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We propose an ML estimation method for a recursive model of categorical variables which is too

large to handle as a single model. We first split the whole model into a set of submodels which can

be arranged in the form of a tree. Two conditions are suggested as an instrument for estimating the

parameters of the whole model yet working within individual submodels. Theorems are proved to

the effect that, when missing values are involved, we can generalize and apply the principle of EM

to the tree of submodels so that the ML estimation is possible for a recursive model of any size.

For illustration, simulation experiments of the ML estimation are carried out for recursive models

of up to 158 binary variables, and the proposed method is applied successfully to real data where

28 binary variables are involved.
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1 INTRODUCTION

The use of specialized statistical methods for categorical data has increased dramatically, partic-

ularly for applications in the biomedical and social sciences. Also, the statistical concepts of suffi-

ciency and conditional independence have been attracting increasing attention in applied statistics,

in particular for representing a relation among a group of variables in a graphical format. Graphical

modelling is a body of statistical techniques for fitting graphical models to data. Graphical models

of categorical or finitely discrete variables are representable in the form of an undirected graph, a

directed acyclic graph, or a mixture of these (Whittaker 1990). The graphical models include graph-

ical log-linear models (Darroch, Lauritzen, and Speed 1980; Fienberg 1980), recursive models for

∗Sung-Ho Kim is Associate Professor of Statistics (E-mail: shkim@kaist.ac.kr) and Seong-Ho Kim is a Ph.D.
student (E-mail: mathan@kaist.ac.kr) of Statistics, Division of Applied Mathematics, Korea Advanced Institute of
Science and Technology, Daejeon, 305-701, South Korea.

1



contingency tables (Wermuth and Lauritzen 1983), Bayesian networks (Pearl 1988), and influence

diagrams (Howard and Matheson 1981; Olmsted 1983; Shachter 1986; Smith 1989). Of these, recur-

sive models, Bayesian networks, and influence diagrams of finitely discrete random variables share

a common feature that the joint probability of the variables involved in each of them is expressible

as a product of marginal or conditional probabilities. Statistical modelling of such models mostly

rests on the methods developed for log-linear modelling (Bishop, Fienberg, and Holland 1975).

The iterative proportional fitting (IPF) algorithm is well known for fitting hierarchical log-linear

models along with the Newton-Raphson algorithm. Among the hierarchical log-linear models, graph-

ical log-linear models (Darroch, Lauritzen, and Speed 1980) have received attention since the model

structure can be readily read off from a graph, the relation being interpretable in the context of the

Markov property. While undirected graphs are used for graphical log-linear models, we use directed

acyclic graphs for recursive models (Wermuth and Lauritzen 1983).

The EM (Dempster, Laird, and Rubin 1977) algorithm is a most popular method for estimating

parameters of a model which involves latent variables. It consists of two operations, expectation for

the missing variables and likelihood-maximization. Literature abounds on the EM concerning the

issues of applications, convergence rates, and a variety of improved versions of it (see, for example,

Van Dyk and Meng 1997). Birch (1963) considered maximum likelihood estimation for a recursive

model of three variables by dealing with its log-linear model as a combination of a log-linear model

of a marginal probability and that of a conditional probability, where the whole joint probability

is given by the product of the marginal and the conditional probabilities. Goodman (1974a, b)

related the latent class models to log-linear models and gave a general algorithm for maximum

likelihood estimation for latent class models (also see Haberman 1977, 1979). Lauritzen (1995)

derived an EM algorithm for graphical models of contingency tables with missing data by exploiting

the computational scheme of Lauritzen and Spiegelhalter (1988), where data may not necessarily

be missing for the same set of variables. Thiesson (1995, 1996) explored an acceleration of the EM

algorithm for the recursive model by a generalized conjugate gradient algorithm and provided the

first and second order derivatives of the log-likelihood and log-posterior distribution to be used for

iterative estimation methods under a Bayesian framework. Kim (2000) suggested an experimental

form of the method that will be proposed in this paper and proved theorems that constitute a part

of the main result of this paper. For methods of parameter estimation for graphical models of mixed

variables, some of which are continuous and the others finitely discrete, the readers are referred to

Lauritzen (1996) and Edwards and Lauritzen (2001).

Our goal in this paper is to propose a method of maximum likelihood estimation for a recursive
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model of categorical variables which is too large to handle as a single model. First we split the whole

model into a collection of submodels in such a way that the probability model of the whole model may

be factorized where each factor corresponds to one and only one submodel and a factor is expressed

as a product of conditional probabilities of the variables that are involved in the corresponding

submodel. The resulting topology of the submodels is given in the form of a tree where a pair of

submodels that share a set of variables are linked by an edge. We then extend the principle of

EM (Dempster et al., 1977) and apply it to the tree of submodels for parameter estimation for the

whole model. Each submodel may contain part of the unobservable variables of the whole model and

similarly for the observed variables. So the E(expectation)-step and the M(likelihood maximization)-

step of the EM can only be employed within individual submodels and some additional procedure

is required in order to make the resulting estimates for individual submodels contribute toward the

ML estimates for the whole model. By this procedure, we can obtain the distribution based on the

estimates of the probability model of every individual submodel being consistent throughout the

whole model. In this context, we will call the proposed method a hyper-EM algorithm.

This paper consists of 8 sections. In section 2 we introduce notations and define the notions of

splitting, t-splitting, and d-splitting of a graphical model and in section 3 we present conditions that

are to be satisfied so that a model may be handled as a tree of submodels. Several concepts that help

our proposed method work for estimating the parameters of a given model are introduced. Section

4 then elaborates on operations that are necessary for making the estimated distribution consistent

between submodels. In section 5, we describe what to do in the E-step and M-step of the hyper-EM

algorithm for the consistency of the estimated distribution between submodels. We consider three

different models in section 6 and apply the proposed estimation method to these models based on

simulated data for illustration, and then in section 7 we apply the method to a real data set where

28 binary variables are involved. Section 8 concludes the paper with summarizing remarks.

2 PRELIMINARIES AND D-SPLITTING

A graphical model is a statistical model whose model structure can be represented by a graph,

and we will denote the graph of a graphical model by G = (V, E), where V is the index set of the

nodes involved in the model and E a set of edges between the nodes in V . E is given as a set of the

ordered pairs (u, v) such that E ⊆ V × V where (u, v) symbolizes a directed edge or an arrow from

node u to node v in graph G. If both (u, v) and (v, u) are included in E, it means that there is an

undirected edge between nodes u and v. Thus if G = (V,E) is the model structure of a recursive

model and (u, v) ∈ E, then (v, u) 6∈ E. A node in the graph of a graphical model corresponds to a
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variable of the model. So we will use the terms node and variable interchangeably.

We will denote by Vi the index set of all the variables involved in submodel i of G, and we will

use the lowercase x to denote the cell location of a contingency table and use xA and xi for the

contingency table of the variables indexed in A and in Vi, respectively. If a pair of sets of nodes share

a non-empty set of nodes, then we call the pair neighboring sets. If there is an arrow (a, b), then we

will say that node a is a parent of node b and node b is a child of node a. We will denote by pa(v)

the set of the parents of node v and by ch(v) the set of the children of v and let fa(v) = {v}∪pa(v).

For a subset A ⊆ V , we will define

pa(A) = ∪v∈Apa(v) \A,

ch(A) = ∪v∈Ach(v) \A,

fa(A) = A ∪ pa(A), and

clan(v) = fa(ch(v) ∪ {v}), for a node v ∈ V.

The node which does not have any child node will be called a terminal node and the node which

does not have any parent node a root node. If (a, b) ∈ E, we say that node a is adjacent to node

b or vice versa. A graph is said to be complete if all vertices are adjacent each other. A complete

subgraph is a subgraph which is complete. A complete subgraph that is maximal in G is called a

clique of G. A sequence of adjacent nodes from node a to node b (a 6= b) is called a chain from a to

b (or from b to a) such as a = a1, · · · , ar = b.

If there is a chain from a to b and the arrows in the chain are all heading toward b, we call node

b a descendant of a. For A ⊆ V , an induced subgraph of G confined to A is defined as GA = (A,EA),

EA = E ∩ (A × A) and we will simply write Gi = (Vi, Ei) for GVi = (Vi, EVi), Vi ⊆ V . For a

set of edges E, we define sym(E) = {(b, a)|(a, b) ∈ E} ∪ E. A graph G = (V, E) is undirected if

E = sym(E). The associated undirected graph of graph G = (V, E) is an undirected version of G and

we will represent it by G∼ = (V, sym(E)).

As in Dawid (1979), we will write X ⊥ Y |Z to mean that X and Y are conditionally independent

given Z. We will denote by i ∧ j the index set of the variables that are involved in both submodels

i and j. If Vi and Vj are the index sets of the variables involved in submodels i and j, respectively,

then we have i ∧ j = Vi ∩ Vj .

Definition 2.1. A chain C from α to β in a directed acyclic graph G is said to be blocked by S, if

it contains a node γ ∈ C such that either
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Figure 2.1: Recursive models and splitting. The model in panel (a) is not split into two submodels,
but the models in panels (b) and (c) are split into two and three submodels respectively, where
bullets symbolize nodes and ovals submodels.

(i) γ ∈ S and arrows of C do not meet head to head at γ, or

(ii) γ 6∈ S, nor has γ any descendants in S, and arrows of C do meet head to head at γ.

A chain that is not blocked by S is said to be active. Two subsets A and B are said to be

d-separated by S if all chains from A to B are blocked by S (Pearl 1986).

Theorem 2.1. If A and B are d-separated by S, A ⊥ B|S.

Proof: See Lauritzen, Dawid, Larsen and Leimer (1990); Pearl and Verma (1987); Verma (1988).

Definition 2.2. Consider a recursive model G = (V, E). If there are k distinct submodels with the

corresponding graphs,

G1 = (V1, E1),G2 = (V2, E2), · · · ,Gk = (Vk, Ek),

for which the following holds :

V = ∪k
i=1Vi, Vi * Vj for i 6= j, and E = ∪k

i=1Ei, (2.1)

then we will say that G is split into {G1,G2, · · · ,Gk}.

Consider recursive models as in panels (a), (b), and (c) in Figure 2.1. The model as in panel (a)

is not split into {G1,G2} since edge (2, 3) /∈ E1 ∪E2. The models as in panel (b) and (c) are however

split into two and three submodels respectively. Note that for both of these panels, condition (2.1)
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Figure 2.2: Three different modes of submodel arrangement. Circles symbolize submodels
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Figure 2.3: A ring mode arrangement and its tree-shape arrangement

is satisfied. When a recursive model is split, every edge of the model is included in at least one of

the submodels.

After splitting a model, it can be arranged in the form of submodel-chain. For instance, in Figure

2.2, the graphs of submodels are linked in series in panel (a), while they are linked in a ring in the

other panels. In panel (b) all the submodels share a set of variables, while there is no such set in

any of the panels (a) and (c). We will call the arrangement as in panel (a) series-mode arrangement

and the arrangement as in panels (b) and (c) ring-mode arrangement. In general, arrangements are

a mixture of ring-mode and series-mode and we will call this arrangement a mixed arrangement. If

a pair of submodels of a model share a non-empty set of variables, we will call the submodels of the

pair neighboring submodels and call one of them a neighbor submodel of the other.

Consider the graphs of submodels 1, 2, · · · , k of a recursive model G where the k submodels are

arranged in a single ring-mode arrangement as in panel (b) or (c) of Figure 2.2 and denote by VT

the index set of the variables that are involved in at least two of the submodels. Then each of the k

submodels is separated from the others by T in the associated undirected graph G∼. We will regard

T as a submodel in a ring-mode arrangement. For example, the graph in panel (a) of Figure 2.3

is a ring mode arrangement and the one in panel (b) is another display of the graph in panel (a)

except that VT is presented as a submodel along with the submodels 1, 2, 3. The graph in panel (b)

is expressed in the form of a tree in panel (c). With VT regarded as a submodel, we arrange the
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Figure 2.4: Transforming a submodel-arrangement into trees of submodels

k + 1 submodels as follows:

G1 = (V1, E1),GT = (VT , ET ),G2 = (V2, E2), · · · ,Gk = (Vk, Ek).

The “T” is from “Transfusion of estimates.” There are as many GT ’s as the rings of submodels in

a submodel-arrangement, and in estimation each GT submodel will be used as a transfusion box of

estimates among the submodels constituting the corresponding ring in a ring-mode arrangement. In

this regard, we will call the GT submodel a T -type model.

In a tree of submodels, a submodel is represented by a node. If the original arrangement from

a splitting is in a series mode, its corresponding tree is just a single chain of nodes. If however the

original arrangement is in a ring-mode, its corresponding tree is no longer a single chain. In Figure

2.3, submodel T is created, and we will call such a submodel a branching node in the corresponding

tree. So if a tree of submodels is of multiple branching nodes, it means the original submodel

arrangement is of as many rings of submodels. We will call by t-splitting the splitting which ends

up with a tree of submodels. In a tree of submodels, any two submodels i and j are separated by

Vi ∩ Vj when their corresponding nodes are adjacent in the tree. Example 2.1 below illustrates how

we reexpress a mixed arrangement of submodels in a tree of submodels.

Example 2.1. Suppose a recursive model G is split into submodels 1, 2, · · · , 10 as depicted in

Figure 2.4. In panel (a), we may regard submodels, 2, 3, 5, 6, 7, 9, as arranged in a ring or regard

submodels, 2, 3, 5, 6 and submodels 5, 6, 7, 9, as arranged in different rings. In the former viewpoint,

we form a T -type submodel T ′ of the variables that are shared by any neighboring submodels of the

submodels 2, 3, 5, 6, 7, 9; in the latter viewpoint, we form two T -type submodels T1 and T2 where T1
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Figure 2.5: Tree-shape arrangements. Panels (b′) and (d′) are respectively tree-shape arrangements
of the arrangements in panels (b) and (d) of Figure 2.4.

consists of the variables that are shared among submodels 2, 3, 5, 6, and T2 consists of the variables

that are shared among submodels T1, 5, 6, 7, 9. In panel (b) of Figure 2.4, submodel T ′ separates

the remaining submodels into 6 parts; in panels (c) and (d) T ’ is split into T1 and T2. If we let

A = {2, 3, 5, 6}, B = {T1, 5, 6, 7, 9} and C = {2, 3, 5, 6, 7, 9}, then VT1 = ∪[Vi ∩ Vj ; i 6= j, i, j ∈ A],

VT2 = ∪[Vi ∩ Vj ; i 6= j, i, j ∈ B], and VT ′ = ∪[Vi ∩ Vj ; i 6= j, i, j ∈ C]. The arrangements in panels

(b) and (d) of Figure 2.4 are reexpressed respectively in a tree-shape in panels (b′) and (d′) of Figure

2.5.

Since a series-mode arrangement is a particular form of a tree-shape arrangement, we can say

that all the submodels can be arranged in a tree-shape. A chain from submodel i to submodel j is a

sequence of neighboring submodels from submodel i to submodel j (or from submodel j to submodel

i) such as i = i0, i1, · · · , ir = j where is 6= it whenever s 6= t. It is important to note in Example 2.1

that as for the submodels arranged through t-splitting, there is a unique chain of submodels between

every pair of submodels. We denote the index set of the submodels on the chain from submodel i to

submodel j by cm(i, j), and we denote the index set of the neighboring submodel of submodel i on

cm(i, j) by nc(i, cm(i, j)) and the index set of the neighboring submodel of submodel j on cm(i, j)

by nc(j, cm(i, j)). Since submodels i and j are located at the end points of the chain cm(i, j), each

of submodels i and j has only one neighboring submodel in cm(i, j).

Definition 2.3. We will say that a recursive model with graph G is d-split into a tree of k submodels

if G is t-split into k submodels and, for any neighboring submodels in the tree, say i and j, Vi \ Vj

is d-separated from Vj \ Vi by Vi ∩ Vj .

For any three sets of variables, A,B, and S, A ⊥ B|S is equivalent to (A \ S) ⊥ (B \ S)|S. So
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Theorem 2.1 implies that, if neighboring submodels i and j which are obtained through t-splitting

is d-separated, then Vi ⊥ Vj |Vi ∩ Vj . From this fact follows the theorem below.

Theorem 2.2. Suppose a recursive model G = (V,E) is d-split into k, k ≥ 1, submodels,

G1 = (V1, E1), · · · ,Gk = (Vk, Ek).

Then, for all i, j = 1, 2, · · · , k,

Vi ⊥ Vj |(Vi ∩ Vnc(i,cm(i,j))) and Vi ⊥ Vj |(Vj ∩ Vnc(j,cm(i,j))). (2.2)

Proof: Recall that a d-splitting produces a tree-shape arrangement of submodels. So, for any

neighboring submodels i and j, nc(i, cm(i, j)) = j and nc(j, cm(i, j)) = i, which implies (2.2) by

the definition of d-splitting. Suppose submodels i and j are not neighboring submodels, and let

cm(i, j) = {i = i0, i1, · · · , ir+1 = j}, r ≥ 1. Then we have nc(i, cm(i, j)) = i1 and nc(j, cm(i, j)) =

ir. If Vi 6⊥ Vj |(Vi ∩ Vi1), then, for some nodes α ∈ Vi \ Vi1 and β ∈ Vj \ Vi1 , arrows in a chain

from α to β meet head to head at some node, say z, in Vi ∩ Vi1 , and so there exists a node, say

w, in Vi1 \ Vi such that w ∈ pa(z). Thus arrows in a chain from α to w meet head to head at z,

contradicting the d-splitting condition of the theorem. By applying the same argument, we have

Vi ⊥ Vj |(Vj ∩ Vir ).

We define an index set of variables as the boundary of submodel i, i ≥ 2, and denote it by bd(i)

if

Vi ⊥ ∪i−1
j=1Vj |bd(i).

For a recursive model with graph G, we define a set E+(A) ⊆ A × A, A ⊆ V , as follows. Consider

two nodes α, β ∈ A, α < β, each of which is adjacent to some node in V \ A. If there is a chain

from α to β which is blocked by a node in V \A in G, then (α, β) ∈ E+(A). If A = V , it is obvious

that E+(A) = ∅. We will call GA = (A,EA) with EA = EA ∪E+(A) the marginalized subgraph of G
confined to A and we will simply write Gi = (Vi, E

i) for GVi = (Vi, E
Vi), Vi ⊆ V . The marginalized

subgraph GA is the model structure of the submodel which is obtained by confining a recursive

model with graph G onto A.

Theorem 2.3. Consider a recursive model with graph G = (V, E). Suppose G is d-split into G1 and

G2. Then E+(V1), E+(V2) ⊆ (V1 ∩ V2)× (V1 ∩ V2) and E+(V1 ∩ V2) = E+(V1) ∪ E+(V2).

Proof: If (α, β) ∈ E+(V1) such that α, β ∈ V1 with α < β, then, by definition, each of α and β

is adjacent with some node in V2 \ V1 in G. By the definition of splitting, E = E1 ∪E2. So, it must
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Figure 2.6: An induced subgraph GA and a marginalized subgraph GA for A = {2, 3, 5, 6}

be that α, β ∈ V1 ∩ V2. Similarly, E+(V2) ⊆ (V1 ∩ V2) × (V1 ∩ V2). Therefore, E+(V1), E+(V2) ⊆
(V1 ∩ V2)× (V1 ∩ V2).

For α, β ∈ V1 ∩ V2 where α < β,

(α, β) ∈ E+(V1 ∩ V2) ⇐⇒ There exists a chain from α to β which is blocked by some

node in V2 \ V1 or V1 \ V2

⇐⇒ (α, β) ∈ E+(V1) or (α, β) ∈ E+(V2)

⇐⇒ (α, β) ∈ E+(V1) ∪ E+(V2).

This completes the proof.

Example 2.2. Consider a recursive model G = (V, E) with V = {1, 2, 3, 4, 5, 6} and E = {(1, 2),

(1, 3), (2, 4), (3, 4), (3, 5), (4, 6), (5, 6)}. Let A = {2, 3, 5, 6}. GA is given in Figure 2.6. Then EA =

{(3, 5), (5, 6)}. The nodes which are adjacent to some node in V \ A(= {1, 4}) are 2, 3, 6, and

chains 2 − 1 − 3, 2 − 4 − 6 and 3 − 4 − 6 are blocked respectively by nodes, 1, 4, 4, in V \ A.

Thus (2, 3), (2, 6), (3, 6) ∈ E+(A) and EA = EA ∪ E+(A) = {(2, 3), (2, 6), (3, 5), (3, 6), (5, 6)}. The

marginalized subgraph GA is at the bottom right in Figure 2.6.

It is important to note that the d-splitting always ends up with a tree of submodels and a tree

of submodels produces uniqueness of the chains of submodels. Especially, by Theorem 2.2 and the

uniqueness of the chains of submodels, we can obtain that for all neighboring submodels i and j,

Vi ⊥ Vj |Vi ∩ Vj

where a recursive model G is d-split into k submodels. This conditional independence is helpful for

representing the probability model for the whole model in a factorized format in terms of (condi-

tional) probabilities of submodels.
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3 TWO CONDITIONS

For a subset A of V , PA(xA) (or P (xA)) represents the cell-probability at the cell xA; Pi(xi)

represents the cell-probability at xi for submodel i. We let PB|A(xB |xA) = P (XB = xB |XA = xA)

for B ⊆ V , Pi|A(xi|xA) = P (Xi = xi|XA = xA) and Pi|j(xi|xj) = P (Xi = xi|Xj = xj). We denote

the cell frequency at the cell-entry xi for submodel i by ni(xi) and by N i(xi) the corresponding

random quantity. Analogously, we denote by nA(xA) the cell frequency at the cell-entry xA for a

set A of variables and by n the total frequency. The superscripts of n and x are submodel labels

and the subscripts index sets of variables. We will denote the collection of all the cell locations xA

(or xi), for an index set A (or submodel i), by XA (or X i).

The chain of submodels must satisfy some mild conditions so that a variation of EM for the

whole model produces estimates under the model structure of the whole model. The conditions are

Family condition and Hyper-EM condition as will be described in this section.

Family Condition: Consider graphs of submodels G1, · · · ,Gk of a recursive model

G. Then for every node v ∈ V , there exists at least one j ∈ {1, 2, · · · , k} such that

fa(v) ∈ Vj .

Theorem 3.1. Suppose a recursive model with graph G is d-split. Then the graphs of submodels

always satisfy the Family condition.

Proof: Assume that the model is d-split into k submodels. Suppose there are nodes α and β in

pa(v), v ∈ V , such that α ∈ Vi \ Vj and β ∈ Vj \ Vi for some 1 ≤ i < j ≤ k. So, v ∈ Vi ∩ Vj since

G is d-split. This means that arrows in a chain from α to β meet head to head in Vi ∩ Vj . Thus,

by the definition of d-separation, a chain from α to β is not blocked by Vi ∩ Vj . This contradicts

the condition of the theorem that G is d-split. Therefore, the Family condition must hold when G is

d-split.

This theorem shows that the Family condition is consequential to the d-splitting. As a matter

of fact, the Family condition and the d-split are closely related each other.

Theorem 3.2. A recursive model G is assumed to be t-split into k submodels. Then the Family

condition is satisfied by the k submodels if and only if G is d-split into k submodels.

Proof: By Theorem 3.1, we have only to show the necessity of the theorem. Suppose G is not

d-split. Then there must exist submodels i and j such that at least one of chains from Vi \ Vj to
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Vj \ Vi meets head to head in Vi ∩ Vj . In other words, there are nodes α ∈ Vi \ Vj and β ∈ Vj \ Vi

such that α, β ∈ pa(v) for some v ∈ Vi ∩ Vj , contradicting the Family condition. This completes the

proof.

The maximum likelihood estimate (MLE) of PV (x) is given, under the recursive model G, byÒPV (x) =
Y
v∈V

ÒPv|pa(v)(xv|xpa(v)) =
Y
v∈V

nfa(v)(xfa(v))
npa(v)(xpa(v))

(3.1)

where n∅(x∅) = n. It is possible that pa(v) = fa(v′) for some nodes v and v′. Thus after crossing

out the equal terms in the numerator and the denominator of the right hand side of (3.1), we end

up with ÒPV (x) =
ρY

i=1

nCi(xCi)
nSi(xSi)

(3.2)

where Ci, Si ⊆ V , 1 ≤ i ≤ ρ ≤ |V | and Ci 6= Sj for all i, j with 1 ≤ i, j ≤ ρ and for some i, it is

possible that Si = ∅. Obviously,

{Ci | i = 1, 2, · · · , ρ} ⊆ {fa(v) | v ∈ V } and {Si | i = 1, 2, · · · , ρ} ⊆ {pa(v) | v ∈ V }. (3.3)

We will call Si and Ci respectively f-separator and f-clique (think of factorization for “f”) of the

recursive model. For convenience’s sake, we will denote

nfa(v)(xfa(v))/n by [fa(v)](xfa(v)),

npa(v)(xpa(v))/n by [pa(v)](xpa(v)),

nCi(xCi)/n by [Ci](xCi),

and nSi(xSi)/n by [Si](xSi).

If confusion is not likely, we will ignore the argument ‘x’.

It is worthwhile to look into when |V | > ρ holds in expression (3.2). As a matter of fact, |V | > ρ

if and only if there exists a node v ∈ V such that

pa(v) = fa(v′) (3.4)

for some other node v′ ∈ V . If |V | > ρ, then the procedure from (3.1) to (3.2) implies that there are

nodes v and v′ satisfying (3.4). We can think of typical situations concerning |V | and ρ in Example

3.1.

12



7

2

3 6

87

5

9 9

5
6

8

2

3

4 41 1

(b)(a)

Figure 3.1: Graphs referred to in Example 3.1

Example 3.1. The graph in panel (a) of Figure 3.1 is of a recursive model for whichÒP (xV ) =
[{1}](x{1})[{2}](x{2})[{3}](x{3})[{4}](x{4})[{1, 2, 3, 5}](x{1,2,3,5})[{4, 5, 6}](x{4,5,6})

[{1, 2, 3}](x{1,2,3})[{4, 5}](x{4,5})

× [{5, 6, 7}](x{5,6,7})[{6, 8}](x{6,8})[{7, 8, 9}](x{7,8,9})
[{5, 6}](x{5,6})[{6}](x{6})[{7, 8}](x{7,8})

In this expression, there are no nodes for which (3.4) is satisfied. This means all the fa(v)’s and

pa(v)’s are f-cliques and f-separators, respectively.

If, however, we add edges, (1, 2), (6, 9), and (7, 8), as in panel (b), then pa(2) = fa(1) and

pa(9) = fa(8); thus yielding the inequality |V | > ρ and the irreducible expression of (3.2) as inÒP (xV ) =
[{1, 2}](x{1,2})[{3}](x{3})[{4}](x{4})[{1, 2, 3, 5}](x{1,2,3,5})[{4, 5, 6}](x{4,5,6})

[{1, 2, 3}](x{1,2,3})[{4, 5}](x{4,5})

× [{5, 6, 7}](x{5,6,7})[{6, 7, 8, 9}](x{6,7,8,9})
[{5, 6}](x{5,6})[{6, 7}](x{6,7})

Note in this expression that nodes 8 and 9 appear just once and the other nodes more than once.

Consider a recursive model with graph G and let x(v) be the subvector of x with x{v} only

excluded; analogously for a subset A of V , we will denote x(A) the subvector of x with xA only

excluded.

Definition 3.1. Let a node v be a node in G and let PV be a distribution function of a set of

discrete random variables indexed in V . If for all x(v) = x∗(v) ∈ XV \{v},X
x{v}

ÒPV (x) = ÚX
x{v}

PV (x), (3.5)

i.e., the marginal of ÒPV onto V \ {v} is the same as the MLE of the marginal of PV onto V \ {v},
then we will call the node v a removable node of G.

13



If a node v is removable in G, it means that we may obtain the MLE of PV \{v} in GV \{v} by

marginalizing ÒPV on V \ {v} in G. This is illustrated below.

Example 3.2. Consider a recursive model with graph G = (V, E) where V = {1, 2, 3} and E =

{(1, 2), (1, 3)}. Then we have at x(2) = x∗(2)X
x{2}

ÒP (xV ) =
X
x{2}

[{1, 2}](x{1,2})[{1, 3}](x{1,3})
[{1}](x{1})

= [{1, 3}](x{1,3})

and ÚX
x{2}

P (xV ) = [{1, 3}](x{1,3}).

So, node 2 is removable from G and so is node 3 for the same reason. However, at x(1) = x∗(1)X
x{1}

ÒP (xV ) =
X
x{1}

[{1, 2}](x{1,2})[{1, 3}](x{1,3})
[{1}](x{1})

6= [{2, 3}](x{2,3}) = ÚX
x{1}

P (xV ).

As for a contingency table of X1, X2, X3 as in Table 3.1, we have at x{2,3} = (0, 0)X
x{1}

[{1, 2}](x{1,2} = (x1, 0))[{1, 3}](x{1,3} = (x1, 0))
[{1}](x{1})

=
5 · 3
20 · 8 +

4 · 7
20 · 12

=
101
480

6= 5
20

= [{2, 3}](x{2,3} = (0, 0)).

Node 1 is not removable here.

Definition 3.1 says that the node removability has to do with the invariance property of the MLE.

It has an attractive property as in the theorem below.

Theorem 3.3. Consider a node v∗ in V with a recursive model G = (V, E). Then the following

statements are equivalent.

(i) The node v∗ is contained in one and only one f-clique in G.

(ii) clan(v∗) becomes a unique clique that includes the node v∗ when pa(v∗) is made into a complete

subgraph in G.

(iii) The node v∗ is removable from G.

14



Table 3.1: A contingency table for V = {1, 2, 3}.

x1 x2 x3 n(x)
0 0 0 2
0 0 1 3
0 1 0 1
0 1 1 2
1 0 0 3
1 0 1 1
1 1 0 4
1 1 1 4

Total 20

1

2

3

Figure 3.2: A DAG of three nodes where nodes 2 and 3 are removable but node 1 is not.

Proof: See Appendix.

Note that if ch(v) = ∅, then node v is terminal and so Theorem 3.3 holds for the node. We have

shown two equivalent conditions for a node to be removable. We will see two simple examples of

removable nodes, the former being simpler than the latter.

Example 3.3. Consider a recursive model G = (V, E) in Example 3.2. We have thatÒP (xV ) =
[{1, 2}](x{1,2})[{1, 3}](x{1,3})

[{1}](x{1})
.

In this equation, we can see that nodes 2 and 3 are each contained in one and only one f-clique, but

node 1 is contained in both of f-cliques {1, 2} and {1, 3}. Furthermore, nodes 2 and 3 are terminal,

and clan(1) = {1, 2, 3} cannot be made into a clique in the context of condition (ii) of Theorem 3.3

as is obvious in Figure 3.2. Thus node 1 is not removable while nodes 2 and 3 are.

Example 3.4. Consider a recursive model with graph G in panel (a) of Figure 3.3.ÒP (xV ) =
[{1, 2}](x{1,2})[{1, 3}](x{1,3})[{2, 3, 4, 5}](x{2,3,4,5})[{2, 5, 6}](x{2,5,6})

[{1}](x{1})[{2, 3}](x{2,3})[{2, 5}](x{2,5})
.

Node 4 is contained in the f-clique {2, 3, 4, 5} only. Furthermore, if pa(4) = {2, 3} is made into a

complete subgraph in the graph, node 4 is contained in the unique clique {2, 3, 4, 5} in graph G. The

15
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Figure 3.3: A DAG G of six nodes where nodes 4 and 6 are removable and another DAG where node
4 is removed from G.

marginalized subgraph GV \{4} of G is in panel (b). Thus we have at x(4) = x∗(4)X
x{4}

ÒP (xV )

=
[{1, 2}](x{1,2})[{1, 3}](x{1,3})

�P
x{4}

[{2, 3, 4, 5}](x{2,3,4,5})
�

[{2, 5, 6}](x{2,5,6})

[{1}](x{1})[{2, 3}](x{2,3})[{2, 5}](x{2,5})

=
[{1, 2}](x{1,2})[{1, 3}](x{1,3})[{2, 3, 5}](x{2,3,5})[{2, 5, 6}](x{2,5,6})

[{1}](x{1})[{2, 3}](x{2,3})[{2, 5}](x{2,5})

= ÚX
x{4}

P (xV ),

where the last equality is immediate from the marginalized structure GV \{4}. We see that the

three conditions (i), (ii), (iii) of Theorem 3.3 are satisfied in graph G in panel (a). Node 4 is thus

removable. Since node 6 is terminal, it is also removable.

The notion of collapsibility is defined in Asmussen and Edwards (1983) and Whittaker (1990).

The notion is important for two reasons. One is that it breaks a large domain of model down into

relatively small pieces. The second reason is that regression and recursive models are naturally

formulated in terms of conditional and marginal distributions. The relationship of the notion of

collapsibility to graphical models is described in Asmussen and Edwards (1983). We will denote the

moral graph of a recursive model G = (V,E) by Gm = (V, Em).

Definition 3.2. (Whittaker 1990, p. 395) Consider an undirected independent graph Gu = (V, Eu).

We say that V = (V1, V2) is graphically collapsible over V2 in Gu if and only if the boundary (of each

connected component) of V2 is complete in Gu.

16
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Figure 3.4: A DAG of four nodes

Note that if V is graphically collapsible over V2 in Gu,X
xV2

ÒP (xV ) = ÚX
xV2

P (xV )

in Gu, where the summation goes over XV2 . This equation brings together node-removability and

collapsibility on the same footing.

Theorem 3.4. Let the moral graph of a recursive model G = (V, E) be Gm = (V, Em). If a node v

is removable in G, then V is graphically collapsible over v in Gm.

Proof: If node v is removable, then, by Theorem 3.3, clan(v) is the only clique containing node

v in G if pa(v) is made into a complete subgraph. Since clan(v) becomes a clique in Gm, node v

is contained in the clique only. Hence the boundary of a node v is complete in the moral graph,

making Gm graphically collapsible over v.

Consider a recursive model with graph G = (V, E). If all the nodes in A ⊆ V can be removed

from G one after another according to some order, we will say that A is sequentially removable from

G. Therefore, all the nodes which are removable are sequentially removable but not necessarily vice

versa. Of course, ∅ and V are sequentially removable. However, any subset of nodes of a sequentially

removable set is not necessarily sequentially removable as we see in the example below. To represent

a set of nodes that are sequentially removable, we will use the symbol {·}≺. For example, that

{5, 2, 3}≺ is sequentially removable means that the nodes 2, 3, 5 are sequentially removable in the

order of 5, 2, 3.

Example 3.5. Consider a recursive model G = (V, E) with V = {1, 2, 3, 4} and E = {(1, 2), (1, 3),

(1, 4), (2, 3), (2, 4)} as depicted in Figure 3.4. Let A1 = {3, 2}≺ and A2 = {4, 2}≺. Then A1 and A2

are sequentially removable, but A1 ∩A2 = {2} is not.

We will consider an equivalent condition of sequential removability below.

Theorem 3.5. Consider a recursive model with graph G = (V,E). A ⊆ V is sequentially removable

17



from G if and only if X
xA

ÒP (xV ) = ÚX
xA

P (xV ) (3.6)

for every possible data set for V in G, where the summation goes over XA.

Proof: We will prove the “only if” part first. Suppose A = {v1, v2, · · · , vr}≺ is sequentially

removable in the order of the indices of v. Then, by Theorem 3.3, we have at x(v1) = x∗(v1)
,X

x{v1}

ÒP (xV ) = ÛX
x{v1}

P (xV ). (3.7)

and proceeding in the same way we have at x{v1,v2} = x∗{v1,v2},X
x{v1,v2}

ÒP (xV ) =
X

x{v2}

�X
x{v1}

ÒP (xV )
�

=
X

x{v2}

�ÛX
x{v1}

P (xV )
�

( by (3.7) )

= ÛX
x{v1,v2}

P (xV ),

where the last equality follows from the sequential removability. By applying the same reasoning,

we can see at x(A) = x∗(A) X
xA

ÒP (xV ) =
X

x{vr}

· · ·
X

x{v1}

ÒP (xV )

=
X

x{vr}

· · ·
X

x{v2}

�ÛX
x{v1}

P (xV )
�

=
X

x{vr}

· · ·
X

x{v3}

� ÛX
x{v1,v2}

P (xV )
�

· · ·
=

X
x{vr}

� ÛX
xA\{vr}

P (xV )
�

= ÚX
xA

P (xV ).

To prove the “if” part, we let A = {v1, v2, · · · , vr}≺ and assume that equation (3.6) is satisfied

for every data set of V . Then there must exist at least one removable node, say v1. If not, every

node in A must be contained in two or more f-cliques in the expression of ÒPV (x) in (3.2) by Theorem

3.3, making equation (3.6) not guaranteed in general. For a removable node, say v1, we have at
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Figure 3.5: A DAG and its moral graph. Nodes 2 and 5 are sequentially removable

x(v1) = x∗(v1)
, X

x{v1}

ÒP (xV ) = ÛX
x{v1}

P (xV ). (3.8)

From equation (3.8), we have at x(A) = x∗(A)X
xA

ÒP (xV ) =
X

xA\{v1}

�X
x{v1}

ÒP (xV )
�

=
X

xA\{v1}

�ÛX
x{v1}

P (xV )
�
. (3.9)

Since ÚX
xA

P (xV ) =
ÛX

xA\{v1}

�X
x{v1}

P (xV )
�

, (3.10)

we have, from (3.9) and (3.10),X
xA\{v1}

�ÛX
x{v1}

P (xV )
�

=
ÛX

xA\{v1}

�X
x{v1}

P (xV )
�

.

So, by the same argument as above, A\{v1} has a removable node, say v2, and by proceeding in the

same way, we can remove all nodes in A. This iterative process produces a sequence of removable

nodes in A, which complete the proof.

We will now turn to the relationship between sequential removability and graphical collapsibility.

Example 3.6. Consider a recursive model G = (V, E) with V = {1, 2, 3, 4, 5} and E = {(1, 2), (1, 3),

(2, 3), (2, 5), (3, 4), (4, 5)} as in Figure 3.5. A = {5, 2}≺ is sequentially removable. Since node 5 is

terminal, it is removable. Once node 5 is removed, node 2 is removable because it is contained in

the clique {1, 2, 3} only. The moral graph of G is Gm = (V, Em) with Em = sym(E)∪{(2, 4), (4, 2)}.
The boundary of A is {1, 3, 4}, which is not complete in Gm. Hence V is not graphically collapsible

over A in Gm.
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Figure 3.6: A DAG and its moral graph. Nodes 2 and 5 are not sequentially removable

Example 3.7. Consider a recursive model G = (V, E) with V = {1, 2, 3, 4} and E = {(1, 2), (2, 3),

(1, 4), (3, 4)} as in Figure 3.6. Then A = {2, 3}≺ is not sequentially removable since nodes 2 and 3

are not removable. However, Em = sym(E) ∪ {(1, 3), (3, 1)} and the boundary of A is complete in

Gm. Hence V is graphically collapsible over A in Gm.

The two examples above show that graphical collapsibility has little to do with sequential re-

movability. That is to say, sequentially removable nodes are not necessarily graphically collapsible

nor vice versa.

So far we have considered removability of a set of nodes. This notion and the notion called

marginal restructuring constitute an important condition that makes our proposed method work.

The marginal restructuring of Gi as defined below is similar to projecting the model structure G onto

submodel i.

Definition 3.3. Suppose a recursive model G = (V, E) is d-split into k submodels. The procedure

of transforming the induced subgraph Gi into the marginalized subgraph Gi is called the marginal

restructuring for submodel i, 1 ≤ i ≤ k.

For example, consider a recursive model with graph G = (V, E) in Figure 3.7. If V = {1, 2, 3, 4, 5,

6, 7, 8}, E = {(1, 2), (1, 3), (2, 4), (3, 4), (4, 5), (5, 6), (5, 7), (6, 8), (7, 8)}, V1 = {1, 2, 3, 6, 7, 8}, and

V2 = {2, 3, 4, 5, 6, 7}, then, as for V1, nodes 2 and 6, 2 and 7, 3 and 6, 3 and 7, and 6 and 7 are

blocked by node 5, so E+(V1) = {(2, 6), (2, 7), (3, 6), (3, 7), (6, 7)}. As for V2, since nodes 2 and 3

are blocked by node 1, they must be connected to each other, yielding E+(V2) = {(2, 3)}. Then

E1 = E1 ∪ E+(V1), E2 = E2 ∪ E+(V2), E1∧2 = E1∧2 ∪ E+(V1 ∩ V2) as is depicted in Figure 3.7.

Recall that E+(V1 ∩ V2) = E+(V1) ∪ E+(V2) by Theorem 2.3.

Hyper-EM Condition: Let G = (V, E) be a recursive model which is d-split into k

submodels 1, 2, · · · , k, and suppose a marginal restructuring is done on every submodel.
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Figure 3.7: An example of the marginal restructuring for G1 and G2.

Then for all neighboring submodels i and j with i < j, Vj \ Vi is sequentially removable

from Gj .

Since the Family condition is satisfied for a set of submodels if the submodels are obtained by the

d-splitting, the t-splitting under the Family and hyper-EM conditions is the same as the d-splitting

under the hyper-EM condition. Therefore, we may well consider d-splitting under the hyper-EM

condition only.

4 HYPER-EM GRAPH

Consider two neighboring submodels i and j and assume marginal restructuring is made on

them. Let Ò[i](ri)
(xi) and c[j](rj)

(xj) denote the current estimates at the rith cycle and rjth cycle

for submodels i and j, respectively, [i]j(xi∧j) and [j]i(xi∧j) denote the cell-means for Vi ∩ Vj that

are computed from [i](xi) and [j](xj), respectively, and Ò[i]j(xi∧j) and c[j]i(xi∧j) the corresponding

estimates. Denote the E-step operation on submodel i by ε(i), the likelihood maximization for

submodel i by µ(i), and the estimate-transfusion(ET) from submodel i into submodel j by τ(i, j).

The formula of the transfusion, τ(i, j), is given by, assuming that an ε(i)(or µ(i)) is done at the rith

cycle for submodel i, c[j](rj+1)
(xj) = Ò[i](ri)

j (xi∧j)
c[j](rj)

(xj)c[j](rj)

i (xi∧j)
.
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We have at xi∧j , Ò[i](ri)

j (xi∧j) =
X

xVi\Vj

Ò[i](ri)
(x) andc[j](rj)

i (xi∧j) =
X

xVj\Vi

c[j](rj)
(x).

Let Ó[ij ](ri+1)
(xi∧j) and Ó[ji]

(rj+1)
(xi∧j) denote the estimates for Vi ∩ Vj that are obtained as

follows. Ó[ij ](ri+1)
(xi∧j) =

Y
v∈Vi∩Vj

{
X

xVi\Vj

Ò[i](ri)
(x)}(xv|xpa(v)∩Vi∩Vj

)

=
Y

v∈Vi∩Vj

{Ò[i](ri)

j (xi∧j)}(xv|xpa(v)∩Vi∩Vj
) (4.1)

and Ó[ji]
(rj+1)

(xi∧j) =
Y

v∈Vi∩Vj

{
X

xVj\Vi

c[j](rj)
(x)}(xv|xpa(v)∩Vi∩Vj

)

=
Y

v∈Vi∩Vj

{c[j](rj)

i (xi∧j)}(xv|xpa(v)∩Vi∩Vj
). (4.2)

Notice the difference between Ò[i](ri)

j (xi∧j) and Ó[ij ](ri)
(xi∧j). The former is a marginal of the

estimates onto Vi ∩ Vj in Gi, and the latter is an estimate in Gi∧j which is obtained by applying

likelihood maximization to the marginalization of Vi onto Vi ∩ Vj .

Theorem 4.1. Suppose a recursive model with graph G is d-split and the marginal restructuring

is done on all the submodels. If submodels i and j are neighbors, then we haveÒ[i](ri)

j (x) = c[j](rj+1)

i (x) for x ∈ XVi∩Vj (4.3)

if and only if c[j](rj+1)

i (x) = Ó[ji]
(rj+1)

(x) for x ∈ XVi∩Vj , (4.4)

where µ(i), τ(i, j), and µ(j) are carried out in a row and the resulting estimates are superscribed

respectively by (ri), (rj), and (rj + 1).

Proof: First, we will prove the necessity of the theorem, i.e., equation (4.4). By the marginal

restructuring in the submodels and the transfusion τ(i, j), we haveÒ[i](ri)

j (x) = c[j](rj)

i (x) for x ∈ XVi∩Vj . (4.5)
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For x ∈ XVi∩Vj
, Ò[i](ri)

j (x) =
Y

v∈Vi∩Vj

{Ò[i](ri)

j (x)}(xv|xpa(v)∩Vi∩Vj
)

=
Y

v∈Vi∩Vj

{c[j](rj)

i (x)}(xv|xpa(v)∩Vi∩Vj
) (by (4.5))

= Ó[ji]
(rj+1)

(x), (4.6)

where the last equation follows by likelihood maximization. So, by (4.3), we have the desired result

(4.4). The proof for the other direction is immediate from equations (4.5) and (4.6).

Consider a simple situation where model G is d-split into two neighboring submodels 1 and 2

only. The M-step is then to be implemented as follows:

(1) µ(1) → τ(1, 2) → µ(2) → τ(2, 1)

(2) Check whether the estimates for 1 ∧ 2 are equal before and after step (1)

(3) If the equality holds in step (2), stop the M-step. Otherwise return to step (1).

However, if equation (4.3) or (4.4) is satisfied with the submodels, the M-step is simplified down to

µ(1) → τ(1, 2) → µ(2). Theorem 4.1 provides a sufficient condition for simplifying an M-step.

Assume that a recursive model with graph G is d-split and the marginal restructuring is done on

all the submodels. Consider neighboring submodels i and j. Ifc[j](rj)

i (x) = Ó[ji]
(rj)

(x) for x ∈ XVi∩Vj , (4.7)

then we will say that the hyper-EM works from submodel i to submodel j where c[j](rj)
is an estimate

of the cell probability for submodel j obtained by likelihood maximization. In other words, if the

hyper-EM works, the MLE of the intersection of two neighboring submodels is the same whether

marginalization takes place after or before the likelihood-maximization.

At a glance, expression (4.7) seems having much to do with collapsibility or node-removability.

But we need to keep in mind that estimates are transfused between neighboring submodels. When

τ(i, j) takes place, it is desirable that (4.3) holds which is possible when and only when the marginal-

ization of Gi onto i ∧ j is the same as that of Gj onto i ∧ j and (i ∧ j)C is sequentially removable

from Gj . Collapsibility and node-removability are defined on a submodel while expression (4.7) is to

be understood in the context of a tree of submodels.
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Figure 4.1: A hyper-EM tree.

Suppose G = (V,E) is d-split into a tree of k submodels. If the hyper-EM works from submodel

i to submodel j for all neighboring submodels i and j with 1 ≤ i < j ≤ k, then we will call the tree a

right hyper-EM tree of submodels and if the hyper-EM works from submodel j to submodel i for all

neighboring submodels i and j with 1 ≤ i < j ≤ k, then we will call the tree a left hyper-EM tree of

submodels. Furthermore, if the tree is both left hyper-EM and right hyper-EM, we will call the tree

a hyper-EM tree. Figure 4.1 is an example of d-splitting that leads to a hyper-EM tree of submodels

1 and 2. The following theorem summarizes the relationship between sequential removability and

hyper-EM tree.

Theorem 4.2. Suppose a recursive model with graph G is d-split and the marginal restructuring

is done on all the submodels. Then for neighboring submodels i and j, Vj \ Vi, i < j, is sequentially

removable from Gj if and only if the hyper-EM works from submodel i to submodel j.

Proof: According to Theorem 3.5, the sequential removability of Vj \ Vi from Gj is that at

xj
(Vj\Vi)

= xj∗
(Vj\Vi) X

xj

Vj\Vi

c[j](xj) = ÛX
xj

Vj\Vi

[j](xj),

i.e., c[j](rj)

i (x) = Ó[ji]
(rj)

(x) for x ∈ XVi∩Vj ,

which means, by definition, that the hyper-EM works from submodel i to submodel j. This completes

the proof

The corollary below is immediate from Theorem 4.2 by the definition of the hyper-EM condition.

Corollary 4.1. Assume the condition of Theorem 4.2. Then all the submodels satisfy the hyper-EM

condition if and only if the submodels constitute a right hyper-EM tree.
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Figure 4.2: A DAG G for which the hyper-EM does not work.

If a recursive model is d-split but not necessarily under the hyper-EM condition, we can think

of an example where Theorem 4.2 does not hold.

Example 4.1. The model considered in Figure 4.2 is d-split into two submodels 1 and 2. Note that

G1 = G1 and G2 = G2. Thenc[1](x1) =
[{1, 2}](x1

{1,2})[{1, 3}](x1
{1,3})[{2, 3, 4}](x1

{2,3,4})[{4, 8}](x1
{4,8})

[{1}](x1
{1})[{2, 3}](x1

{2,3})[{4}](x1
{4})

and c[2](x2) =
[{4}](x2

{4})[{5, 6}](x2
{5,6})[{5, 7}](x2

{5,7})[{4, 6, 7, 8}](x2
{4,6,7,8})

[{5}](x2
{5})[{4, 6, 7}](x2

{4,6,7})
.

Since each of nodes 1, 2, 3, 5, 6, 7 is contained in two or more f-cliques, these nodes do not satisfy the

hyper-EM condition. In other words, V1 \ V2 and V2 \ V1 do not satisfy condition (ii) of Theorem

3.3. Thus the graph G in Figure 4.2 with submodels 1 and 2 does not make a hyper-EM tree.

To sum up this section, it is desirable that a recursive model is d-split under the hyper-EM

condition so that the resulting submodel-arrangement is a right hyper-EM tree. Furthermore, if

the submodel-arrangement turns out a hyper-EM tree, the M-step does not need the ET between

neighboring submodels, as will be described in detail in next section.

5 ML ESTIMATION FOR A TREE OF SUBMODELS

If a set of neighboring submodels share a set S of variables and the estimates for the variables in

S are the same whether they are obtained from one of the neighboring submodels or another, then

we say that consistency of distribution (CD) holds at S. The notion of CD is similar to the notion of

25



consistency of distributions as described in Dawid and Lauritzen (1993) in the sense that the former

notion is of estimates while the latter notion is of distributions. Jensen, Olesen, and Andersen (1990)

also introduced the notion of consistency for a graphical model using a belief measure on it.

EM is an algorithm that consists of two steps, expectation (E) step and likelihood-maximization

(M) step. When the probability model is multinomial, we compute the conditional mean of the

missing values in the E-step conditional on data, and we maximize the likelihood of the given model

in the M-step.

When a model contains too many variables to handle at once, an alternative is that we split the

model into several submodels of moderate sizes as we have discussed so far and then apply the EM

to individual submodels with some additional elaboration that is supplementary to the localized EM

on individual submodels.

The additional elaboration is aimed to have the probability distribution consistent throughout

the whole model and to have the information from data which is absorbed into the estimates as

much as possible. The whole model is split and so is the data set accordingly.

An important issue here is that we need to modify the E- and M-steps so that the information

from subsets of data may permeate throughout the whole model without destroying the whole model

structure. In the following two subsections, we will discuss further on this issue.

5.1 E-step of the Hyper-EM Algorithm

Suppose k submodels are labelled 1 through k. Then, without loss of generality, we may express the

joint probability for the whole model as in

P (x) =
kY

i=1

Pi|bd(i)(xi|xbd(i)) (5.1)

where bd(1) = ∅.

Note that data are given for individual submodels and so we can apply the IPF method (Bishop,

Fienberg, and Holland 1975) to calibrate the estimates to data and the ET method to obtain the

CD of estimates. Convergence of the IPF method is well established (Birch 1963; Bishop, Fienberg,

and Holland 1975) and the ET into neighboring submodels makes the estimates obtain the CD.

Once an E-step is implemented on submodel i, the resulting estimates are transfused into neigh-

boring submodels and the transfusion continues until the ET takes place into all the submodels
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Figure 5.1: A tree of submodels where dotted arrows indicate the ET from (a) submodel i1 and
from (b) submodel i2. The numbers on the arrows indicate the order of ET. The arrows with the
same number on them mean that any ordering among them will do.

except submodel i. For example, if the submodels are arranged as in Figure 5.1 and the E-step is

implemented on submodel i1, then the subsequent ETs into all the submodels proceed as indicated

in panel (a) of Figure 5.1. That is,

ε(i1) →1 τ(i1, i2) →2 τ(i2, i3) →3 τ(i3, i4) →3 τ(i3, i5) →3 τ(i3, i6) →4 τ(i6, i7)

→5 τ(i7, i8) →5 τ(i7, i9), (5.2)

where the numbers on the arrows have the same meaning as those in Figure 5.1. If the E-step is

implemented on submodel i2, then the subsequent ETs proceed as indicated in panel (b) of Figure

5.1. A general rule is that the ET sweeps through the tree along every possible chain of nodes

starting from the submodel where an E-step is implemented. This is to have the estimates of the

whole model updated by data. As a matter of fact, this thorough sweeping following an E-step

on a submodel can be cut short while making the iterative procedure of E-step-then-ET work for

the whole model. This will be described below. For convenience, we will call by SEET (short for

Submodel E-step and Estimate-Transfusion) one E-step on a submodel followed by subsequent ETs

into all the other submodels.

Let δ be the index set of the observed variables for a given model and denote by δi the index

set of the observed variables that are involved in submodel i. If a tree of submodels consists of k

nodes, then it is possible that δi = ∅ for some i, 1 ≤ i ≤ k. As for the tree in Figure 5.1, we assume

δi 6= ∅, i = 1, 2, · · · , 9. This means there are 9 subsets of data represented by δi, i = 1, 2, · · · , 9. The

iterative SEET procedure may be executed in any order of δi’s as long as all the δi’s are used in a

row. Denote by ε(i) an E-step on submodel i based on δi.

A best way of doing the iterative SEET procedure is to find a sequence of ε(i)’s so that the ET is

implemented as little as possible. A reasonable solution for the tree in Figure 5.1 is given in Figure
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Figure 5.2: A tree of submodels where dotted arrows indicate the flow of the iterative SEET proce-
dure starting from submodel i1

5.2. It is important to note that once an E-step is done at a submodel, the subsequent ET may have

to continue only up to the submodel where next SEET takes place.

The iterative SEET as displayed in Figure 5.2 is optimal in the sense that an ET with a given

direction of transfusion is made once and only once between every pair of neighboring submodels.

Note however that ε(i) is implemented as many times as the number of the neighboring submodels

of submodel i no matter where the whole iterative SEET procedure begins. The iterative SEET as

displayed in Figure 5.2 is re-expressed below:

ε(i1) →1 τ(i1, i2) →1 ε(i2) →2 τ(i2, i3) →2 ε(i3) →3 τ(i3, i4) →3 ε(i4)

→4 τ(i4, i3) →4 ε(i3) →5 τ(i3, i6) →5 ε(i6) →6 τ(i6, i7) →6 ε(i7)

→7 τ(i7, i8) →7 ε(i8) →8 τ(i8, i7) →8 ε(i7) →9 τ(i7, i9) →9 ε(i9)

→10 τ(i9, i7) →10 ε(i7) →11 τ(i7, i6) →11 ε(i6) →12 τ(i6, i3) →12 ε(i3)

→13 τ(i3, i5) →13 ε(i5) →14 τ(i5, i3) →14 ε(i3) →15 τ(i3, i2) →15 ε(i2)

→16 τ(i2, i1). (5.3)

We denote by SEET (i) a SEET procedure which begins with ε(i) followed by ETs throughout a

given tree of submodels. The estimates of cell means resulting from a SEET (i) can be expressed as

nÒP (x)(r+1) = n(xδi)ÒP (x|xδi)
(r).

As described above, the procedure (5.3) has the some effect as the procedure

SEET (i1) → SEET (i2) → SEET (i3) → SEET (i4) → SEET (i3) → SEET (i6)

→ SEET (i7) → SEET (i8) → SEET (i7) → SEET (i9) → SEET (i7) → SEET (i6)

→ SEET (i3) → SEET (i5) → SEET (i3) → SEET (i2).
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By the way, this procedure is an IPF procedure (Bishop, Fienberg, and Holland 1975) which is well

known to converge. So the iterative SEET procedure such as in (5.3) converges, which guarantees

the CD of the resulting estimates.

Note that since the IPF and the iterative SEET procedures calibrate the estimates to data, we

do not consider the structure of a model, and so the hyper-EM condition has nothing to do with the

iterative SEET.

5.2 M-step of the Hyper-EM Algorithm

When the iterative SEET procedure converges, we obtain the CD. This however does not necessarily

mean unnecessariness of the ET for the M-step. Consider neighboring submodels i and j and suppose

that MLEs are obtained for each of them. The point here is whether the MLEs, [̂i]j and ˆ[j]i, are the

same. If this equality holds for every pair of neighboring submodels, we do not need the ET and

the M-step is done simply by the likelihood-maximization on individual submodels. Otherwise, we

need the ET. In the theorem below, we will see a sufficient and necessary condition for a successful

M-step without the ET.

Theorem 5.1. Suppose G = (V, E) is d-split into a tree of k submodels under the hyper-EM

condition and the marginal restructuring is done on all the submodels. If the iterative SEET

converges and submodels i and j, i < j, are neighbors, thenÒ[i](ri)

j (x) = c[j](rj)

i (x) for x ∈ XVi∩Vj (5.4)

if and only if Ò[i](ri)

j (x) = Ó[ij ](ri)
(x) for x ∈ XVi∩Vj (5.5)

where Ò[i](ri)
is the estimate for submodel i obtained by likelihood maximization on the estimates

resulting from the preceding iterative SEET, and analogously for c[j](rj)
.

Proof: We denote by Ò[i](ri−1)
the estimate for submodel i that are resulting from the preceding

iterative SEET and the same for c[j](rj−1)
. Since the iterative SEET converges,Ò[i](ri−1)

j (x) = c[j](rj−1)

i (x) for x ∈ XVi∩Vj . (5.6)

Furthermore, the d-splitting is carried out so that the hyper-EM condition is satisfied. So, by

Theorem 4.2, the hyper-EM works from submodel i to submodel j, that is,c[j](rj)

i (x) = Ó[ji]
(rj)

(x). (5.7)
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Hence, for x ∈ XVi∩Vjc[j](rj)

i (x) = Ó[ji]
(rj)

(x) ( by (5.7) )

=
Y

v∈Vi∩Vj

{c[j](rj−1)

i (x)}(xv|xpa(v)∩Vi∩Vj
) ( by (4.2) )

=
Y

v∈Vi∩Vj

{Ò[i](ri−1)

j (x)}(xv|xpa(v)∩Vi∩Vj
) ( by (5.6) )

= Ó[ij ](ri)
(x). ( by (4.1) )

From this result and (5.4) follows (5.5). As for the other direction of the proof, we can easily see

that (5.4) follows from (5.5) and the last equation.

If expression (5.5) holds for all the pairs of neighboring submodels, the set of the k submodels

constitutes a left hyper-EM tree. Hence, if a d-splitting under the hyper-EM condition gives rise to

a left hyper-EM tree, then according to Theorem 5.1, we do not need ET in the M-step. Recall that

when a d-splitting is made under the hyper-EM condition, the resulting tree of submodels becomes

a right hyper-EM tree.

If the set of the k submodels does not constitute a left hyper-EM tree, we need the ET between

neighboring submodels in the M-step, and so we must show the convergence of the M-step which

consists of the likelihood-maximization on submodels and the ET between neighboring submodels.

The ET is made between likelihood-maximizations on submodels in the same way as in the iteration

SEET. We will call this M-step an M-step with ET and the M-step in the preceding paragraph an

M-step without ET. Kim (2000) proved theorems (Theorems 5.5 and 5.6 thereof) to the effect that

the M-step with ET converges as long as the submodels are d-split under the hyper-EM condition.

6 SIMULATION EXPERIMENT

We will apply the proposed EM (we will call it hyper-EM) algorithm to recursive models of

categorical variables whose model structures are presented in three arrangements of submodels, a

series-mode arrangement, a tree of submodels with one branching node, and a tree of submodels

with multiple branching-nodes. The latter tree is a general situation of submodel-arrangement. So

we will first see how the hyper-EM works on two simple arrangements of submodels and then on the

latter tree-shape arrangement.

All the variables considered are binary, taking on values 0 or 1, and the d-splitting is done under

the hyper-EM condition. In all the graphs in this section, bullets stand for observed variables and
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Figure 6.1: A series-mode arrangement where dotted arrows are the ones that are added in the
marginal restructuring.

Table 6.1: The goodness-of-fit levels for the series-mode arrangement as in Figure 6.1.

Submodel(d.f.) 1(211) 2(216) 3(214) 4(208)
χ2 205.67 207.37 206.06 243.15

P-value 0.5906 0.6512 0.6392 0.0476

Sample size = 2,000; Threshold = 0.1.

empty boxes for latent variables. The observed variables are labelled in the lower case and the latent

variables in the upper case. If a model involves a large number of variables as in Figure 6.3, the

variables are labelled by numbers.

Kim (2002) proposed a method for generating initial values for an EM that are calibrated to

data and showed that the initials end up with estimates that are in general better than the initials

that are generated in a random manner. We used these calibrated initial values in the simulation

experiment.

6.1 Series-mode Arrangement

The first model that we consider for simulation is in a series-mode submodel arrangement as in

Figure 6.1. The model is of 39 variables with 12 latent variables and 27 observed variables. The

variables are connected by 67 arrows.

The model is d-split into 4 submodels under the hyper-EM condition. Note that G1 = G1

and G2 = G2. However, the marginal restructuring upon submodels 3 and 4 ends up with E3 =

E2 ∪ {(E,F )} and E4 = E4 ∪ {(G, H)}. The dotted arrows in Figure 6.1 are a required addition

from the marginal restructuring. Out of the 39 nodes, the graph has 2 root nodes giving rise to 2
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Table 6.2: The estimates of the marginal probabilities of the latent variables in Figure 6.1.

Node(X) A B C D E F
P (X = 1) 0.85 0.85 0.74 0.65 0.52 0.60ÒP (X = 1) 0.70 0.70 0.73 0.63 0.52 0.63

Node(X) G H I J K L
P (X = 1) 0.52 0.43 0.37 0.45 0.41 0.33ÒP (X = 1) 0.53 0.43 0.39 0.43 0.48 0.38

Sample size = 2,000; Threshold = 0.1.

parameters, 7 nodes each of which has 1 parent node giving rise to 2× 7 = 14 parameters, 30 nodes

each of which has 2 parent nodes giving rise to 4 × 30 = 120 parameters. Thus the total number

of parameters is 136. If we consider the whole model as one, it means we have to compute the

estimates of the cell means for the 227 = 134, 217, 728 (about 134 million) cells. Dealing with this

model as one may lead us nowhere.

However, if we d-split the whole model under the hyper-EM condition into four submodels as in

Figure 6.1, we can obtain reasonably good estimates for the model. The total numbers of parameters

for the four submodels 1, 2, 3, and 4 are 44, 39, 41, and 46, respectively, with the corresponding

degrees of freedom, 211, 216, 214, and 208.

The goodness-of-fit levels for the four submodels are given in Table 6.1, which is obtained based

on simulated data of size 2,000 for each submodel and the stopping threshold was 0.1 for the estimates

of the cell means. The p-values of the goodness-of-fit test are about 0.6 for the first three submodels

and it is 0.05 for the last submodel. Since the estimates are affected by the initial values used, trying

some more initial values may yield higher p-values for the last submodel.

The estimates for the marginal probabilities of the latent variables are given in Table 6.2. The

node labels in the table are as in Figure 6.1. Except the first two estimates, the estimates look very

close to the actual values. Although they are not tabulated, the estimates of all the marginal or

conditional probabilities of the variables in the submodels look good in general located close to the

actual values.

6.2 A Tree of Submodels with A Single Branching Node

The second model that we consider for simulation is given in panel (a) of Figure 6.2. The model is

of 34 variables with 10 latent variables and 24 observed variables, and the variables are connected

by 54 arrows. We d-split the model into four submodels under the hyper-EM condition that are
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Figure 6.2: A ring-mode arrangement (a) that turns into a tree (c) of submodels with a single
branching node where submodel T (b) is taken as a branching node. In panel (a), a dotted arrow is
added as a result of the marginal restructuring on submodel 3.

Table 6.3: The goodness-of-fit levels for the tree of submodels with a single branching node.

Submodel(d.f.) 1(213) 2(220) 3(216)
χ2 197.74 241.73 248.67

P-value 0.7658 0.1503 0.0630

Sample size = 3,000; Threshold = 0.01.

arranged in a tree of submodels with a single branching node as in Figure 6.2. The dotted arrow in

the figure is an addition from the marginal restructuring on submodel 3 of the whole model.

Note that G1 = G1, GT = GT , and G2 = G2. However, the marginal restructuring upon submodels

3 ends up with E3 = E3 ∪ {(A,E)}. Out of the 34 nodes, the graph has 1 root node giving rise

to 1 parameter, 12 nodes each of which has 1 parent node giving rise to 2 × 12 = 24 parameters,

21 nodes each of which has 2 parent nodes giving rise to 4 × 21 = 84 parameters. Thus the total

number of parameters is 109. If we consider the whole model as one, it means we have to compute

the estimates of the cell means for the 224 = 16, 777, 216 (about 17 million) cells.

The total numbers of parameters for the three submodels 1, 2, and 3 are 42, 35, and 39, respec-
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Table 6.4: The estimates of the marginal probabilities of the latent variables in Figure 6.2.

Node(X) A B C D E F G H I J
P (X = 1) 0.85 0.75 0.66 0.75 0.66 0.67 0.67 0.62 0.62 0.58ÒP (X = 1) 0.88 0.76 0.69 0.70 0.58 0.61 0.61 0.74 0.62 0.75

Sample size = 3,000; Threshold = 0.01.

tively, with the corresponding degrees of freedom, 213, 220, and 216. Submodel T does not contain

any observed variables.

The goodness-of-fit levels for the three submodels are given in Table 6.3, which is obtained based

on simulated data of size 3,000 for each submodel and the stopping threshold was 0.01 for the

estimates of the cell means. The p-values of the goodness-of-fit test are about 0.76 for the first

submodel, 0.15 for the second and it is 0.06 for the last submodel.

The estimates for the marginal probabilities of the latent variables are given in Table 6.4. The

node labels in the table are as in Figure 6.2. Except for node J , the estimates are within 0.1 of the

actual values.

6.3 A Tree of Submodels With Multiple Branching Nodes

The last model that we consider for simulation is of 158 variables with 46 latent variables and 112

observed variables. The variables are connected by 270 arrows. We d-split the model under the

hyper-EM condition into 18 submodels among which four are used as branching nodes in the tree

of submodels. The whole model along with its submodel arrangement is given in Figure 6.3, and its

tree-shape arrangement is given in Figure 6.4. Note in the latter figure that four branching nodes,

T1, · · · , T4, are involved.

The marginal restructuring upon submodels gives rise to several additional arrows as indicated

in Figure 6.3. E1 = E1 ∪ {(1, 2)}, E3 = E3 ∪ {(7, 11)}, E5 = E5 ∪ {(13, 14)}, E7 = E7 ∪ {(21, 25)},
E9 = E9 ∪ {(23, 24)}, and E12 = E12 ∪ {(27, 28)}. For all the submodels except these submodels

1, 3, 5, 7, 9, 12, we have Gi = Gi. Out of the 158 nodes, the whole model has 2 root nodes giving rise

to 2 parameters, 42 nodes each of which has 1 parent node giving rise to 2 × 42 = 84 parameters,

114 nodes each of which has 2 parent nodes giving rise to 4× 114 = 456 parameters. Thus the total

number of parameters is 542. If we consider the whole model as one, the total number of the cells

is equal to 2112 + 5.19× 1033 (about 5 million times one trillion times one trillion!). The d-splitting

however saves us from this enormous computational burden. The total numbers of parameters for
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Figure 6.3: A recursive model of 158 variables which is d-split into 18 submodels under the hyper-
EM condition. Submodels T1, T2, T3, and T4 are placed as branching nodes in the tree of the 18
submodels in Figure 6.4.
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Figure 6.4: The tree of submodels of the model in Figure 6.3
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Table 6.5: The goodness-of-fit levels for a tree of submodels with multiple branching nodes.

Submodel(d.f.) 1(213) 2(212) 3(212) 4(212)
χ2 262.5 191.7 257.3 209.1

P-value 0.012 0.838 0.018 0.543

Submodel(d.f.) 5(212) 6(212) 7(212) 8(212)
χ2 238.3 250.1 212.5 227.3

P-value 0.104 0.037 0.477 0.224

Submodel(d.f.) 9(212) 10(214) 11(214)
χ2 239.8 202.5 200.2

P-value 0.093 0.704 0.742

Submodel(d.f.) 12(212) 13(214) 14(214)
χ2 240.7 218.6 251.9

P-value 0.086 0.400 0.039

Sample size = 100,000; Threshold = 1.0.

Table 6.6: The estimates of the marginal probabilities of the latent variables in Figure 6.3.

Node(X) 1 2 3 4 5 6 7 8 9 10 11 12
P (X = 1) 0.85 0.85 0.75 0.67 0.59 0.57 0.57 0.55 0.53 0.55 0.67 0.62ÒP (X = 1) 0.69 0.62 0.74 0.62 0.58 0.53 0.52 0.54 0.60 0.58 0.67 0.59

Node(X) 13 14 15 16 17 18 19 20 21 22 23 24
P (X = 1) 0.58 0.53 0.62 0.58 0.56 0.54 0.36 0.41 0.41 0.43 0.45 0.43ÒP (X = 1) 0.54 0.57 0.62 0.62 0.50 0.49 0.47 0.42 0.46 0.43 0.43 0.38

Node(X) 25 26 27 28 29 30 31 32 33 34 35 36
P (X = 1) 0.54 0.53 0.52 0.45 0.53 0.52 0.31 0.37 0.37 0.37 0.41 0.41ÒP (X = 1) 0.59 0.50 0.51 0.45 0.47 0.54 0.32 0.35 0.36 0.35 0.41 0.34

Node(X) 37 38 39 40 41 42 43 44 45 46
P (X = 1) 0.41 0.41 0.32 0.38 0.38 0.38 0.41 0.41 0.41 0.41ÒP (X = 1) 0.46 0.39 0.32 0.36 0.36 0.35 0.41 0.34 0.47 0.39

Sample size = 100,000; Threshold = 1.0.

all the submodels are all 43 except submodels 1, 10, 11, 13, and 14. The number of parameters for

submodel 1 is 42 and it is 41 for submodels 10, 11, 13, and 14 having 41. The degrees of freedom

of all the submodels are 212 except submodel 1 whose degrees of freedom is 213 and submodels 10,

11, 13, and 14 for which the degrees of freedom are all 214.
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Since submodels T1, T2, T3 and T4 do not have any observed variables, we can not think of degrees

of freedom for them. The goodness-of-fit levels for the other 14 submodels are given in Table 6.5,

which is obtained based on simulated data of size 100,000 for each submodel and the stopping

threshold was 1.0 for the estimates of the cell means. The p-values of the goodness-of-fit test are

about 0.012 for submodel 1, 0.018 for submodel 3, 0.037 for submodel 6, 0.039 for submodel 14 and

it is more than 0.05 for the other submodels. We used a much larger sample size of 100, 000 for this

large model than for the preceding two experiments in order to save time until convergence by using

a larger stopping threshold of 1.0.

The estimates for the marginal probabilities of the latent variables are given in Table 6.6. The

node labels in the table are those in Figure 6.3. Except the first two and the nineteenth estimates,

the estimates are within 0.1 of the actual values. Although they are not tabulated, the estimates of

all the marginal or conditional probabilities of the variables in the submodels were in general close

to the actual values.

7 MODELLING WITH REAL DATA

We analyzed a data set of 20 multiple choice items of Mathematics section of the Korean SAT

that was administered in 1999. After investigating the 20 items, we ended up with eight knowledge

units or ability factors that are relevant to the 20 test items. This means we have 20 observed binary

variables for item scores (0 for incorrect answer and 1 for correct answer) and 8 unobservable binary

variables for the states of the knowledge units (0 for a poor state of knowledge and 1 for a good enough

state). The data set is available from the web-site, http://amath.kaist.ac.kr/∼slki/research/data.

The 28 variables are related as in panel (a) in Figure 7.1, where an arrow from a box to a bullet

stands for a causal relation between the corresponding knowledge unit and test item and an arrow

from a box to a box mostly stands for a prerequisite relationship between the corresponding pair

of knowledge units (Mislevy 1994). If an item can be solved when a test-taker possesses a good

knowledge of certain knowledge units, then the item-score variable is said to be causally related

with the knowledge units and arrows run from the corresponding knowledge-state variables to the

item-score variable. The initial structure of the relationship among the item-score variables and the

knowledge-state variables is based on the opinions of a group of experts of the test subject. The

knowledge units are listed in Table 7.1.

As a whole, we need to deal with 28 binary variables or 228 = 268, 435, 456 cell probabilities

for parameter estimation of the model as in Figure 7.1. The parameters are given in the form of
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Figure 7.1: A DAG for real data. Bullets are for the item score variables and boxes for the knowledge
states.

Table 7.1: The list of the knowledge units involved in the model in Figure 7.1

Code Contents
A DK about sets
B DK about numbers and equations
C DK about plane geometry
D PK for inference
E DK about one-variable functions
F DK about trigonometrical functions
G PK for problem recognition
H PK for problem solving

NOTE: DK is an acronym of “declarative
knowledge” and PK of “procedural knowl-
edge.”
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Table 7.2: The goodness-of-fit levels for the three submodels, submodel 1, 2, and 3, as in Figure 7.1.

Submodel(d.f.) 1(79) 2(201) 3(203)
χ2 89.89 220.91 226.43

P-value 0.189 0.160 0.124

Sample size = 1,000; Threshold = 0.05.

Table 7.3: The estimates of the marginal probabilities for the knowledge-state variables.

Node(X) A B C D E F G HÒP (X = 1) 0.71 0.56 0.58 0.58 0.52 0.56 0.76 0.56

Sample size = 1,000; Threshold = 0.05.

marginal or conditional probability. As for the item-score variable g in the figure, knowledge units

B, E, and G are relevant. So we need to estimate P (Xg = 1|XB,E,G = (i, j, k)) for i, j, k = 0, 1. We

can expect that the conditional probabilities be all positive since the choice of a correct answer is

possible by a lucky guessing on an item which is too much for a test-taker.

Working with the whole model of the 28 variables might take up an overwhelming computing

time of several months by a fast-computing workstation with Intel Xeon 1.6GHz/4CPU when we

need to use an EM algorithm. However, when we applied our method to this data set, the computing

time came down to 24.5 hours. We d-split the whole model into a tree of submodels as in panel (c)

of Figure 7.1, where submodels 1, T, 2, and 3 are of 13, 8, 14, and 14 variables, respectively. As

aforementioned, submodel T is regarded as a submodel although it is created for estimate-transfusion

among the submodels that are neighbors of the T-type submodel. Since the maximum number of

the variables involved in a submodel is 14, the computing time when we handle the whole model as

a single model would be several months provided the memory capacity is large enough for the 270

million table-cells.

The marginal restructuring on all the submodels yields that G1 = G1, GT = GT , G2 = G2, and

G3 = G3. The degrees of freedom for the submodels 1, 2, and 3 are given in Table 7.2. The sample

size of the data we used is 1,000 and the stopping threshold for the hyper-EM method is 0.05 for

each submodel.

The goodness-of-fit levels for the three submodels are given in Table 7.2. The p-values of the

goodness-of-fit test are all larger than 0.12, indicating a good overall fit for individual submodels.

The estimates of the marginal probabilities of the knowledge-state variables are given in Table 7.3,
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Table 7.4: The proportions correct of the 20 test items as appearing in Figure 7.1

Item a b c d e f g h i j
Proportion 0.60 0.54 0.52 0.75 0.61 0.84 0.79 0.64 0.60 0.53

Item k l m n o p q r s t
Proportion 0.59 0.67 0.48 0.59 0.30 0.52 0.54 0.54 0.40 0.66

Sample size = 1,000.

where the node labels are as in Figure 7.1. The marginal probabilities are average levels of the

knowledge states of the test-takers and their estimates range from 0.52 to 0.71. If we look at the

proportions correct for the 20 test items as in Table 7, we can see that the proportions range from

0.3 to 0.84.

We can see in the estimation result that the knowledge state of the knowledge unit which is

causally related to the items whose proportions correct are low is estimated accordingly low. For

instance, knowledge-state variable XF is related to item-score variables Xp and Xr whose proportions

correct are 0.52 and 0.54 respectively, and the marginal for XF is estimated as 0.56; a similar situation

is observed regarding XH . However, when a knowledge-state variable is related to many item-score

variables or vice versa, such an accordance in estimates becomes less apparent.

8 CONCLUDING REMARKS

A key idea behind the proposed method called hyper-EM for dealing with too large a model is

that we partition the whole model into a set of submodels of manageable sizes and use the submodels

as separate models while allowing the submodels to share a given data set as much as possible. The

data set is marginalized into as many marginal frequency tables as the number of the submodels

which contain at least one observed variable.

The hyper-EM is a generalized version of EM. Its E-step is carried out in the form of iterative

proportional fitting calibrating the estimates to the marginal frequency tables. The ET between

submodels is necessary to have all the estimates of the whole model consistent throughout the model.

The marginal distribution on a submodel is, based on the estimates, the same whether it is obtained

from the whole model or not. The M-step of the hyper-EM is a generalized version of the M-step

of EM. We do the likelihood-maximization for individual submodels and if necessary estimates are

transfused between neighboring submodels to obtain the consistency of the distribution throughout
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the whole model. The ET is not necessary when the estimates of the parameters pertaining to the

intersection of a pair of neighboring submodels are the same whether the estimates are obtained

from one of the submodels or from the other. If a tree of submodels is a hyper-EM tree, we do not

need the estimate transfusion; otherwise, we need it.

When we divide a large recursive model into submodels, it is very important that the two

conditions, the Family condition and the hyper-EM condition, are satisfied. The Family condition

makes it possible that the probability model for the whole model can be expressed as a product

of functions of submodels. The hyper-EM condition is instrumental for the M-step so that the ET

works for the consistency of the distribution for the whole model.

After a d-split under the hyper-EM condition, the resulting submodel-arrangement is given in

the form of a tree where branching is made at the nodes of the submodels each of which consists

of the variables that are contained in more than one submodel in a ring-mode arrangement. This

tree-shape arrangement of submodels means that the probability model for the whole model can be

expressed as a product of (conditional) probability models of the submodels.

In the simulation experiment, we considered three models which were d-split into a series-mode

arrangement, a tree with a single branching node and a tree with multiple branching nodes. The

simulation result says that the hyper-EM can be used for a recursive model of any size as long as

the model is split under the two conditions as introduced in this paper. As for the tree of multiple

branching nodes with 158 binary variables, the p-values of the goodness-of-fit levels were larger than

0.05 except four submodels for which the p-values were 0.012, 0.018, 0.037, and 0.039. The estimates

of the marginal probabilities of the latent variables were within 0.1 for 43 of the 46 latent variables

and within 0.05 for 38 of them. The estimates of the other variables in the model were close to the

actual values. This result would not be possible if we were to handle the whole model as a single

model.

Although we considered a real data set for a relatively smaller model compared with the simula-

tion models, the result is additional support for the proposed method as a practical tool for building

a recursive model of categorical variables which is too large to handle as a single model.

If we do not split a model, the hyper-EM is the same as a regular EM algorithm. When a model

is d-split, the only difference between the hyper-EM and the EM is that we do the ET between

neighboring submodels when applying the hyper-EM.
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Once a d-split is made on a recursive model, it is desirable that we check if individual submod-

els are appropriate to their corresponding marginals of data and the hyper-EM is more properly

employed when the individual submodels all fit better with the data.

APPENDIX: PROOF OF THEOREM 3.3

Let clan(v∗) = {v1, · · · , vm, · · · , vκ} where vi’s are ordered such that vm = v∗ and ch(vm) =

{vm+1, · · · , vκ}. Then we haveÒPV =
Y
v∈V

[fa(v)]
[pa(v)]

=
� Y

v∈(V \clan(vm))

[fa(v)]
[pa(v)]

�� Y
v∈clan(vm)

[fa(v)]
[pa(v)]

�
=

� Y
v∈(V \clan(vm))

[fa(v)]
[pa(v)]

��m−1Y
i=1

[fa(vi)]
[pa(vi)]

��
[fa(vm)]
[pa(vm)]

�� κY
i=m+1

[fa(vi)]
[pa(vi)]

�
(A.1)

Since vm is contained only in fa(vi), m ≤ i ≤ κ, and pa(vi), m + 1 ≤ i ≤ κ, we consider only these

fa(vi), m ≤ i ≤ κ, and pa(vi), m + 1 ≤ i ≤ κ. For convenience’s sake, let

F =
[fa(vm)]
[pa(vm)]

κY
i=m+1

[fa(vi)]
[pa(vi)]

(A.2)

and

R =
� Y

v∈(V \clan(vm))

[fa(v)]
[pa(v)]

��m−1Y
i=1

[fa(vi)]
[pa(vi)]

�
. (A.3)

When ch(vm) = ∅,

F =
[fa(vm)]
[pa(vm)]

.

This means that vm is contained in one and only one f-clique fa(vm) in expression (A.1), which

satisfies condition (i) of the theorem. That ch(vm) = ∅ means that vm is terminal in G. So, if pa(vm)

is made complete, clan(vm) becomes a clique, satisfying condition (ii) of the theorem. Furthermore,

since vm is terminal, clan(vm) = fa(vm) andÒPV = R · F

=

 � Y
v∈(V \clan(vm))

[fa(v)]
[pa(v)]

��m−1Y
i=1

[fa(vi)]
[pa(vi)]

�!�
[fa(vm)]
[pa(vm)]

�
=

�ØX
x{vm}

PV

��
[fa(vm)]
[pa(vm)]

�
.
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Thus, from fa(vm) = pa(vm) ∪ {vm}, we have at x(vm) = x∗(vm)X
x{vm}

ÒPV =
�ØX

x{vm}

PV

�� X
x{vm}

[fa(vm)]
[pa(vm)]

�
= ØX

x{vm}

PV .

In other words, vm is removable from G. Therefore, nodes which are terminal always satisfy this

theorem.

From now on, we will consider only vm such that ch(vm) 6= ∅. We prove the theorem by showing,

first, equivalence of condition (i) with condition (ii) and then equivalence of condition (ii) with (iii).

We assume condition (ii). From condition (ii) follows that fa(vi) = pa(vi+1), m ≤ i ≤ κ − 1. So,

expression (A.2) becomes

F =
[fa(vκ)]
[pa(vm)]

and in expression (A.1), vm is involved in the term [fa(vk)] only. In other words, vm is contained

in the f-clique, fa(vκ), only.

Now for the other direction of the equivalence, assume vm is contained in one f-clique only, say

Cvm . Then

F =
[Cvm ]

[pa(vm)]
(A.4)

since vm /∈ pa(vm). Equation (A.4), when multiplied by [pa(vm)], becomes

[fa(vm)]
κY

i=m+1

[fa(vi)]
[pa(vi)]

= [Cvm ]. (A.5)

The left-hand side of (A.5) is a function of the X variables indexed in a set which contains pa(vm)∪
{vm, · · · , vκ}. According to the structure of clan(vm), vm+1, · · · , vκ are dependent upon vm at the

very least. This means that [Cvm ] must be a function of the X variables indexed in a set which

contains {vm, · · · , vκ}. In other words,

{vm, · · · , vκ} ⊆ Cvm . (A.6)

However, vκ /∈ ∪κ−1
i=m+1fa(vi) and vκ ∈ fa(vκ). From (3.3) and (A.6), it follows that

Cvm ∈ {fa(vi) | m ≤ i ≤ κ}.

This implies that fa(vκ) = Cvm since vκ ∈ Cvm . Thus we have [fa(vκ)] = [Cvm ]. That is,

[fa(vm)]
κY

i=m+1

[fa(vi)]
[pa(vi)]

= [fa(vκ)]. (A.7)

43



By the definition of f-clique and (A.7), we can see that for each i, m + 1 ≤ i ≤ κ, there exist j,

m ≤ j ≤ κ− 1, such that

pa(vi) = fa(vj).

Thus

pa(vκ) ∈ {fa(vi) | m ≤ i ≤ κ− 1}. (A.8)

Since pa(vκ) ⊆ fa(vκ) = Cvm
, we have, from (A.6) and the fact that pa(vκ) ∪ {vκ} = fa(vκ),

{vm, · · · , vκ−1} ⊆ pa(vκ). (A.9)

However, vκ−1 /∈ ∪κ−2
i=mfa(vi), and vκ−1 ∈ fa(vκ−1). Thus, by (A.8) and (A.9),

fa(vκ−1) = pa(vκ), (A.10)

which means [fa(vκ−1)] = [pa(vκ)]. Proceeding to vκ−1, we have from (A.8) and (A.10) that

pa(vκ−1) ∈ {fa(vi) | m ≤ i ≤ κ− 2}. (A.11)

Since pa(vκ−1) ⊆ fa(vκ−1) = pa(vκ), we have, from (A.9) and the fact that pa(vκ−1) ∪ {vκ−1} =

fa(vκ−1),

{vm, · · · , vκ−2} ⊆ pa(vκ−1).

However, vκ−2 /∈ ∪κ−3
i=mfa(vi), and vκ−2 ∈ fa(vκ−2). Thus, by (A.11),

fa(vκ−2) = pa(vκ−1) (A.12)

since vκ−2 ∈ pa(vκ−1). Hence,

[fa(vκ−2)] = [pa(vκ−1)].

As for vκ−2, we have from (A.8), (A.10), and (A.12),

pa(vκ−2) ∈ {fa(vi) | m ≤ i ≤ κ− 3}.

By applying the same argument as for (A.12), we can have fa(vη) = pa(vη+1) for m ≤ η ≤ κ − 3.

Since fa(vi) = pa(vi+1) for m ≤ i ≤ κ−1, all the nodes in clan(vm) becomes a clique when pa(vm) is

made complete and vm is contained in clan(vm) only since vm is surrounded by pa(vm) and ch(vm).

This completes the proof for the sufficiency of condition (i) for condition (ii).
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We will next prove the equivalence of (ii) with (iii). First we assume condition (ii). Since

clan(vm) is a clique in G when pa(vm) is made into a complete subgraph in G, we know, under the

set-up of clan(vm) at the beginning of the proof, that fa(vi) = pa(vi+1) for m ≤ i ≤ κ − 1 and so

that

F =
[fa(vκ)]
[pa(vm)]

.

So (A.1) can be written asÒPV = R · F

=

 � Y
v∈(V \clan(vm))

[fa(v)]
[pa(v)]

��m−1Y
i=1

[fa(vi)]
[pa(vi)]

�!�
[fa(vκ)]
[pa(vm)]

�
. (A.13)

In comparing the marginal structure GV \{vm} with G, we may have to confine ourselves to the part

of clan(vm). The interrelationships among the variables in a recursive model is defined in the form

of conditional probability of each variable in the model according to clan(vm) as in condition (ii),

fa(vi) = pa(vi+1), m ≤ i ≤ κ − 1. Therefore, the removal of vm from G does not affect any other

variables in G in the context of conditional independence. It is important to note that all the children

and parents of vm, if any, are included in clan(vm). For convenience, we will call this situation as

for clan(vm) clan condition.

Marginalizing ÒPV onto V \ {vm} at x(vm) = x∗(vm) yields, from (A.13), the followingX
x{vm}

ÒPV =
X

x{vm}

 
R · [fa(vκ)]

[pa(vm)]

!
= R ·

�P
x{vm}

[fa(vκ)]

[pa(vm)]

�
= R ·

�
[fa(vκ) \ {vm}]

[pa(vm)]

�
Since pa(vm) = fa(vm) \ {vm} = pa(vm+1) \ {vm}, we have at x(vm) = x∗(vm)X

x{vm}

ÒPV = R ·
�

[fa(vκ) \ {vm}]
[pa(vm+1) \ {vm}]

�
(A.14)

Note that

[fa(vκ) \ {vm}]
[pa(vm+1) \ {vm}]
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is the MLE of Pch(vm)|pa(vm). Thus (A.14) can be expressed as, by condition (ii) and the clan

condition,

R ·
�

[fa(vκ) \ {vm}]
[pa(vm+1) \ {vm}]

�
= R ·

� Y
v∈(clan(vm)\fa(vm))

[fa′(v)]
[pa′(v)]

�
,

where, for v ∈ (clan(vm) \ fa(vm)), [fa′(v)] and [pa′(v)] are computed based on the marginal on

GV \{vm}. Since [fa(v)] and [pa(v)] remain the same, for v ∈ V \ ({vm} ∪ ch(vm)), between G and

GV \{vm} by the clan condition, the above expression is the MLE for GV \{vm}, i.e.,X
x{vm}

ÒPV = ØX
x{vm}

PV .

This proves that condition (ii) implies condition (iii).

For the proof for the other direction, we begin by supposing that condition (ii) does not hold.

Then, without loss of generality, we can think of three possible situations which are displayed in

(a), (b), and (c) in Figure A.1. In the figure, the three situations are featured by three types of

elementary violations of condition (ii). The violations are no edge between a parent and a child of

vm as depicted in panel (a), no edge between children of vm as in panel (b), and no edge between

vm and a parent of a child of vm as depicted in panel (c). A general form of violation may be given

in a mixture of three elementary violations. In the proof, we will consider each of these elementary

violations and then a general form of violation. (a′), (b′), and (c′) are respectively the marginalized

subgraphs of G as in (a), (b), and (c) in Figure A.1.

Note that v∗ = vm in Figure A.1. The left hand side of equation (3.5) is expressed at x(vm) =

x∗(vm) for the three violations as in panels (a), (b), and (c) in Figure A.1 respectively byX
x{vm}

[{1, vm}][{vm, 3}]
[{vm}] ,X

x{vm}

[{vm, 2}][{vm, 3}]
[{vm}] ,

and X
x{vm}

[{vm}][{2}][{vm, 2, 3}]
[{vm, 2}] .

None of these values are guaranteed to be equal to the marginals corresponding to the graphs in

panels (a′), (b′), and (c′), which are expressed respectively by

[{1, 3}], [{2, 3}], and [{2, 3}]. (A.15)
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Figure A.1: A display of the three elementary violations of condition (ii) is given in panels (a), (b),
and (c). v∗ = vm and the dotted arrows are needed to satisfy condition (ii). (a′), (b′), and (c′) are
marginalized subgraphs of their counterparts in (a), (b), and (c).

Since these marginalized subgraphs are saturated, the values in (A.15) are MLEs for the marginalized

subgraphs. This result means negation of condition (iii) as far as the elementary violations are

concerned.

We will now turn to a general form of violation of condition (ii) concerning clan(vm) and see

how the elementary violations affect toward negation of condition (iii) regarding the node vm. We

aim to show that the equality X
x{vm}

ÒPV = ØX
x{vm}

PV (A.16)

cannot hold when any of the elementary violations takes place in clan(vm). Since the elementary

violations have nothing to do with v1, · · · , vm−1 among the nodes in clan(vm), the summation in

(A.16) applies only to F as defined in (A.2) among all the factors in expression (A.1). In a formal

expression, we have at x(vm) = x∗(vm)X
x{vm}

ÒPV

=
� Y

v∈(V \clan(vm))

[fa(v)]
[pa(v)]

��m−1Y
i=1

[fa(vi)]
[pa(vi)]

� X
x{vm}

 
[fa(vm)]
[pa(vm)]

κY
i=m+1

[fa(vi)]
[pa(vi)]

!
.

By the clan condition, the removal of vm from G does not affect any other variables in G in the

context of conditional independence. Thus we can obtainØX
x{vm}

PV =
� Y

v∈(V \clan(vm))

[fa(v)]
[pa(v)]

��m−1Y
i=1

[fa(vi)]
[pa(vi)]

�� κY
i=m+1

[fa′(vi)]
[pa′(vi)]

�
,

where, for v ∈ (clan(vm) \ fa(vm)), [fa′(v)] and [pa′(v)] are computed based on the marginal on

GV \{vm}.
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We will make use of the simple fact that, for a subset A of V ,X
xA

 X
x{vm}

ÒPV

!
6=
X
xA

 ØX
x{vm}

PV

!
(A.17)

implies X
x{vm}

ÒPV 6= ØX
x{vm}

PV (A.18)

Recall that the children nodes of vm are ordered as vm+1, · · · , vκ and it is important to note

that the elementary violations are incurred only by the child nodes of vm. We will show that for

any single elementary violation of condition (ii) invalidates the removability of vm from G. To make

our argument as simple as possible, we describe a procedure of detecting a node in ch(vm) which

violates condition (ii) the first time in the order of node-indexes as follows:

Find the node vs ∈ ch(vm) for which

s = min{i | fa(vi−1) 6= pa(vi), vi ∈ ch(vm)}. (A.19)

Negation of condition (ii) means the existence of the node vs in ch(vm). To show (A.18), assuming

the existence, we use the simple fact concerning (A.17) and (A.18). For this, we will let A = {vi ∈
V | i > s}. The two sides of (A.17) are derived below.X

xA

� X
x{vm}

ÒPV

�
=

X
x{vm}

 X
xA

�� Y
v∈(V \clan(vm))

[fa(v)]
[pa(v)]

��m−1Y
i=1

[fa(vi)]
[pa(vi)]

�� [fa(vm)]
[pa(vm)]

�� κY
i=m+1

[fa(vi)]
[pa(vi)]

��!
=

X
x{vm}

 �m−1Y
i=1

[fa(vi)]
[pa(vi)]

�� [fa(vm)]
[pa(vm)]

�X
xA

�� Y
v∈(V \clan(vm))

[fa(v)]
[pa(v)]

�� κY
i=m+1

[fa(vi)]
[pa(vi)]

��!
=

X
x{vm}

 � Y
v∈V \(clan(vm)∪A)

[fa(v)]
[pa(v)]

��m−1Y
i=1

[fa(vi)]
[pa(vi)]

��
[fa(vm)]
[pa(vm)]

�� sY
i=m+1

[fa(vi)]
[pa(vi)]

�!
=

� Y
v∈V \(clan(vm)∪A)

[fa(v)]
[pa(v)]

��m−1Y
i=1

[fa(vi)]
[pa(vi)]

� X
x{vm}

 
[fa(vm)]
[pa(vm)]

sY
i=m+1

[fa(vi)]
[pa(vi)]

!
(A.20)

and X
xA

�ØX
x{vm}

PV

�
=

�m−1Y
i=1

[fa(vi)]
[pa(vi)]

�X
xA

 � Y
v∈(V \clan(vm))

[fa(v)]
[pa(v)]

�� κY
i=m+1

[fa′(vi)]
[pa′(vi)]

�!
=

� Y
v∈V \(clan(vm)∪A)

[fa(v)]
[pa(v)]

��m−1Y
i=1

[fa(vi)]
[pa(vi)]

�� sY
i=m+1

[fa′(vi)]
[pa′(vi)]

�
. (A.21)
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In comparing the two sides of (A.17), we have only to compare the following two expressions:X
x{vm}

 
[fa(vm)]
[pa(vm)]

sY
i=m+1

[fa(vi)]
[pa(vi)]

!
(A.22)

and
sY

i=m+1

[fa′(vi)]
[pa′(vi)]

. (A.23)

Note in (A.20) and (A.21) that node vs may be regarded as a terminal node in a recursive model.

According to (A.19), there is no vi, i < s, in clan(vm) such that fa(vi) = pa(vs). So in (A.22),

vm must appear in both of numerator and denominator. As a matter of fact, we can see from (A.19)

that at x(vm) = x∗(vm)X
x{vm}

 
[fa(vm)]
[pa(vm)]

sY
i=m+1

[fa(vi)]
[pa(vi)]

!
=
X

x{vm}

 
[fa(vs−1)]
[pa(vm)]

[fa(vs)]
[pa(vs)]

!
(A.24)

and
sY

i=m+1

[fa′(vi)]
[pa′(vi)]

=
[fa′(vs−1)]
[pa′(vm+1)]

[fa′(vs)]
[pa′(vs)]

(A.25)

for any mixture of elementary violations. Since pa(vm) = pa′(vm+1), we may compare the two values

in (A.24) and (A.25) in terms ofX
x{vm}

 
[fa(vs−1)]

[fa(vs)]
[pa(vs)]

!
and [fa′(vs−1)]

[fa′(vs)]
[pa′(vs)]

whose equality are not guaranteed in general. This completes the proof of the theorem.
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