular near polygons of order (s, 3). By our theorems we have
the following result.

Proposition 18 Let Γ be a regular near polygon of order (s, 3). Let d be the diameter of Γ and
r = max{i | ci = 1}. The one of the following cases holds:
(i) d ≤ r + 2,
(ii) r ≤ 12,
(iii) s ≤ 13.

Proof. We may assume d ≥ r + 3. Then cr+1 ∈ {2, 3}.
Suppose cr+1 = 3. Then we have cr+1 = · · · = cd−1 = 3. This is the case of Theorem 3 and

thus s < 12 if r ≥ 3.
Suppose now cr+1 = 2. Then we have cr+2 6= 2 from Proposition 17, and thus cr+2 = · · · =

cd−1 = 3. This is the case of Theorem 4, and hence s ≤ 13 or r ≤ 12 holds.
The desired result is proved.

In future work we will show that this claim implies that there exists a positive constant R
such that all regular near polygons with order (s, 3) have r ≤ R, and hopefully this will lead to
a classification of them.

9



References

[1] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin-
Cummings Lecture Note Ser. 58, Benjamin/Cummings Publ. Co., London, 1984.

[2] N.L. Biggs, Algebraic Graph Theory, Cambridge Tracts in Math. 67, Cambridge Univ.
Press, 1974.

[3] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer, Heidel-
berg, 1989.

[4] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.

[5] A. Hiraki and J. Koolen, An improvement of the Godsil bound, Ann. of Combin. 6 (2002)
33–44.

[6] A. Hiraki and J. Koolen, The regular near polygons of order (s, 2), preprint.

[7] A. Hiraki, The number of columns (1, k−2, 1) in the intersection array of a distance-regular
graph, to appear in Graphs and Combin.

[8] J. Koolen and V. Moulton On a conjecture of Bannai and Ito: There are finitely many
distance-regular graphs with degree 5,6,or 7, Europ. J. Combin. 23 (2002) 987–1006.

[9] B. Mohar and J. Shawe-Taylor, Distance-biregular graphs with 2-valent vertices and
distance-regular line graphs, J. Combin. Th. (B) 38 (1985), 193-203.

[10] K. Nomura, Some inequalities in distance-regular graphs, J. of Combin. Theory Ser. B. 58,
243–247 (1993).

10


