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Abstract. We study the norm-preserving extension of norm-attaining n-homogeneous polyno-
mials on Banach function spaces and M -ideal properties of function and sequence Marcinkiewicz
spaces. We show for a large class of Banach function spaces that the extension of n-homogeneous
polynomials does not need to be unique for n ≥ 2 in real spaces and for n ≥ 3 in complex spaces.
We find further a geometric condition under which every norm-attaining 2-homogeneous poly-
nomial on a complex symmetric sequence space X depends only on finitely many variables. This
geometric condition yields that a unit ball in X does not possess any complex extreme points. In
particular, if X = mΨ is a Marcinkiewicz sequence space and m0

Ψ is its subspace of order continu-
ous elements, we show that such properties as: every norm-attaining 2-homogeneous polynomial
on m0

Ψ depends on finitely many variables, every norm-attaining 2-homogeneous polynomial on

m0
Ψ has a unique norm preserving extension to its bidual mΨ, and no element of a unit sphere of

m0
Ψ is a complex extreme point, are equivalent. Moreover, any of these properties is equivalent

to the fact that Ψ is strictly increasing. As a corollary we obtain that mΨ is not rotund. We also
find conditions when an order continuous subspace of either function or sequence Marcinkiewicz
space is an M -ideal in its bidual. Finally we investigate the dual and M -ideal properties of
L1 + L∞, a particular example of Marcinkiewicz spaces.

1. Introduction and Preliminaries

Let X be a Banach space over a scalar field F, where F is either the set of real numbers R or
the set of complex numbers C. Let further BX(resp. SX) denote a unit ball(resp. unit sphere) in
X. A bounded multi-linear form means an n-linear mapping L : Xn → F for n ∈ N, with finite
norm ‖L‖ defined as

‖L‖ = {|L(x1, · · · , xn)| : xi ∈ BX , i = 1, · · · , n}.
Then a map P (x) = L(x, · · · , x) : X → F is called an n-homogeneous polynomial on X and its
norm is defined by

‖P‖ = sup{|P (x)| : x ∈ BX}.
Given a Banach space X, if x ∈ X and x∗ ∈ X∗ then 〈x∗, x〉 denotes x∗(x). We also denote

by [x1, . . . , xn] a linear span of vectors {xi}n
i=1 ⊂ X. For each subset M of X, let M⊥ be the set

of all bounded linear functionals which vanish on M . A point x of a convex set K is an extreme
point of K if {x + ty : −1 ≤ t ≤ 1} ⊂ K for y in X implies that y = 0. If every point of SX is an
extreme point of BX , X is called a strictly convex(or, rotund) space. A point x of a convex set K
of a complex Banach space X is a complex extreme point of K if {x + ζy : |ζ| ≤ 1, ζ ∈ C} ⊂ K for
y in X implies that y = 0. It is easy to see that every extreme point of BX is a complex extreme
point of BX when X is a complex space.

Let (Ω, µ) = (Ω,B, µ) be a measure space with a complete σ-finite measure µ on σ-algebra B.
Let L0(µ) denote the space of all µ-equivalence classes of B-measurable F-valued functions on Ω
with the topology of convergence in measure on µ-finite sets.

A Banach space (X, ‖ ‖) is said to be a Banach function space on (Ω, µ) if it is a subspace of
L0(µ) such that there is h ∈ L0(µ) with h > 0 a.e. in Ω and it has the ideal property that is if
f ∈ L0(µ), g ∈ X and |f | ≤ |g| a.e. then f ∈ X and ‖f‖ ≤ ‖g‖. If in addition the unit ball BX is
closed in L0(µ), then we say that X has the Fatou property. A Banach function space defined on
(N, 2N, µ) with the counting measure µ is called a Banach sequence space. In this case ei ∈ X for
all i ∈ N, where ei denotes a standard unit vector, that is ei = (0, . . . , 0, 1, 0, . . . ) with 1 as the ith
component.
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A Banach function space X on (Ω, µ) is said to be rearrangement invariant (r.i.,or symmetric)
if for every f ∈ L0(µ) and g ∈ X with µf = µg, we have f ∈ X and ‖f‖ = ‖g‖, where for any
h ∈ L0(µ), µh is a distribution function of h defined by

µh(t) = µ{ω ∈ Ω : |h(ω)| > t}, t ≥ 0.

If X is a Banach function space on (Ω, µ), then the associate space X ′ of X is a Banach function
space, which can be identified with the space of all functionals possessing an integral representation,
that is,

X ′ = {g ∈ L0(µ) : ‖g‖X′ = sup
‖f‖≤1

∫

Ω

|fg|dµ < ∞}.

It is well known that if X has the Fatou property, then (X ′′, ‖ ‖X′′) coincides with (X, ‖ ‖) [4, 11,
13].

An element f ∈ X is said to be order continuous if ‖fn‖ ↓ 0 for every sequence {fn} with
|fn| ≤ |f | a.e. and |fn| ↓ 0 a.e. on Ω. A Banach function space X is said to be order continuous
if every element of X is order continuous. It is well known that if X is an order continuous
Banach function space, then X∗ is order isometric to X ′, and this identification will be denoted
by X∗ ' X ′.

Suppose for the moment that X is a Banach function space consisting of real valued functions.
An element φ ∈ X∗ is called an integral functional if for any {fn} ⊂ X with 0 ≤ fn ↓ 0 a.e.,
φ(fn) → 0. A linear functional φs ∈ X∗ is called a positive singular linear functional whenever
φs(f) ≥ 0 holds for all non-negative f in X and for every integral linear functional φ, 0 ≤ φ(f) ≤
φs(f) for all non-negative f in X implies φ = 0. A singular linear functional in X∗ means the
difference of two positive singular linear functionals in X∗. It is known that the space of integral
linear functionals in X∗ is order isometric to X ′ and a dual space X∗ is order isometric to X ′⊕X∗

s ,
where X∗

s is the space of singular functionals on X [11, 13, 16].
Whenever X is a Banach function space, X0 (or X0) will denote the set of all order continuous

elements of X. It is easy to show that X0 is an order ideal, which means that it is a closed
subspace with the ideal property. Note that X0 is contained in the closure of the family of all
simple functions in X with support of finite measure [4]. It is well known that if X is a Banach
function space with the Fatou property and X0 contains all simple functions with support of finite
measure, then (X0)∗ ' X ′. In this case X∗ ' (X0)∗ ⊕X⊥

0 , where X⊥
0 coincides with X∗

s when X
is a Banach function space consisting of real valued functions (cf. Theorem 102.6, Theorem 102.7
in [13]).

Let Y be a closed subspace of a Banach space X. Y is called an M -ideal of X if there is a
bounded projection P : X∗ → X∗ with range Y ⊥ such that for each x∗ ∈ X∗,

‖x∗‖ = ‖Px∗‖+ ‖(I − P)x∗‖ .

We can write this decomposition as X∗ = Y ⊥⊕1 Y ∗. A Banach space X is said to be M -embedded
if X is an M -ideal of its bidual X∗∗. We will use the following facts about M -ideals [7].

Theorem 1.1. Suppose Y is a closed subspace of a Banach space X.
(i) (The 3-ball property) Y is an M -ideal of X if and only if for all y1, y2, y3 ∈ BY , all x ∈ BX

and ε > 0 there is y ∈ Y satisfying

‖x + yi − y‖ ≤ 1 + ε for all i = 1, 2, 3.

(ii) A Banach space X is M -embedded if and only if every separable subspace of X is also
M -embedded.

(iii) If X is an M -embedded space, then every separable subspace of X has a separable dual.

For any real functions F and G, we say that F is equivalent to G and we write it as F ≈ G
whenever there are constants C1, C2 > 0 such that C1|F (u)| ≤ |G(u)| ≤ C2|F (u)| for all u in the
domain of the functions. Recall also that for z ∈ C, sign z = z/|z| if z 6= 0 and sign z = 1 if z = 0.

The Hahn-Banach type extension of n-homogeneous polynomials has been studied in a number
of papers e.g. [1, 2, 3, 5, 6, 9]. In particular, it is known that every n-homogeneous polynomial on a
Banach space X has a norm-preserving extension to its bidual [1, 2, 5]. Moreover, it is well known
that if a subspace Y of X is an M -ideal, then every bounded linear functional (i.e., 1-homogeneous
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polynomial) on Y has a unique Hahn-Banach extension to X [7]. It has been shown in [3] that it
is no longer true for polynomials. In fact they showed that the norm-preserving extension of an
n-homogeneous polynomial on c0 to `∞ does not need to be unique for n ≥ 2 in real spaces and for
n ≥ 3 in complex spaces. They also showed that every norm-attaining 2-homogeneous polynomial
on a complex c0 must be finite, that is it depends only on finite many variables. These results have
been further generalized to certain types of Marcinkiewicz spaces in [9].

In this paper, we investigate the Hahn-Banach type extension of norm-attaining n-homogeneous
polynomials on Banach function spaces, generalizing in particular the results in [3, 9]. We also
examine M -ideal properties of function and sequence Marcinkiewicz spaces, including the space
L1 + L∞.

Let us outline briefly the content of this article. In section 2 we show for a large class of Banach
function spaces X that the norm preserving extension of n-homogeneous polynomials on a subspace
of X does not need to be unique for n ≥ 2 in real spaces and for n ≥ 3 for complex spaces. In
particular this statement holds true for any r.i. function space with the Fatou property or an
arbitrary Banach sequence space.

In section 3 we study 2-homogeneous polynomials on a complex symmetric sequence space X.
We define here a notion of a finite polynomial on X∗∗ and a special geometric condition of X,
under which any 2-homogeneous polynomial on X attains its norm if and only if it is finite. This
geometric condition yields for instance that no point of SX is a complex extreme point of BX .
As a corollary we obtain that every 2-homogeneous norm-attaining polynomial on X has a unique
norm preserving extension to its bidual X∗∗. Finally in this section we present similar results for
bounded functionals that are 1-homogeneous polynomials.

In section 4 we investigate Marcinkiewicz function spaces MΨ on I = (0, 1) or I = (0,∞).
After collecting some basic properties of MΨ and its order continuous subspace M0

Ψ, we formulate
conditions on Ψ when M0

Ψ is an M -ideal in MΨ, and we show for wide class of functions Ψ, that
MΨ is a bidual of M0

Ψ. It appears also that for Ψ(t) = max{t, 1}, MΨ coincides with Σ = L1 +L∞.
It naturally leads to study M -ideal properties of Σ. We compute the dual norms of Σ equipped
with two different traditional norms, and consequently we find out that Σ0 is not an M -ideal in Σ
under the Marcinkiewicz norm, while it is an M -ideal under the other norm. We also prove that
Σ0, under either norms, is not M -embedded. Thus Σ is the Marcinkiewicz space, which shows that
without additional assumptions on Ψ we are not able to obtain the earlier results in this section.

Sections 5 and 6 are devoted to Marcinkiewicz sequence spaces mΨ. In section 5 we provide
necessary and sufficient condition on Ψ for mΨ to be a bidual of m0

Ψ, as well as for m0
Ψ to be an

M -ideal of mΨ. Section 6 is a continuation of section 3 for Marcinkiewicz sequence spaces. The
main result of this section, Theorem 6.8, states several equivalent conditions for the property that
every norm-attaining 2-homogeneous polynomial on m0

Ψ is finite. It says among others that it is
equivalent to the condition that no element of the unit sphere of m0

Ψ is a complex extreme point
of a unit ball in mΨ. It is also equivalent to the fact that every norm-attaining 2-homogeneous
polynomial on m0

Ψ has a unique norm preserving extension to mΨ. Finally any of these conditions
is equivalent to the property that the sequence Ψ = {Ψ(n)} is strictly increasing. We then partially
extend Theorem 6.8 to a symmetric sequence space X, finding a connection between behaviour
of the fundamental function of X and the existence of complex extreme points of BX as well as
the condition that 2-homogeneous polynomials are finite on X. We conclude the section with a
corollary stating that m0

Ψ or mΨ are never rotund, and with an example of a symmetric sequence
space showing that the fundamental function cannot fully determine extreme points of its unit
ball.

2. Extensions of polynomials

Let X be a Banach space and Y a closed M -ideal in X. It is well known that a bounded linear
functional on Y has a unique norm preserving extension to X [7]. With polynomials the situation
is different. In [3] (see also [9] for some Marcinkiewicz sequence spaces), it has been shown that
extension of n-homogeneous polynomials from c0 to `∞ is not unique for n ≥ 2 for real spaces and
for n ≥ 3 for complex spaces. We shall show a similar result for a large class of Banach function
spaces.
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Now let X be a Banach function space over (Ω, µ), and let Y be a proper closed subspace of X.
Let’s assume that there exist two disjoint sets Ei ∈ B, i = 1, 2, such that

Φf = ϕ1(f)χE1 + ϕ2(f)χE2 , f ∈ X,

is a norm-one projection on X, where for i = 1, 2, χEi
∈ Y and

ϕi(f) =
1

µEi

∫

Ei

f, f ∈ X.

If X is a real space and n ≥ 2, then we can easily construct an n-homogeneous polynomial
on Y which has two different norm preserving extensions to X. Indeed, let ϕ be a norm-one
linear functional on X which vanishes on Y . Letting now α = ‖χE1‖, n-homogeneous polynomial
P (f) = (αϕ1(f))n on Y has norm one. It is clear that P1(f) = (αϕ1(f))n and P2(f) = (αϕ1(f))n−
(αϕ1(f)n−2ϕ2 are two distinct norm preserving extensions of P on X.

In the complex case, we can find an n-homogeneous polynomial with two distinct norm preserv-
ing extensions if n ≥ 3. In fact consider the set

S = {(z1, z2) ∈ C2 : ‖z1χE1 + z2χE2‖ ≤ 1},
and the function

ψ(z1, z2) = |z1|2 + |z2|2, (z1, z2) ∈ S.

It is clear that ψ is continuous on compact set S, and so there exists (u1, u2) ∈ S such that

ψ(u1, u2) = max
(z1,z2)∈S

ψ(z1, z2) = |u1|2 + |u2|2 = a2 + b2,

where a = |u1|, b = |u2|, a2 + b2 6= 0, and (a, b) ∈ S. We have the following result.

Lemma 2.1. There exists (a, b) ∈ S such that for n ≥ 2 and for all (z1, z2) ∈ S,

|az1 + bz2|n + |bz1 − az2|n ≤ (a2 + b2)n.

In particular for n ≥ 2 and f ∈ BX ,

|aϕ1(f) + bϕ2(f)|n + |bϕ1(f)− aϕ2(f)|n ≤ (a2 + b2)n,

and so
|aϕ1(f) + bϕ2(f)| ≤ a2 + b2 and |bϕ1(f)− aϕ2(f)| ≤ a2 + b2.

Proof. For n = 2 and any (z1, z2) ∈ S we have

|az1 + bz2|2 + |bz1 − az2|2 = (az1 + bz2)(az1 + bz2) + (bz1 − az2)(bz1 − az2)

= (a2 + b2)(|z1|2 + |z2|2) ≤ (a2 + b2)2.

Hence |az1 + bz2| ≤ a2 + b2 and |bz1 − az2| ≤ a2 + b2 on S.
For n > 2 we apply induction. Assuming that the inequality is true for n − 1 ≥ 2, we get for

any (z1, z2) ∈ S,

|az1 + bz2|n + |bz1 − az2|n ≤ (a2 + b2){|az1 + bz2|n−1 + |bz1 − az2|n−1} ≤ (a2 + b2)n.

Now, since Φ is a contraction, ‖ϕ1(f)χE1 + ϕ2(f)χE2‖ = ‖Φf‖ ≤ 1 for any f ∈ BX . Thus
(ϕ1(f), ϕ2(f)) ∈ S and the proof is done. ¤

Now for n ≥ 3 define a polynomial P on Y as

P (f) = (aϕ1(f) + bϕ2(f))n.

It is clear that P is an n-homogeneous polynomial on Y with ‖P‖ = (a2 + b2)n. In fact it follows
from Lemma 2.1, since we have |P (f)| ≤ (a2 + b2)n for f ∈ BX , and also P (aχE1 + bχE2) =
(a2 + b2)n. Then the following polynomials

P1(f) = (aϕ1(f) + bϕ2(f))n,

P2(f) = (aϕ1(f) + bϕ2(f))n + (a2 + b2)(bϕ1(f)− aϕ2(f))n−1ϕ(f),
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are two distinct norm preserving extensions of P from Y to X, where ϕ ∈ BX∗ is chosen in such a
way that it vanishes on Y and (bϕ1(f)− aϕ2(f))ϕ(f) 6= 0 for some f ∈ X. In view of Lemma 2.1,
it is clear that ‖P1‖ = (a2 + b2)n. Moreover, again applying Lemma 2.1, we get for every f ∈ BX

|P2(f)| ≤ |aϕ1(f) + bϕ2(f)|n + |a2 + b2||bϕ1(f)− aϕ2(f)|n−1

≤ (|aϕ1(f) + bϕ2(f)|n−1 + |bϕ1(f)− aϕ2(f)|n−1)(a2 + b2) ≤ (a2 + b2)n,

since n ≥ 3. Since we also have P2(aχE1 + bχE2) = (a2 + b2)n, it follows that ‖P2‖ = (a2 + b2)n.
As a conclusion of the above considerations we can state the following result.

Theorem 2.2. Let X be a Banach function space such that there exist two disjoint sets Ei, i = 1, 2,
such that the projection

Φf =
( 1

µE1

∫

E1

f
)
χE1 +

( 1
µE2

∫

E2

f
)
χE2 , f ∈ X,

is a contractive operator on X. Moreover, assume that Y is a proper closed subspace of X with
χEi

∈ Y , i = 1, 2.
If X is a real space then for n ≥ 2, there exists a norm-attaining n-homogeneous polynomial P
on Y which has at least two norm-preserving extensions to X. In the complex case the similar
statement holds true for n ≥ 3.

If X is a r.i. space with the Fatou property over non-atomic or counting measure then for
any disjoint sets Ei, i = 1, 2, the projection Φ on X has norm one [4]. It is also clear by the
lattice properties, that for a Banach sequence space X, for any distinct i, j ∈ N, the projection
Φ(x) = x(i)ei + x(j)ej on X has also norm one. Thus the following corollaries are immediate
consequences of the previous result.

Corollary 2.3. If X is a r.i. space with the Fatou property over non-atomic or counting measure
space, then the conclusion of Theorem 2.2 is valid in X for any proper closed subspace Y in X
with χEi ∈ Y , i = 1, 2.

Corollary 2.4. For any Banach sequence space X the conclusion of Theorem 2.2 is valid in X
for any proper closed subspace Y in X with ei, ej ∈ Y .

Example 2.5. In this example we will show that there is a non-symmetric function space with norm
one projection in Theorem 2.2. Suppose that p : Ω → [1,∞) is a measurable function on a σ-finite
measure space (Ω,B, µ) and define the functional for each f ∈ L0,

I(f) =
∫

Ω

|f(t)|p(t)

p(t)
dµ.

Then Nakano space Lp(t) is the family of all measurable functions on Ω with the property I(λf) <
∞ for some λ > 0 with norm

‖f‖ = inf {λ > 0 : I(f/λ) ≤ 1} .

It is easy to show that Nakano space Lp(t) is a Banach function space [14] but it is in general, not
symmetric.

Suppose that p(t) has constant values ai ≥ 1 on disjoint measurable sets Ei, i = 1, 2, respectively
with 0 < µE1 = µE2 < ∞. Then the projection

Φf =
(

1
µE1

∫

E1

f

)
χE1 +

(
1

µE2

∫

E2

f

)
χE2 , f ∈ Lp(t),
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is a contraction. Indeed, note that for any λ > 0,

I(λΦf) =
∫

Ω

|λΦf |p(t)

p(t)
dµ ≤

∫

Ω

((
1

µE1

∫
|λf |

)a1 χE1

a1
+

(
1

µE2

∫
|λf |

)a2 χE2

a2

)
dµ

≤ 1
µE1

∫

E1

|λf |a1

∫

E1

1
a1

+
1

µE2

∫

E2

|λf |a2

∫

E2

1
a2

≤
∫

E1

|λf |a1

a1
+

∫

E2

|λf |a2

a2

≤
∫

Ω

|λf(t)|p(t)

p(t)
dµ = I(λf).

This inequality yields that ‖Φf‖ ≤ ‖f‖ for all f ∈ Lp(t). Moreover we can see that ‖χEi
‖ =(

µEi

ai

) 1
ai

, i = 1, 2. So if we further assume that
(

µE1
a1

) 1
a1 6=

(
µE2
a2

) 1
a2 then the norms of χEi

, i =
1, 2, are different although they have the same distribution. Therefore we obtain a non-symmetric
space with norm one projection Φ.

3. 2-homogeneous polynomials in r.i. sequence spaces

In view of the results of the previews section, our attention turns to 2-homogeneous polynomials
on complex spaces. Let in this section X be a r.i. Banach sequence space. We say that n-
homogeneous polynomial P on X∗∗ is finite if there exists m ∈ N such that

P (x∗∗) = P
( m∑

i=1

〈x∗∗, e∗i 〉 ei

)

for all x∗∗ ∈ X∗∗, where e∗k are bounded linear functionals on X with 〈e∗k, x〉 = x(k). By sym-
metry of X, each permutation σ of N induces an isometric isomorphism Tσ : X → X such that
Tσx = (x(σ(1)), · · · , x(σ(n)), · · · ) for every x ∈ X. Then T ∗∗σ : X∗∗ → X∗∗ is also an isometric
isomorphism. Notice that the above definition of a finite polynomial is more general than the one
used before (e.g. [3, 9]). In particular, it can be used for certain cases of non-sequence spaces,
since a bidual X∗∗ of a sequence space X may not be a sequence space itself.

We start with the following observation.

Proposition 3.1. An n-homogeneous polynomial P on X∗∗ is finite if and only if P ◦T ∗∗σ is finite.

Proof. Suppose that P is a finite n-homogeneous polynomial. Then the projection

Rx∗∗ =
m∑

j=1

〈
x∗∗, e∗j

〉
ej

is such that PRx∗∗ = Px∗∗. Let Q = P ◦ T ∗∗σ . Note that for every k ∈ N, 〈T ∗σe∗k, x〉 = 〈e∗k, Tσx〉 =
x(σ(k)), and so T ∗σe∗k = e∗σ(k). Therefore

Q(x∗∗) = P (T ∗∗σ x∗∗) = P (RT ∗∗σ x∗∗) = P
( m∑

i=1

〈T ∗∗σ x∗∗, e∗i 〉 ei

)

= P
( m∑

i=1

〈x∗∗, T ∗σe∗i 〉 ei

)

= P
( m∑

i=1

〈
x∗∗, e∗σ(i)

〉
ei

)
.

Letting s = max{σ(i) : i = 1, · · · ,m}, define

Rsx
∗∗ =

s∑

j=1

〈
x∗∗, e∗j

〉
ej .
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Clearly s ≥ m and in view of the above equations

Q(Rsx
∗∗) = P

( m∑

i=1

〈
Rsx

∗∗, e∗σ(i)

〉
ei

)

= P
( m∑

i=1

s∑

j=1

〈
x∗∗, e∗j

〉 〈
ej , e

∗
σ(i)

〉
ei

)

= P
( m∑

i=1

〈
x∗∗, e∗σ(i)

〉
ei

)
= Q(x∗∗).

Hence Q = P ◦ T ∗∗σ is finite. The converse is clear since P = P ◦ T ∗∗σ ◦ T ∗∗σ−1 . ¤

In the case of 2-homogeneous norm-attaining polynomials we can state the following result.

Theorem 3.2. Let X be a complex r.i. Banach sequence space. Suppose that for each x ∈ BX ,
there are n ∈ N and ε > 0 such that X∗∗ = [e1, · · · , en]⊕G and

(3.1) x + εBG ⊂ BX∗∗ .

Then 2-homogeneous polynomial P on X∗∗ is norm-attaining on X, i.e., P (x0) = ‖P‖ for some
x0 ∈ BX if and only if P is finite.

Proof. Suppose that P is finite. Then the values of P are completely determined by the elements
on finite dimensional subspace of X spanned by {e1, · · · , en} for some n, which shows that P is
norm-attaining on X.

Conversely suppose that P (x0) = ‖P‖ = 1 for x0 ∈ BX . By the assumption, we can choose the
following projection

Rnx∗∗ =
n∑

i=1

〈x∗∗, e∗i 〉 ei.

Let Sn = I −Rn. Then
(Rn|X)∗∗ = Rn, (Sn|X)∗∗ = Sn,

and since both Rn|X and Sn|X are contractions, so ‖Rn‖ = ‖Sn‖ = 1. Thus

|P (x0 + λSnx∗∗)| = |1 + 2λP̆ (x0,Snx∗∗) + λ2P (Snx∗∗)| ≤ |P (x0)| = 1,

for all x∗∗ ∈ BX∗∗ , and for all |λ| < ε, where P̆ is the unique symmetric bilinear form associated
with P . By the Maximum Modulus Theorem,

P̆ (x0,Snx∗∗) = P (Snx∗∗) = 0 for x∗∗ ∈ BX∗∗ .

Take y0 = (0, · · · , 0, x0(n + 1), x0(n + 2), · · · ). Then y0 ∈ BX and Sn(y0) = y0. Hence P (y0) =
P̆ (x0, y0) = 0, which means that

P (x0(1), · · · , x0(n), 0, · · · ) = P (x0 − y0) = P (x0) + P (y0)− 2P̆ (x0, y0) = 1.

Let
N = min{|J | : P

( ∑

i∈J

x0(i)ei

)
= 1, J ⊂ {1, . . . , n}},

where |J | denotes cardinality of J . Now choose a permutation σ : N→ N such that σ({1, . . . , n}) =
{1, . . . , n}, |x0(σ(1))| ≥ · · · ≥ |x0(σ(n))| and σ(i) = i for all i ≥ n + 1. Obviously N ≤ n and
|x0(σ(N))| > 0 and |x0(σ(k))| = 0 for all k ≥ N + 1. Let Q = P ◦T ∗∗σ−1 . In view of Proposition 3.1
we need only to show that Q is finite.

Now take
v = (x0(σ(1)), . . . , x0(σ(N)), 0, . . . ).

It is clear that Q(v) = 1 and v ∈ BX . Thus by the assumption, there exist m ∈ N and ε > 0 such
that

(3.2) |Q(v + λSmx∗∗)| = |Q(v) + 2λQ̆(v,Smx∗∗) + λ2Q(Smx∗∗)| ≤ |Q(v)| = 1,
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for all x∗∗ ∈ BX∗∗ and for all |λ| < ε. Again the Maximum Modulus Theorem says that
Q̆(v,Smx∗∗) = Q(Smx∗∗) = 0 for all x∗∗ ∈ BX∗∗ . If m < N , then applying the similar argu-
ment as above we could show that Q(v0) = 1 where v0 = (v(1), . . . , v(m), 0, . . . ). The latter
however is a contradiction to the choice of N since

1 = Q(v0) = P ◦ T ∗∗σ−1(v0) = P
( ∑

i∈M0

x0(i)ei

)

for some M0 ⊂ N with |M0| < N . So m ≥ N . Suppose that m > N . Then we know that for every
x ∈ BX , |λ| < ε,

‖v + λSmx‖ ≤ 1.

Since X is a r.i. Banach sequence space,

‖v + λSNx‖ ≤ 1 for all x ∈ BX .

Note that SN is weak*-to-weak* continuous. So weak*-lower semi-continuity of norm and density
of BX in BX∗∗ in weak* topology, imply that

(3.3) ‖v + λSNx∗∗‖ ≤ 1 for all x∗∗ ∈ BX∗∗ .

So (3.2) holds for m = N . Therefore we may assume that m = N .
Now let z1 = (v(1), · · · , v(m)), z2 = (v(1), v(2)−mv(2), · · · , v(m)), · · · , zm = (v(1), · · · , v(m)−

mv(m)). And let z̃j = (zj , 0, · · · ) for 1 ≤ j ≤ m. Note that z̃1 = v.
For any vector x = (x(1), . . . , x(m)) ∈ Cm we have the identity

(x(1), · · · , x(m)) =
1
m

x(1)
t(1)

(z1 + · · ·+ zm) +
m∑

j=2

1
m

x(j)
t(j)

(z1 − zj)

=
1
m

(x(1)
t(1)

+ · · ·+ x(m)
t(m)

)
z1 +

1
m

m∑

j=2

(x(1)
t(1)

− x(j)
t(j)

)
zj .

Therefore for x = (x(1), · · · , x(m), 0 · · · ), and each x∗∗ ∈ BX∗∗ ,

Q(x + Smx∗∗) = Q(x) +
2
m

m∑

j=2

(x(1)
t(1)

− x(j)
t(j)

)
Q̆(z̃j ,Smx∗∗)

= Q(x) +
m∑

j=2

(x(1)
t(1)

− x(j)
t(j)

)
ψj(Smx∗∗),

where ψj(·) = 2
m Q̆(z̃j , ·) ∈ X∗∗∗.

For each x∗∗ ∈ BX∗∗ we will show that ψj(Smx∗∗) = 0. For such an x∗∗, for each |λ| < ε, the
similar argument as before (3.3) shows

∥∥vθ + λeiθ1Smx∗∗
∥∥ ≤ 1,

and for each θ > 0, there is an θ1 such that

|Q(vθ + λeiθ1Smx∗∗)| = |Q(vθ) + (1− eiθ)ψ2(λeiθ1Smx∗∗)|
= |Q(vθ)|+ |1− eiθ||ψ2(λSmx∗∗)|
≤ 1,

where vθ = (v(1), eiθv(2), · · · , v(m), 0, · · · ). Let now f(θ) = |Q(vθ)| and let g(θ) = |1 − eiθ| =
2 sin(θ/2) for small θ > 0. Then |ψ2(λSmx∗∗)| ≤ 1−f(θ)

g(θ) for any λ < ε. Therefore

sup{|ψ2(Smx∗∗)| : x∗∗ ∈ εBX∗∗} ≤ lim
θ↓0

1− f(θ)
g(θ)

= lim
θ↓0

−f ′(θ)
g′(θ)

= 0.

This implies that for x∗∗ ∈ BX∗∗ , ψ2(Smx∗∗) = 0. Similar calculations show that ψ3(Smx∗∗) =
· · · = ψm(Smx∗∗) = 0. i.e., Q(x + Smx∗∗) = Q(x). Taking x = Rmx∗∗, Q(x∗∗) = Q(Rmx∗∗ +
Smx∗∗) = Q(Rmx∗∗), which shows that Q is finite and completes the proof. ¤
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The geometric assumption (3.1) on X∗∗ in the above theorem says among others that no point
of SX is a complex extreme point of BX .

Recall that every n-homogeneous polynomial on a Banach space X has a norm-preserving ex-
tension to its bidual X∗∗ [1, 2, 5].

Corollary 3.3. Suppose that X is a complex r.i. sequence space and X satisfies (3.1). Then a
2-homogeneous polynomial P on X attains its norm if and only if it is finite.

Proof. Let Q be a norm-preserving extension of P to X∗∗. Then Q attains its norm on BX , and
by Theorem 3.2, Q is finite. So there is m ∈ N such that for every x ∈ X,

P (x) = Q(x) = Q

(
m∑

i=1

x(i)ei

)
= P

(
m∑

i=1

x(i)ei

)
,

which completes the proof. ¤
Corollary 3.4. Suppose that X is a complex r.i. sequence space and X satisfies (3.1). Every
2-homogeneous norm-attaining polynomial P on X has a unique norm-preserving extension to its
bidual X∗∗.

Proof. Let Q1 and Q2 be norm-preserving extensions of P from X to X∗∗. Then, by Theorem 3.2,
Q1 and Q2 are finite. So there are m1,m2 ∈ N such that for each x∗∗ ∈ X∗∗,

Q1(x∗∗) = Q1

(
m1∑

i=1

〈x∗∗, e∗i 〉 ei

)
=

m1∑

i=1

i∑

j=1

aij 〈x∗∗, e∗i 〉
〈
x∗∗, e∗j

〉
,

Q2(x∗∗) = Q2

(
m2∑
s=1

〈x∗∗, e∗s〉 es

)
=

m2∑
s=1

s∑
t=1

bst 〈x∗∗, e∗s〉 〈x∗∗, e∗t 〉 ,

for some complex numbers aij , bst. They are equal on X so that there is l ≤ min{m1,m2} such
that aij = bij for all 1 ≤ j ≤ i ≤ l and aij = 0 = bst otherwise. So Q1(x∗∗) = Q2(x∗∗) for every
x∗∗ ∈ X∗∗. This completes the proof. ¤

It is easy to show that c0 satisfies the assumptions of Theorem 3.2, and thus we get immediately
by Corollary 3.4, the following result proved in [3].

Corollary 3.5. [3] Every norm-attaining 2-homogeneous polynomial on a complex c0 has a unique
norm-preserving extension to `∞. In particular, the polynomial is finite.

It is worth also to add here that at the end of section 6 we state a stronger result (Corollary 6.5)
for some renormings of c0 and `∞.

The following example shows that the assumptions on X in Theorem 3.2 are essential.

Example 3.6. Consider the space `∞ with the equivalent norm

‖x‖ = |x(1)|+ |x(2)|+ sup{|x(n)| : n ≥ 3}.
It is not difficult to see that (`∞, ‖ ‖) is not symmetric and does not satisfy the assumption
(3.1) of Theorem 3.2. It is also clear that c0 is an order continuous subspace of (`∞, ‖ ‖). So
(c0, ‖ ‖)∗∗ = (`∞, ‖ ‖). Define on `∞, 2-homogeneous polynomials

P (x) = x(1)2, Q(x) = x(1)2 + x(2)
∞∑

k=3

x(k)
2k−2

.

Then P is norm-attaining on c0 and ‖P‖ = 1. Note that for each ‖x‖ ≤ 1, x ∈ `∞,

Q(e1) = 1 and |Q(x)| ≤ 1.

This shows that Q is norm-attaining on c0 but it is not finite. In addition, choose a norm one
linear functional ϕ on `∞ which vanishes on c0. Letting

P1(x) = x(1)2 and P2(x) = x(1)2 + x(2)ϕ(x),

they are both norm-preserving extensions of P to `∞. Thus the conclusions of Theorem 3.2 and
Corollary 3.4 are not valid for (`∞, ‖ ‖) and (c0, ‖ ‖), respectively. We shall provide another
example of this sort at the end of section 6 (cf. Example 6.6).
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As for the norm-attaining bounded linear functional, we can obtain the following result.

Proposition 3.7. Suppose X is a complex r.i. sequence space and X satisfies (3.1). Then a
bounded linear functional ϕ on X attains its norm if and only if it is finite. Moreover, every
norm-attaining bounded linear functional on X has a unique norm-preserving extension to X∗∗.

Proof. If ϕ is finite, then it is clearly norm-attaining since its values depends only on a finite
dimensional subspace of X.

Conversely, suppose that ϕ(x0) = ‖ϕ‖ = 1 for some x0 ∈ BX . Then by the assumption, there
are n ∈ N and ε > 0 so that for every |λ| < ε and for every y = (0, · · · , 0, y(n + 1), · · · ) ∈ BX ,

|ϕ(x0 + λy)| = |ϕ(x0) + λϕ(y)| ≤ 1.

By the Maximum Modulus Theorem ϕ(y) = 0 for such an y. So for every x ∈ X, ϕ(Snx) = 0 and
thus

ϕ(x) = ϕ(Rnx) =
n∑

i=1

xiϕ(ei) =
n∑

i=1

〈e∗i , x〉ϕ(ei),

which means that ϕ is finite. Moreover it has a natural extension ϕ̄ to X∗∗, defined by

ϕ̄(x∗∗) =
n∑

i=1

〈x∗∗, e∗i 〉ϕ(ei).

Now, if ϕ has a norm-preserving extension φ to X∗∗, then similar arguments as above applied to
φ and it shows that φ is finite. Since ϕ̄ and φ are equal on X, so they must be equal on X∗∗ too.
The proof is done. ¤

4. M-ideal properties of Marcinkiewicz function spaces MΨ, L1 + L∞ and L1 ∩ L∞

Let L0 = L0(I,B, µ) be the space of all Lebesgue measurable functions on I, where I = (0, 1)
or I = (0,∞), µ is the Lebesgue measure on σ-algebra B of the Lebesgue measurable subsets of I.
For any f ∈ L0 the decreasing rearrangement of f is the function f∗ defined by

f∗(t) = inf{λ > 0 : µf (λ) ≤ t},
where µf is the distribution function of f .

Definition 4.1. Let Ψ : [0,∞) → [0,∞), Ψ(0) = 0, Ψ be increasing, and Ψ(u) > 0 for u > 0.
Then the Marcinkiewicz space MΨ (called also weak Lorentz space) is the collection of all functions
f ∈ L0 such that

‖f‖ = ‖f‖MΨ = sup
t>0

∫ t

0
f∗

Ψ(t)
< ∞.

Without loss of generality we can add (and we will) in the above definition the assumption that
the function Ψ(t)/t is decreasing on (0,∞). In fact, let’s define

Ψ̂(t) = t inf{Ψ(s)/s : 0 < s ≤ t}, t > 0.

Then it is not hard to show that Ψ̂ is increasing and Ψ̂(t)/t is decreasing. For instance, if 0 < t1 < t2
then

Ψ̂(t2) = t2 min{inf{Ψ(s)/s : 0 < s ≤ t1}, inf{Ψ(s)/s : t1 ≤ s ≤ t2}}
= min{t2 inf{Ψ(s)/s : 0 < s ≤ t1}, Ψ(t1)}
≥ t1 min{inf{Ψ(s)/s : 0 < s ≤ t1}, Ψ(t1)/t1} = Ψ̂(t1).

Notice also that MΨ is not trivial if and only if Ψ̂(t) > 0 for t > 0. Finally we have that MΨ = MbΨ
with equality of norms. In fact, since Ψ̂(t) ≤ Ψ(t), ‖f‖MΨ ≤ ‖f‖MbΨ . On the other hand for any
0 < s ≤ t,

t
1
s

∫ s

0

f∗ = t
Ψ(s)

s

∫ s

0
f∗

Ψ(s)
≤ t

Ψ(s)
s
‖f‖MΨ ,
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and so ∫ t

0

f∗ = t inf{1
s

∫ s

0

f∗ : 0 < s ≤ t} ≤ t inf
0<s≤t

Ψ(s)
s

‖f‖MΨ = Ψ̂(t)‖f‖MΨ ,

which yields ‖f‖MbΨ ≤ ‖f‖MΨ .
In view of the above remarks we shall assume further in this section that Ψ : [0,∞) → [0,∞),

Ψ(0) = 0, Ψ(t) > 0 for t > 0, Ψ is increasing and Ψ(t)/t is decreasing on (0,∞) i.e., Ψ is quasi-
concave.

Definition 4.2. M0
Ψ is a subspace of MΨ consisting of all f ∈ MΨ satisfying

lim
t→0+

∫ t

0
f∗

Ψ(t)
= 0 in case when I = (0, 1),

and

lim
t→0+,∞

∫ t

0
f∗

Ψ(t)
= 0 in case when I = (0,∞).

Most of the following basic facts about MΨ and M0
Ψ are well known (cf. [11]). We collect them

here for the sake of completeness.

Theorem 4.3. (1) MΨ is a r.i. Banach function space with the Fatou property.
(2) M0

Ψ 6= {0} if and only if inft>0
t

Ψ(t) = 0. If I = (0, 1) (resp. I = (0,∞)) then the support
of M0

Ψ is equal to (0, 1) (resp. (0,∞)), that is there exists h ∈ M0
Ψ with h > 0 a.e. in I, if

and only if

(4.1) inf
t>0

t

Ψ(t)
= 0

(4.2)
(
resp. inf

t>0

t

Ψ(t)
= 0 and sup

t>0
Ψ(t) = ∞

)
.

(3) If Ψ satisfies condition (4.1) when I = (0, 1) (resp. (4.2) when I = (0,∞)), then M0
Ψ is

the subspace of all order continuous elements of MΨ.
(4) If Ψ satisfies condition (4.1) when I = (0, 1) (resp. (4.2) when I = (0,∞)), then M0

Ψ is
the closure of all simple (or bounded) functions with support of finite measure.

Proof. (1) It can be shown directly by definition and the properties of decreasing rearrangement
f∗ (cf. [4]). For (2), it is enough to observe that if χ(0,a) ∈ M0

Ψ then for 0 < t < a
∫ t

0
χ(0,a)

Ψ(t)
=

t

Ψ(t)
,

and for t > a ∫ t

0
χ(0,a)

Ψ(t)
=

a

Ψ(t)
.

We shall show (3), (4) only in the case when I = (0,∞). Let 0 < fn ≤ f ∈ M0
Ψ and fn ↓ 0. Given

ε > 0, there exist 0 < t0 < t1 < ∞ such that

sup
0<t<t0

∫ t

0
f∗

Ψ(t)
< ε and sup

t1<t<∞

∫ t

0
f∗

Ψ(t)
< ε.

By the dominated Lebesgue theorem, there exists N such that for all n > N
∫ t1

0

f∗n < εΨ(t0).

Hence for n > N ,

‖fn‖ ≤ sup
0<t<t0

∫ t

0
f∗

Ψ(t)
+ sup

t1<t<∞

∫ t

0
f∗

Ψ(t)
+

∫ t1
0

f∗n
Ψ(t0)

< 3ε.

So every element in M0
Ψ is order continuous. This means that M0

Ψ is contained in the closure of
all simple (or bounded) functions with support of finite measure. If conditions (4.2) are satisfied,
then the closure of the set of all simple functions with support of finite measure is M0

Ψ. This proves



12 ANNA KAMIŃSKA AND HAN JU LEE

(4). Moreover M0
Ψ is the subspace of all order continuous elements in MΨ. This shows (3) and

completes the proof. ¤

Now, we investigate when M0
Ψ is an M -ideal in MΨ. The next theorem extends the already

known result for some functions Ψ (cf. [7]).

Theorem 4.4. If I = (0, 1) and Ψ satisfies condition (4.1), then M0
Ψ is an M -ideal in MΨ.

If I = (0,∞) and Ψ satisfies conditions (4.2) and additional condition inft>0 Ψ(t)/t = 0, then
M0

Ψ is an M -ideal in MΨ.

Proof. In the proof we shall use the 3-ball property (see Theorem 1.1), that is we show that
for every f ∈ BMΨ , every fi ∈ BM0

Ψ
, i = 1, 2, 3, and ε > 0 there exists g ∈ BM0

Ψ
such that

‖f + fi − g‖ ≤ 1 + ε, i = 1, 2, 3.
Let first I = (0, 1). By density of bounded functions in M0

Ψ we can take fi bounded. By the
assumption inft>0 t/Ψ(t) = 0, there exists b > 0 such that for all 0 < t ≤ b

∫ t

0
f∗i

Ψ(t)
≤ Mt

Ψ(t)
≤ Mb

Ψ(b)
< ε,

where |fi(x)| ≤ M, x ∈ (0, 1), i = 1, 2, 3. Also we choose 0 < c ≤ b such that
∫ c

0
f∗

Ψ(b)
≤ ε.

Setting
g = fχ{s:|f(s)|≤f∗(c)},

it is clear that g ∈ BM0
Ψ
. Moreover, for 0 < t ≤ b, i = 1, 2, 3

∫ t

0
(fi + f − g)∗

Ψ(t)
≤

∫ t

0
f∗i

Ψ(t)
+

∫ t

0
(f − g)∗

Ψ(t)
≤ ε +

∫ t

0
f∗

Ψ(t)
≤ 1 + ε.

We also have
(f − g)∗(s) ≤ f∗χ(0,c)(s), s ∈ I.

Hence for t ≥ b, i = 1, 2, 3
∫ t

0
(fi + f − g)∗

Ψ(t)
≤ ‖fi‖+

∫ c

0
f∗

Ψ(b)
≤ 1 + ε.

Combining the above inequalities we get ‖fi + f − g‖ ≤ 1 + ε.
Now let I = (0,∞). Note that for every f ∈ MΨ

lim sup
t→∞

∫ t

0
f∗

Ψ(t)
= lim sup

t→∞

1
t

∫ t

0
f∗

Ψ(t)
t

≤ sup
t>0

∫ t

0
f∗

Ψ(t)
< ∞,

which means that

lim
t→∞

1
t

∫ t

0

f∗ = lim
t→∞

f∗(t) = 0.

Since fi ∈ M0
Ψ, there are 0 < b1 < b2 such that for all t < b1 or all t > b2,

∫ t

0
f∗i

Ψ(t)
< ε,

for i = 1, 2, 3. Choose η > 0 so small that η b2
Ψ(b1)

< ε and take 0 < c ≤ b1 for which
∫ c

0
f∗

Ψ(b1)
≤ ε.

Setting
g = fχ{s:η<|f(s)|≤f∗(c)},

we have g ∈ M0
Ψ. Indeed, there is T > 0 such that

f∗(T ) = inf{s > 0 : µf (s) ≤ T} < η.
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So there is 0 < s < η such that µf (s) ≤ T . Hence µf (η) = µ{|f | > η} ≤ T and

lim
t→∞

∫ t

0
g∗

Ψ(t)
≤ lim

t→∞

∫ T

0
f∗

Ψ(t)
= 0.

Moreover,

lim
t→0+

∫ t

0
g∗

Ψ(t)
≤ lim

t→0+

tf∗(c)
Ψ(t)

= 0.

For i = 1, 2, 3 and 0 < t ≤ b1 or t ≥ b2,∫ t

0
(fi + f − g)∗

Ψ(t)
≤

∫ t

0
f∗i

Ψ(t)
+

∫ t

0
f∗

Ψ(t)
≤ 1 + ε.

For i = 1, 2, 3 and b1 ≤ t ≤ b2,∫ t

0
(fi + f − g)∗

Ψ(t)
≤

∫ t

0
(fi + fχ{|f |≤η}∪{|f |>f∗(c)})∗

Ψ(t)
≤

∫ t

0
f∗i +

∫ t

0
(fχ{|f |≤η})∗ +

∫ t

0
(fχ{|f |>f∗(c)})∗

Ψ(t)

≤
∫ b1
0

f∗i +
∫ t

b1
f∗i +

∫ c

0
f∗ + tη

Ψ(t)
≤

∫ b1
0

f∗i + b1η

Ψ(t)
+

∫ t

b1
f∗i + (t− b1)η

Ψ(t)
+

∫ c

0
f∗

Ψ(b1)

≤
∫ b1
0

f∗i + b1η

Ψ(b1)
+

∫ t

b1
f∗i + η(b2 − b1)

Ψ(t)
+ ε ≤ ε + η

b1

Ψ(b1)
+ 1 + η

(b2 − b1)
Ψ(b1)

+ ε

< 1 + 4ε.

These inequalities complete the proof. ¤

We will see later (Remark 4.8) that the assumption inft>0 Ψ(t)/t = 0 in the case of I = (0,∞)
cannot be skipped.

It is well known that if Ψ is quasi-concave, then there is an increasing concave function Ψ̃ on
I such that Ψ(t) ≤ Ψ̃(t) ≤ 2Ψ(t) on I (cf. Proposition 5.10 in [4]). It is easy to show that
‖ ‖MeΨ ≈ ‖ ‖MΨ . So we can obtain an equivalent norm on MΨ, which is induced by an increasing
concave function on I.

Theorem 4.5. If Ψ satisfies (4.1) in the case when I = (0, 1) (resp. (4.2) and inft>0 Ψ(t) = 0 in
the case when I = (0,∞)), then MΨ is the bidual of M0

Ψ.

Proof. Assume first that Ψ is concave. By conditions (4.1) (resp. (4.2)), M0
Ψ is the set of all order

continuous elements of MΨ and contains all characteristic functions with support of finite measure.
It follows that (M0

Ψ)∗ = (MΨ)′, where (MΨ)′ is the associate space of MΨ.
If ‖f‖MΨ ≤ 1, then for all t > 0, ∫ t

0

f∗ ≤ Ψ(t).

Take a simple function g∗ =
∑n

i=1 aiχ(0,ti], where 0 < t1 < · · · < tn, and ai ≥ 0. Then
∫

I

g∗f∗ ≤
n∑

i=1

aiΨ(ti) =
∫

I

g∗dΨ,

where the Lebesgue-Stieltjes integral is well-defined since Ψ is continuous on [0,∞). By the Fatou
property for all g in L0,

‖g‖(MΨ)′ ≤
∫

I

g∗dΨ.

Since Ψ(t) is a continuous concave function on I, there is an integral representation

Ψ(t) =
∫ t

0

h∗(s)ds,

on I for some h in L0 [4]. Then ‖h‖MΨ ≤ 1, and for nay g ∈ L0,∫

I

h∗g∗ =
∫

I

g∗dΨ.
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So we get the reverse inequality

‖g‖(MΨ)′ ≥
∫

I

g∗dΨ.

Therefore the associate space

(MΨ)′ =
{

g ∈ L0 :
∫

I

g∗dΨ < ∞
}

,

which is a Lorentz space, must be order continuous [11]. In general, if Ψ is not concave then
‖ ‖MΨ ≈ ‖ ‖MeΨ , and hence ‖ ‖(MΨ)′ ≈ ‖ ‖(MeΨ)′ . Since (MeΨ)′ is order continuous, (MΨ)′ is order
continuous too. Then order continuity of (MΨ)′ implies (M0

Ψ)∗∗ = (MΨ)′∗ = (MΨ)′′ = MΨ, by the
Fatou property of ‖ ‖MΨ . This completes the proof.

¤

Notice that the assumption inft>0 Ψ(t) = 0 cannot be skipped in the above theorem (cf. Re-
mark 4.10).

Now let’s turn our attention to spaces

Σ = L1 + L∞ and ∆ = L1 ∩ L∞,

on I = (0,∞). They are equipped with the following norms.

(4.3) ‖f‖Σ = inf{‖g‖1 + ‖h‖∞ : f = g + h, g ∈ L1, h ∈ L∞} =
∫ 1

0

f∗,

|||f |||Σ = inf{max{‖g‖1 , ‖h‖∞} : f = g + h, g ∈ L1, h ∈ L∞},
‖f‖∆ = max{‖f‖1 , ‖f‖∞},
|||f |||∆ = ‖f‖1 + ‖f‖∞ .

It is obvious that ‖ ‖ and ||| ||| are equivalent. The equality in (4.3) is well known and can be
found e.g. in [4]. It is also well known [8] that (Σ, ‖ ‖Σ)′ = (∆, ‖ ‖∆) and (Σ, ||| |||Σ)′ = (∆, ||| |||∆).
Moreover,

Σ0 = {f ∈ Σ : lim
t→∞

f∗(t) = 0},
where Σ0 is a subspace of all order continuous elements of Σ (cf. [4, 11]).

It appears that for certain choice of Ψ, the Marcinkiewicz space MΨ coincides with Σ, and M0
Ψ

with Σ0. In fact we have the following result.

Proposition 4.6. The norms ‖ ‖MΨ
and ‖ ‖Σ are equal if and only if for t > 0

Ψ(0) = 0 and Ψ(t) = max{t, 1},
and they are equivalent if and only if for t > 0

Ψ(0) = 0 and Ψ(t) ≈ max{t, 1}.
Consequently if I = (0,∞) and limt→0+ Ψ(t) = α > 0 and limt→∞Ψ(t)/t = β > 0 then the spaces
M0

Ψ and Σ0 coincide as sets with equivalent norms.

Proof. If ‖ ‖MΨ and ‖ ‖Σ are equal, then for t > 0,

‖χ(0,t)‖Ψ =
t

Ψ(t)
= ‖χ(0,t)‖Σ = min{t, 1}.

Hence Ψ(t) = max{t, 1}, for t > 0. Conversely suppose that Ψ(t) = max{t, 1} for t > 0. Then

sup
t>0

∫ t

0
f∗

max{t, 1} = max
{

sup
0<t≤1

∫ t

0

f∗, sup
t>1

1
t

∫ t

0

f∗
}

=
∫ 1

0

f∗,

which shows that the two norms are equal. The similar calculation shows the condition for the
equivalence of the norms. ¤
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Let ‖ ‖ be an equivalent norm to ‖ ‖Σ or to ||| |||Σ. Then it is not difficult to see that `1 is
isomorphically embedded in (Σ0, ‖ ‖). Therefore (see Theorem 1.1) (Σ0, ‖ ‖) is not an M -embedded
space.

In the next two propositions we calculate the exact norms of the duals (Σ, ‖ ‖Σ)∗ and (Σ, ||| |||Σ)∗,
which provide the answer to the question when Σ0 is an M -ideal in Σ. In the sequel ‖ ‖1 and ‖ ‖∞
will denote the norms in L1 or L∞, respectively.

Proposition 4.7. The following equalities hold true.

(Σ, ‖ ‖Σ)∗ = Σ∗0 ⊕ Σ⊥0 ' (∆, ‖ ‖∆)⊕ Σ⊥0 .

Moreover for any F ∈ Σ∗,
F = F1 + F2,

with F2 ∈ Σ⊥0 and

F1(g) =
∫

gf1,

for some f1 ∈ (∆, ‖ ‖∆), and

‖F‖ = max{‖f1‖∞ , ‖f1‖1 + ‖F2‖}.
Consequently, Σ0 is not an M -ideal of (Σ, ‖ ‖Σ).

Proof. The equalities (Σ, ‖ ‖Σ)∗ = Σ∗0 ⊕ Σ⊥0 ' (∆, ‖ ‖∆) ⊕ Σ⊥0 up to equivalence in norms is a
consequence of the well known results on duals in Banach function spaces (cf. Theorem 102.6,
Theorem 102.7 in [13]).

Now let F ∈ Σ∗ and let F̃1 = F |Σ0 . Then there is f1 ∈ Σ∗0 = Σ′ such that F̃1(g) =
∫

f1g for all
g ∈ Σ0 and ‖F̃1‖ = ‖f1‖Σ′ = ‖f1‖∆. Then define F1(g) =

∫
f1g for all g ∈ Σ, and let F2 = F −F1.

Then F2|Σ0 = 0 and ‖F̃1‖ = ‖F1‖.
For each f = g + h with g ∈ L1 and h ∈ L∞, we have F2(g) = 0, and so

|F (g + h)| ≤
∣∣∣∣
∫

f1g

∣∣∣∣ +
∣∣∣∣
∫

f1h

∣∣∣∣ + |F2(h)|
≤ ‖f1‖∞‖g‖1 + ‖f1‖1‖h‖∞ + ‖F2‖‖h‖Σ
≤ ‖f1‖∞‖g‖1 + (‖f1‖1 + ‖F2‖)‖h‖∞
≤ (‖g‖1 + ‖h‖∞) max{‖f1‖∞, ‖f1‖1 + ‖F2‖}

Therefore, ‖F‖ ≤ max{‖f1‖∞, ‖f1‖1 + ‖F2‖}.
Conversely, given ε > 0 there exist g ∈ L1, h ∈ L∞ such that ‖g‖1 + ‖h‖∞ ≤ 1 + ε and ‖F2‖ ≤

Re F2(h) + ε. For each N ≥ 1, Let f = sign(f1)χ[0,N) + hχ[N,∞). Then |f | = χ[0,N) + |h|χ[N,∞),
and so ‖f‖Σ =

∫ 1

0
f∗ ≤ 1 + ε. Thus

Re F (f) =
∫ N

0

|f1|+ Re
( ∫ ∞

N

f1h
)

+ Re F2(sign(f1)χ[0,N) + hχ[N,∞))

=
∫ N

0

|f1|+ Re
( ∫ ∞

N

f1h
)

+ Re F2(h)

≥
∫ N

0

|f1|+ Re
( ∫ ∞

N

f1h
)

+ ‖F2‖ − ε

Therefore

‖F‖ ≥ 1
1 + ε

(‖F2‖ − ε + Re
( ∫ ∞

N

f1h
)

+
∫ N

0

|f1|)
for all ε > 0 and all N ≥ 1. Since

∫∞
N

f1h → 0 as N → ∞, so ‖F‖ ≥ ‖F2‖ + ‖f1‖1. Clearly,
‖F‖ ≥ ‖F̃1‖ = ‖f1‖∆ ≥ ‖f1‖∞. Hence ‖F‖ = max{‖f‖∞, ‖f1‖1 + ‖F2‖}.

Now suppose that Σ0 is an M -ideal of Σ. Then there is a projection P : Σ∗ → Σ∗ such that
the range of P is Σ⊥0 and for each F ∈ Σ∗, ‖F‖ = ‖PF‖ + ‖(I − P )F‖. Note that PF = F2 and
(I − P )F = F1 so that we can choose f1 = χ[0,1/2) and F2 with ‖F2‖ = 1. Then by the above
calculations ‖F‖ = 3/2. But on the other hand we must have ‖F‖ = ‖PF‖ + ‖(I − P )F‖ =
‖F2‖+ ‖f1‖∆ = 2, which is a contradiction. ¤
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Remark 4.8. By Proposition 4.6, (Σ, ‖ ‖Σ) = MΨ, where Ψ(t) = max{t, 1}, t > 0. Thus inft>0 Ψ(t)/t =
1, and so the assumption in Theorem 4.4 is not satisfied. Since Σ0 is not an M -ideal in (Σ, ‖ ‖Σ),
we see that the assumption inft>0 Ψ(t)/t = 0 cannot be omitted in Theorem 4.4.

The following proposition shows that if we use another equivalent norm in Σ, the M -ideal
properties are remarkably changed.

Proposition 4.9. The following equalities are satisfied

(Σ, ||| |||Σ)∗ = Σ∗0 ⊕ Σ⊥0 = (∆, ||| |||∆)⊕1 Σ⊥0 .

Moreover for F ∈ Σ∗,
F = F1 + F2,

where F2 ∈ Σ⊥0 and

F1(g) =
∫

gf1,

for some f1 ∈ (∆, ||| |||∆), and

‖F‖ = ‖F1‖+ ‖F2‖ = ‖f1‖∞ + ‖f1‖1 + ‖F2‖ .

Therefore Σ0 is an M -ideal of (Σ, ||| |||Σ).

Proof. By the same method as in the proof of the previous proposition, we can get a decomposition
F = F1 + F2 with F2|Σ0 = 0, F1(g) =

∫
f1g for all g ∈ Σ, and ‖F1‖ = |||f1|||∆.

For each f = g + h ∈ Σ with g ∈ L1 and h ∈ L∞,

|F (g + h)| ≤
∣∣∣∣
∫

f1(g + h)
∣∣∣∣ + |F2(h)|

≤ (‖f‖1 + ‖f1‖∞)max{‖g‖1, ‖h‖∞}+ ‖F2‖ |||h|||Σ
≤ (‖f‖1 + ‖f1‖∞)max{‖g‖1, ‖h‖∞}+ ‖F2‖‖h‖∞
≤ max{‖g‖1, ‖h‖∞}(‖f1‖∞ + ‖f1‖1 + ‖F2‖)

Therefore ‖F‖ ≤ ‖f1‖∞ + ‖f1‖1 + ‖F2‖.
Conversely suppose that ‖f1‖∞ 6= 0. For large enough n ∈ N, choose En ⊂ {|f1| > ‖f1‖∞−1/n}

with 0 < µEn < ∞. Let

gn = sign(f1)
χEn

µEn
.

Given ε > 0, choose g ∈ L1 and h ∈ L∞ so that max{‖g‖1, ‖h‖∞} ≤ 1+ε and ‖F2‖ ≤ Re F2(h)+ε.
Let

hn = hχ[n,∞) + sign(f1)χ[0,n).

Then ‖hn‖∞ ≤ 1 + ε and ‖gn‖1 ≤ 1. Hence fn = gn + hn we have |||fn|||Σ ≤ 1 + ε. Consequently

Re F (fn) = Re
∫

f1gn + Re
∫

f1hn + Re F2(hn)

=
∫

En

|f1|
µEn

+
∫ n

0

|f1|+ Re
∫ ∞

n

f1h + Re F2(hn − sign(f1)χ[0,n) + hχ[0,n))

≥ ‖f‖∞ − 1/n +
∫ n

0

|f1|+ Re
∫ ∞

n

f1h + Re F2(h)

≥ ‖f‖∞ − 1/n +
∫ n

0

|f1|+ Re
∫ ∞

n

f1h + ‖F2‖ − ε.

Therefore ‖F‖ ≥ 1
1+ε (‖f‖∞ − 1

n +
∫ n

0
|f1|+ Re

∫∞
n

f1h + ‖F2‖ − ε). Note that h is independent of
n. Since limn→∞

∫∞
n

f1h = 0 and ε is arbitrary we obtain ‖F‖ ≥ ‖f1‖∞ + ‖f1‖1 + ‖F2‖, and this
completes the proof. ¤

Remark 4.10. Note that we have the following equalities (with equivalence of norms)

Σ∗∗0 ' (Σ′)∗ = ∆∗ ' ∆′ ⊕∆∗
s = Σ⊕∆∗

s,
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where ∆∗
s 6= {0} since ∆ is not order continuous. Thus the bidual of Σ0 = M0

Ψ with Ψ(t) =
max{t, 1}, t > 0, is not equal to Σ = MΨ. It shows that the assumption inft>0 Ψ(t) = 0 in
Theorem 4.5 cannot be omitted.

It is also interesting to observe that if we define ∆b as the closure of all simple functions with
support of finite measure in (∆, ‖ ‖∆), then ∆b also contains an isomorphic copy of `1 which has
a non-separable dual. Therefore ∆b with any equivalent norm to ‖ ‖∆ is not M -embedded.

5. M-ideal properties of Marcinkiewicz sequence spaces

In this section we will consider Marcinkiewicz sequence spaces. Assume further that Ψ =
{Ψ(n)} = {Ψ(n)}∞n=0 is a sequence such that Ψ(0) = 0, {Ψ(n)} is increasing, Ψ(n) > 0 for n > 0
and {Ψ(n)/n} is decreasing.

Definition 5.1. By analogy to the function spaces, the Marcinkiewicz sequence space mΨ consists
of all sequences x = {x(n)} = {x(n)}∞n=1 such that

‖x‖ = ‖x‖mΨ = sup
n≥1

∑n
k=1 x∗(k)
Ψ(n)

,

where x∗ = {x∗(n)} is a decreasing rearrangement of {x(n)}.
Similarly define m0

Ψ as a subspace of mΨ consisting of all x ∈ mΨ satisfying

lim
n→∞

∑n
k=1 x∗(k)
Ψ(n)

= 0.

Notice that reasoning analogously as in the previous section for function spaces, the assumption
that {Ψ(n)/n} is a decreasing sequence is not a real restriction.

We have the following basic facts about mΨ and m0
Ψ.

Theorem 5.2. (1) mΨ is a r.i. Banach function space with the Fatou property.
(2) m0

Ψ 6= {0} if and only if limn→∞Ψ(n) = ∞.
(3) If limn→∞Ψ(n) = ∞, then m0

Ψ is a non-trivial subspace of all order continuous elements
of mΨ.

(4) The following conditions are equivalent.
(a) ‖x‖mΨ = ‖x‖∞ for all x ∈ `∞ (resp. ‖x‖mΨ ≈ ‖x‖∞ for all x ∈ `∞).
(b) ‖x‖mΨ = ‖x‖∞ for all x ∈ c0 (resp. ‖x‖mΨ ≈ ‖x‖∞ for all x ∈ c0).
(c) Ψ(n) = n for all n ∈ N (resp. Ψ(n) ≈ n for all n ∈ N).

Proof. Condition (1) is immediate and (2) is clear if we note that e1 ∈ m0
Ψ is equivalent to

limn→∞ 1/Ψ(n) = 0. For (3), note that m0
Ψ contains all characteristic functions with support of

finite measure by (2), so it contains all order continuous elements [4]. The proof that any x ∈ m0
Ψ

is order continuous is very similar to the function case, so we omit it. Finally we shall prove that
4(a) is equivalent to 4(c). Let’s assume first that two norms are equal. Then for n ∈ N,

‖e1 + · · ·+ en‖mΨ =
n

Ψ(n)
= 1.

For the converse, if we assume Ψ(n) = n for n ∈ N, then for any x ∈ `∞,

‖x‖∞ = x∗(1) = sup
n≥1

1
n

n∑

k=1

x∗(k) = ‖x‖mΨ .

The remaining equivalences can be proved in a similar way. ¤

Given the sequence {Ψ(n)} define the function Ψ(t) =
∑∞

i=0 Ψ(i)χ[i,i+1)(t) on [0,∞). Obviously
Ψ|N∪{0} coincides with {Ψ(n)}. The following result we shall use further.

Lemma 5.3. There is a concave continuous function Ψ̃ on [0,∞) such that Ψ ≤ Ψ̃ ≤ 3Ψ on [1,∞)
and Ψ̃(0) = 0.
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Proof. Fix x ≥ 1. For 0 < t ≤ x,
Ψ(t)

t
≤ Ψ(x)

t
,

and for [x] ≤ [t],
Ψ(t)

t
≤ Ψ([t])

[t]
≤ Ψ([x])

[x]
=

x

[x]
Ψ(x)

x
≤ 2

Ψ(x)
x

,

where for real y ∈ R, [y] is the greatest integer less than or equal to y. Hence for every t ≥ 0 and
x ≥ 1,

Ψ(t) ≤ (1 +
2t

x
)Ψ(x) and Ψ(t) ≤ tΨ(1).

Therefore there is a minimal concave function Ψ̃ such that for each t ≥ 0, x ≥ 1,

Ψ(t) ≤ Ψ̃(t) ≤ min{(1 +
2t

x
)Ψ(x), tΨ(1)}.

Then for every x ≥ 1 and t > 0,

Ψ̃(x) ≤ (1 +
2x

x
)Ψ(x) = 3Ψ(x) and Ψ̃(t) ≤ tΨ(1).

So limt→0+ Ψ̃(t) = 0. Therefore Ψ̃(t) is a continuous concave function on [0,∞). ¤

Now, we are ready to investigate when mΨ is the bidual of m0
Ψ and when m0

Ψ is an M -ideal of
mΨ. The following theorems show that the situation is simpler than that of the non-atomic case.

Theorem 5.4. The space mΨ is the bidual of m0
Ψ if and only if limn→∞Ψ(n) = ∞.

Proof. If limn→∞Ψ(n) < ∞, then by Theorem 5.2 (2), m0
Ψ = {0}. So mΨ cannot be the bidual of

m0
Ψ since mΨ 6= {0}.
For the converse, suppose that limn→∞Ψ(n) = ∞. Then by Theorem 5.2 (2) and (3), m0

Ψ is
the order continuous subspace of mΨ and it contains all simple functions with support of finite
measure. Hence (m0

Ψ)∗ ' (mΨ)′. So if we show that (mΨ)′ is order continuous, then (m0
Ψ)∗∗ '

((mΨ)′)∗ ' (mΨ)′′ = mΨ, and the proof is done.
Note that by Lemma 5.3, there is an equivalent norm induced by the concave function Ψ̃, that

is

‖x‖meΨ = sup
n≥1

∑n
k=1 x∗(k)

Ψ̃(n)
.

If ‖x‖meΨ ≤ 1, then
n∑

k=1

x∗(k) ≤ Ψ̃(n),

for all n ≥ 1. For any decreasing sequence

y∗ = (y∗(1), · · · , y∗(n), 0, · · · ),
the summation by parts shows that

n∑

k=1

x∗(k)y∗(k) ≤
n∑

k=1

y∗(k)(Ψ̃(k)− Ψ̃(k − 1)).

Then by the Fatou property, for any y = {y(k)},

‖y‖(meΨ)′ ≤
∞∑

k=1

y∗(k)(Ψ̃(k)− Ψ̃(k − 1)).

Note that there is an integral representation Ψ̃(t) =
∫ t

0
h∗(s)ds for some h ∈ L0. This shows that,

if we take x(k) = Ψ̃(k) − Ψ̃(k − 1) for all k ∈ N, then the sequence {x(k)} is decreasing and for
each n ∈ N,

∑n
k=1 x∗(k)

Ψ̃(n)
=

Ψ̃(n)

Ψ̃(n)
= 1.
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This means that ‖x‖ = 1 and for all y,
∞∑

k=1

x∗(k)y∗(k) =
∞∑

k=1

y∗(k)(Ψ̃(k)− Ψ̃(k − 1)).

Hence

‖y‖(meΨ)′ ≥
∞∑

k=1

y∗(k)(Ψ̃(k)− Ψ̃(k − 1)),

for all y. Therefore we obtain the following formula

‖y‖(meΨ)′ =
∞∑

k=1

y∗(k)(Ψ̃(k)− Ψ̃(k − 1))

and this implies that (meΨ)′ and hence (mΨ)′ is order continuous [11]. ¤

In view of Theorem 5.2 (4), if Ψ(n) = n, then m0
Ψ = c0 and mψ = `∞ with equality of norms,

and thus m0
Ψ is an M -ideal of mΨ [7]. The next theorem extends this result to a broader class of

functions Ψ and improves already existing results in certain class of mΨ (cf. [7]).

Theorem 5.5. Assume that limn→∞
Ψ(n)

n = 0 and limn→∞Ψ(n) = ∞. Then m0
Ψ is an M -ideal

in its bidual mΨ.

Proof. First observe that if x ∈ mΨ, then

lim sup
n→∞

∑n
k=1 x∗(k)
Ψ(n)

= lim sup
n→∞

1
n

∑n
k=1 x∗(k)
1
nΨ(n)

≤ sup
n

∑n
k=1 x∗(k)
Ψ(n)

< ∞,

and in view of the assumption limn→∞
Ψ(n)

n = 0,

lim
n→∞

x∗(n) = lim
n→∞

1
n

n∑

k=1

x∗(k) = 0.

In the proof we shall use the 3-ball property (cf. Theorem 1.1) and the same technique as in [7],
that is we show that for every x = {a(n)} ∈ BmΨ , every xi = {xi(n)} ∈ Bm0

Ψ
with finite support,

i = 1, 2, 3, and ε > 0 there is y ∈ m0
Ψ such that ‖x + xi − y‖ ≤ 1 + ε, i = 1, 2, 3. First assume that

for all i = 1, 2, 3,
max{j : x∗i (j) 6= 0} =: ki = k,

and
k∑

j=1

x∗i (j) ≤
k∑

j=1

a∗(j).

Next pick up N such that for all n ≥ N , xi(n) = 0 and

|a(n)| ≤ min{δ, a∗(k)},
where δ = mini x∗i (k). Then define the sequence y = {y(n)} by y(n) = a(n) if n ≤ N and y(n) = 0
otherwise. If zi(n) = a(n)+xi(n)−y(n), then z∗i (j) = x∗i (j) for j ≤ k and z∗i (j) ≤ a∗(j) for j > k.
Hence for n ≤ k, ∑n

j=1 z∗i (j)
Ψ(n)

≤ 1,

and for n > k, ∑n
j=1 z∗i (j)
Ψ(n)

≤
∑n

j=1 a∗(j)
Ψ(n)

≤ 1.

Therefore ‖x + xi − y‖ ≤ 1.
In general case, we may assume that x is not an element of m0

Ψ. In this case, we cannot have
x ∈ `1. Hence we can find l ≥ ki for all i = 1, 2, 3, such that

ki∑

j=1

x∗i (j) <

l∑

j=1

a∗(j).
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Define ξ as follows: If xi(n) 6= 0 then let ξi(n) = xi(n). At l − ki indices where xi(n) = 0, let
ξi(n) = α (α > 0 is chosen later), otherwise let ξi(n) = 0. The number α should be chosen so
small that for all i = 1, 2, 3, ‖xi − ξi‖ ≤ ε and

n∑

j=1

ξ∗i (j) ≤
l∑

j=1

a∗(j).

By the first part of the proof, there exists y ∈ m0
Ψ such that

‖x +
ξi

1 + ε
− y‖ ≤ 1.

Hence ‖x + xi − y‖ ≤ 1 + 2ε, which completes the proof. ¤

Theorem 5.2 (4) shows that limn→∞
Ψ(n)

n = β > 0 if and only if m0
Ψ = c0 up to equivalent

norms. Therefore if limn→∞
Ψ(n)

n = β > 0, then mΨ can be renormed so that m0
Ψ is an M -ideal of

its bidual mΨ, since c0 is an M -ideal of `∞. But m0
Ψ with its original norm does not need to be

an M -ideal of mΨ if we drop the assumption limn→∞Ψ(n)/n = 0, as we can see in the following
example.

Example 5.6. Let Ψ(0) = 0, Ψ(n) = max{ 2n
3 , 1} for n ∈ N. Then mΨ = `∞ with norm

‖x‖Ψ = sup
{

x∗(1),
3(x∗(1) + x∗(2))

4
, · · · ,

3
∑n

k=1 x∗(k)
2n

, · · ·
}

that is equivalent to ‖ ‖∞-norm. Then (c0, ‖ ‖Ψ) is not an M -ideal of (`∞, ‖ ‖Ψ).

Proof. Let x1 = e1+ 1
3e2, x2 = e1− 1

3e2, x3 = −e1+ 1
3e2, and let x ≡ 2/3. Note that ‖xi‖ = ‖x‖ = 1.

Then there is no y ∈ c0 such that ‖xi +x−y‖Ψ < 5
4 . Observe the following formulas for any y ∈ c0,

|x1 + x− y| = (|5/3− y(1)|, |1− y(2)|, |2/3− y(3)|, . . .),
|x2 + x− y| = (|5/3− y(1)|, |0− y(2)|, |2/3− y(3)|, . . .),
|x3 + x− y| = (|1/3 + y(1)|, |1− y(2)|, |2/3− y(3)|, . . .).

Then max{|5/3−y(1)|, |1/3+y(1)|} ≥ 1 for all scalars y(1). Therefore for each y ∈ c0 there is i such
that (xi + x− y)∗(1) ≥ 1 and note that limn→∞ |2/3− y(n)| = 2/3, so that (xi + x− y)∗(2) ≥ 2/3
for all i = 1, 2, 3. This means that for every y ∈ c0 there is some i such that ‖xi + x − y‖Ψ ≥
3/4(1 + 2/3) = 5/4. This completes the proof. ¤

This example shows that we cannot omit the additional conditions in Theorem 5.5.

6. Polynomials on Marcinkiewicz sequence spaces

This section is a continuation of section 3 in the case of Marcinkiewicz sequence spaces. Let
Ψ = {Ψ(n)} = {Ψ(n)}∞n=0 be like in section 5, that is Ψ(0) = 0, Ψ is increasing, Ψ(n) > 0 for
n > 0 and {Ψ(n)/n} is decreasing. Note first that if limn→∞Ψ(n) = ∞, then m0

Ψ is a non-trivial
proper ideal of mΨ. Indeed, for Ψ̃ from Lemma 5.3,

{Ψ̃(k)− Ψ̃(k − 1)}k≥1 ∈ meΨ = mΨ but {Ψ̃(k)− Ψ̃(k − 1)}k≥1 /∈ m0
eΨ = m0

Ψ.

Notice that {Ψ̃(k) − Ψ̃(k − 1)}k≥1 is a decreasing sequence, since Ψ̃ is concave. In section 5 we
also showed that if in addition Ψ satisfies one of the conditions

Ψ(n) = n or lim
n→∞

Ψ(n)
n

= 0,

then m0
Ψ is an M -ideal of its bidual mΨ. As we know, this implies the uniqueness of the Hahn-

Banach extension of bounded linear functionals from m0
Ψ to mΨ [7].

On the other hand, the M -ideal property does not affect too much the uniqueness of n-
homogeneous polynomial norm-preserving extension when n ≥ 2. In section 2, we showed that in
real case, for every n ≥ 2, we could construct an n-homogeneous polynomial on m0

Ψ which had two
different norm-preserving extensions to mΨ, and in complex case, we could find an n-homogeneous
polynomial with two distinct norm-preserving extensions if n ≥ 3. In the following lemma, we state
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the conditions when m0
Ψ satisfies the assumptions of Theorem 3.2. This in turn gives interesting

conclusions about norm-preserving extension to mΨ of norm-attaining 2-homogeneous polynomials
on m0

Ψ.

Lemma 6.1. Assume that limn→∞Ψ(n) = ∞ and {Ψ(n)} is strictly increasing. Then for each x ∈
Bm0

Ψ
, there exist n ∈ N and ε > 0 such that for each y ∈ BmΨ , y = (0, · · · , 0, y(n+1), y(n+2), · · · ),

and for each |λ| ≤ ε, ‖x + λy‖ ≤ 1 holds.

Proof. We may assume that ‖x‖ = 1. Since limk→∞
Pk

i=1 x∗(i)
Ψ(k) = 0, we can find the maximum

integer n1 ∈ N such that

‖x‖ = 1 =
∑n1

i=1 x∗(i)
Ψ(n1)

.

Thus for every k ≥ n1 + 1,
n1∑

i=1

x∗(i) = Ψ(n1) and
k∑

i=1

x∗(i) < Ψ(k).

Take

a = 1−max

{∑k
i=1 x∗(i)
Ψ(k)

: k ≥ n1 + 1

}
> 0.

We note that x∗(n1) 6= 0. Indeed, if we suppose that x∗(n1) = 0, then
n1∑

i=1

x∗(i) =
n1−1∑

i=1

x∗(i) = Ψ(n1) ≤ Ψ(n1 − 1),

which is a contradiction to the fact that Ψ is strictly increasing.
Note that for x ∈ m0

Ψ,

lim
n→∞

∑n
k=1 x∗(k)
Ψ(n)

= lim
n→∞

1
n

∑n
k=1 x∗(k)
1
nΨ(n)

= 0,

which yields

lim
n→∞

1
n

n∑

k=1

x∗(k) = lim
n→∞

x∗(n) = lim
i→∞

|x(i)| = 0.

Thus we can choose n > n1 so that for all i ≥ n + 1,

|x(i)| < 1
2
x∗(n1).

Take ε = min{x∗(n1)‖e1‖
2 , a} > 0 and let y = (0, · · · , 0, y(n + 1), y(n + 2), · · · ) ∈ BmΨ . Fix λ with

|λ| < ε. Then for i ≥ n + 1, ‖ei‖ |y(i)| ≤ 1 and so

|x(i) + λy(i)| < x∗(n1)
2

+
x∗(n1)|y(i)| ‖e1‖

2
≤ x∗(n1).

Thus for each k ≤ n1,
k∑

i=1

(x + λy)∗(i) =
k∑

i=1

x∗(i) ≤ Ψ(k),

and for each k > n1,
k∑

i=1

(x + λy)∗(i) ≤
k∑

i=1

x∗(i) + a

k∑

i=1

y∗(i) ≤ (1− a)Ψ(k) + aΨ(k) = Ψ(k).

Therefore ‖x + λy‖ ≤ 1 and the proof is completed. ¤

Lemma 6.1 and Theorem 3.2 imply the following result.

Theorem 6.2. Let {Ψ(n)} satisfy the assumptions of Lemma 6.1. Let P be a 2-homogeneous
polynomial on complex mΨ. Then there exists x0 ∈ Bm0

Ψ
such that P (x0) = ‖P‖ if and only if P

is finite.
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So Corollaries 3.3 and 3.4 can be applied to m0
Ψ. The next corollary is a generalization of the

analogous result in [9] for the spaces mΨ with strictly concave Ψ.

Corollary 6.3. Let {Ψ(n)} satisfy the assumptions of Lemma 6.1. A 2-homogeneous polynomial
on complex space m0

Ψ attains its norm if and only if it is a finite polynomial. Furthermore it has
a unique norm-preserving extension to its bidual mΨ.

The next result on norm-attaining bounded linear functionals on m0
Ψ, follows from Lemma 6.1

and Proposition 3.7.

Corollary 6.4. Let {Ψ(n)} satisfy the assumptions of Lemma 6.1. A bounded linear functional
on complex space m0

Ψ attains its norm if and only if it is a finite polynomial. Furthermore it has
a unique norm-preserving extension to its bidual mΨ.

In view of Theorem 5.2 and the preceding corollaries, we get the following result.

Corollary 6.5. If limn→∞Ψ(n)/n > 0, then m0
Ψ = c0 and mΨ = `∞ up to norm equivalence.

Suppose that {Ψ(n)} satisfies the assumptions of Lemma 6.1 and limn→∞Ψ(n)/n > 0. Then
every norm-attaining bounded linear functional on complex (c0, ‖ ‖mΨ

) is finite and has a unique
extension to its bidual (`∞, ‖ ‖mΨ

). Moreover, every 2-homogeneous norm-attaining polynomial on
complex (c0, ‖ ‖mΨ

) is finite and has a unique extension to its bidual (`∞, ‖ ‖mΨ
).

Note that m0
Ψ in the above corollary may not be an M -ideal of mΨ as we could see in Example 5.6.

Moreover, not every renorming of c0 and `∞ guarantees the hypothesis of Corollary 6.5. In fact,
in Example 3.6 we constructed a non-symmetric norm ‖ ‖ equivalent to ‖ ‖∞ such that the last
conclusion of Corollary 6.5 failed. However we can ask another question, whether or not, in c0

equipped with an equivalent symmetric norm, every 2-homogeneous norm-attaining polynomial is
finite and has a unique extension to its bidual `∞? But, as we see below, both answers are negative.

Example 6.6. Let Ψ(0) = 0, Ψ(n) = max{n, 2} for n ∈ N. Then, by Theorem 5.2(4), mΨ = `∞ and
m0

Ψ = c0 with norm ‖x‖ = x∗(1)+x∗(2)
2 , which is equivalent to ‖ ‖∞-norm. Consider 2-homogeneous

polynomials on `∞,

P (x) =
x(1)2

4
and Q(x) =

x(1)2

4
+

x(2)
2

∞∑

k=2

x(2k − 1) + x(2k)
2k

.

Clearly, P is a norm-attaining polynomial at x = 2e1 and ‖P‖ = 1. Moreover, for every x ∈
B(`∞,‖ ‖mΨ

),

|Q(x)| ≤
∣∣∣∣
x(1)

2

∣∣∣∣
2

+
∣∣∣∣
x(2)

2

∣∣∣∣
∞∑

k=2

|x(2k − 1)|+ |x(2k)|
2k

≤|x(1)|
2

+
|x(2)|

2

∞∑

k=2

x∗(1) + x∗(2)
2k

≤|x(1)|+ |x(2)|
2

≤ x∗(1) + x∗(2)
2

≤ 1.

Therefore Q is also norm-attaining at 2e1 ∈ B(c0,‖ ‖mΨ
) and ‖Q‖ = 1. But Q is not finite.

Furthermore, choose a norm one linear functional ϕ on (`∞, ‖ ‖mΨ
) which vanishes on c0. Letting

P1(x) =
x(1)2

4
and P2(x) =

x(1)2

4
+

x(2)
2

ϕ(x),

we obtain two distinct norm-preserving extensions of P from c0 to `∞.
So if Ψ is not strictly increasing we cannot, in general, obtain Lemma 6.1 and its consequences.

Note also that mΨ is a symmetric space not satisfying the assumption (3.1) of Theorem 3.2.

Example 6.7. Let Ψ(0) = 0, Ψ(n) = max{√n, 2} for n ∈ N. Then m0
Ψ is an M -ideal of its bidual

mΨ (see Theorem 5.5) with norm

‖x‖ = ‖x‖Ψ = max

{
max

k∈{1,2,3,4}

∑k
i=1 x∗(i)

2
, sup

k≥5

∑k
i=1 x∗(i)√

k

}
.
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Then exactly the same P , Q, Pi, i = 1, 2, as in the previous example, can be used to show that
Pi, i = 1, 2, are two distinct norm-preserving extensions of P from m0

Ψ to mΨ. Notice also that Q
is norm-attaining on m0

Ψ but is not finite.
So even though m0

Ψ is an M -ideal of mΨ, we cannot obtain the result similar to Corollary 6.4
without the assumption (3.1) of Theorem 3.2.

We can see that the preceding examples are parts of the general situation.

Theorem 6.8. Let limn→∞Ψ(n) = ∞ and mΨ, m0
Ψ be complex spaces. The following conditions

are equivalent.
(1) Ψ is strictly increasing.
(2) For each x ∈ Bm0

Ψ
, there are n ∈ N and ε > 0 such that for every y = (0, · · · , 0, y(n +

1), · · · ) ∈ BmΨ and for every |λ| < ε, ‖x + λy‖ ≤ 1.
(3) No element in Sm0

Ψ
is a complex extreme point of Bm0

Ψ
.

(4) No element in Sm0
Ψ

is a complex extreme point of BmΨ .
(5) Every norm-attaining 2-homogeneous polynomial on m0

Ψ is finite.
(6) Every norm-attaining 2-homogeneous polynomial on m0

Ψ has a unique norm-preserving
extension to mΨ.

(7) Every norm-attaining bounded linear functional on m0
Ψ is finite.

Proof. By Lemma 6.1, (1) ⇒ (2) holds and (2) ⇒ (3) ⇒ (4) is clear by definition.
Suppose for the rest of the proof that Ψ is not strictly increasing. Then there is n ∈ N such

that Ψ(n) = Ψ(n + 1). Set

x0 =
n∑

i=1

Ψ(n)
n

ei.

We know that Ψ(n)
n ≤ Ψ(k)

k for each k, 1 ≤ k ≤ n. This yields

sup
k≥1

∑k
i=1 x∗0(i)
Ψ(k)

= sup
k≥1

kΨ(n)
nΨ(k)

= 1.

So x0 ∈ Sm0
Ψ
. We shall show that x0 is a complex extreme point of BmΨ . Suppose that there is

y ∈ mΨ such that ‖x0 + ζy‖ ≤ 1 for all |ζ| ≤ 1. Then

1
Ψ(n)

n∑

i=1

∣∣∣∣
Ψ(n)

n
+ ζy(i)

∣∣∣∣ ≤
n∑

i=1

(x0 + ζy)∗(i)
Ψ(n)

≤ 1, for all |ζ| ≤ 1.

Consider the analytic function f : BC → `1, defined by

f(ζ) =
1

Ψ(n)

n∑

i=1

(
Ψ(n)

n
+ ζy(i)

)
ei.

Then ‖f(ζ)‖1 has maximum 1 at ζ = 0. Since S`1 consists entirely of complex extreme points, the
strong form of the Maximum Modulus Theorem holds true (cf. Theorem 3.1 in [15]), and thus f
is constant. Therefore y(i) = 0 for 1 ≤ i ≤ n. For each y(k), k > n,

1
Ψ(n + 1)

n∑

i=1

∣∣∣∣
Ψ(n)

n
+ ζy(i)

∣∣∣∣ +
|ζy(k)|

Ψ(n + 1)
≤

n+1∑

i=1

(x0 + ζy)∗(i)
Ψ(n + 1)

≤ 1, for all |ζ| ≤ 1.

This implies that

1
Ψ(n + 1)

n∑

i=1

∣∣∣∣
Ψ(n)

n
+ ζy(i)

∣∣∣∣ +
|ζy(k)|

Ψ(n + 1)
=

1
Ψ(n)

n∑

i=1

∣∣∣∣
Ψ(n)

n
+ ζy(i)

∣∣∣∣ +
|ζy(k)|
Ψ(n)

= 1 +
|ζy(k)|
Ψ(n)

≤ 1, for all |ζ| ≤ 1.

So we obtain y(k) = 0 for any k > n. Therefore y = 0 and x0 is a complex extreme point of
BmΨ . Thus we showed the equivalence of (1), (2), (3) and (4). Now, let’s take 2-homogeneous



24 ANNA KAMIŃSKA AND HAN JU LEE

polynomials on mΨ

P (x) =
(x(1) + · · ·+ x(n))2

Ψ(n)2
,

Q(x) =
(x(1) + · · ·+ x(n))2

Ψ(n)2
+

x(n + 1)
Ψ(n)

∞∑

k=1

x(k + n + 1)
Ψ(1)2k

.

Observe that P (x0) = Q(x0) = 1. So P is a norm-attaining 2-homogeneous polynomial. We can
see that Q is also norm-attaining. Indeed, for each ‖x‖ ≤ 1,

|Q(x)| ≤
( |x(1)|+ · · ·+ |x(n)|

Ψ(n)

)2

+
|x(n + 1)|

Ψ(n)

∞∑

k=1

x∗(1)
2kΨ(1)

≤ |x(1)|+ · · ·+ |x(n)|
Ψ(n)

+
|x(n + 1)|

Ψ(n)

≤ x∗(1) + · · ·+ x∗(n + 1)
Ψ(n + 1)

≤ 1,

in view of the assumption that Ψ(n) = Ψ(n + 1). Hence, we get a norm-attaining 2-homogeneous
polynomial on m0

Ψ which is not finite. So (5) ⇒ (1) is proved. Choose further a norm one linear
functional φ on mΨ which vanishes on m0

Ψ. Letting for x ∈ mΨ,

P1(x) =
(x(1) + · · ·+ x(n))2

Ψ(n)2
,

P2(x) =
(x(1) + · · ·+ x(n))2

Ψ(n)2
+

x(n + 1)
Ψ(n + 1)

φ(x),

we can easily see that they are two distinct norm-preserving extensions of P to mΨ. This proves
(6) ⇒ (1). Finally, we will construct a norm-attaining bounded linear functional which is not
finite. Define a linear functional ϕ on m0

Ψ as follows

ϕ(x) =
x(1) + · · ·+ x(n)

Ψ(n)
+

1
Ψ(n)

∞∑

k=1

x(n + k)
2k

.

Then ϕ(x0) = 1, ‖ϕ‖ = 1, and ϕ is not finite. Indeed, for each ‖x‖ ≤ 1, by the Hardy-Littlewood
inequality [4],

|ϕ(x)| ≤ x∗(1) + · · ·+ x∗(n)
Ψ(n)

+
1

Ψ(n)

∞∑

k=1

x∗(n + k)
2k

≤ x∗(1) + · · ·+ x∗(n)
Ψ(n)

+
1

Ψ(n)

∞∑

k=1

x∗(n + 1)
2k

≤ x∗(1) + · · ·+ x∗(n) + x∗(n + 1)
Ψ(n + 1)

≤ 1.

This proves (7) ⇒ (1).
In order to complete the proof we observe that (2)⇒ (5), (6) by Corollary 6.5 and that (2)⇒ (7)

by Proposition 3.7. ¤

Corollary 6.9. Let limn→∞Ψ(n) = ∞ and mΨ, m0
Ψ be real or complex spaces. Then both m0

Ψ

and mΨ are not rotund.

Proof. If Ψ is strictly increasing then the hypothesis is an immediate corollary of Lemma 6.1, which
is valid for both real and complex spaces.

Suppose now that Ψ is not strictly increasing. Then there is n ∈ N such that Ψ(n) = Ψ(n + 1).
Let

x =
n−1∑

i=1

aei + aen + ben+1,
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y =
n−1∑

i=1

aei + ben + aen+1,

where a > b > 0. Then x∗ = y∗ = x, and

‖x‖ = ‖y‖ = max
{

a

Ψ(1)
,

2a

Ψ(2a)
, · · · ,

an

Ψ(n)
,

an + b

Ψ(n + 1)

}
=

an + b

Ψ(n + 1)
=

an + b

Ψ(n)
,

since { n
Ψ(n)} is increasing. Moreover,

x + y

2
=

(
x + y

2

)∗
=

n−1∑

i=1

aei +
a + b

2
en +

a + b

2
en+1.

So ∥∥∥∥
x + y

2

∥∥∥∥ = max
{

(n− 1)a
Ψ(n− 1)

,
(n− 1)a + (a + b)/2

Ψ(n)
,
(n− 1)a + a + b

Ψ(n + 1)

}

= max
{

(n− 1)a
Ψ(n− 1)

,
an + b

Ψ(n)

}
=

an + b

Ψ(n)
= ‖x‖ = ‖y‖.

Thus a sphere of the space m0
Ψ has a line segment, and so the space is not rotund. ¤

Suppose now that X is a complex r.i. sequence space with the Fatou property. We will apply
Theorem 6.8 to X. Let Φ and Ψ be the norm fundamental functions of X and X ′ respectively,
which are defined by Φ(0) = 0 = Ψ(0) and for each n ∈ N,

Φ(n) = ‖e1 + · · ·+ en‖X , and Ψ(n) = ‖e1 + · · ·+ en‖X′ .

It is well known [4] that Φ and Ψ are quasi-concave and for each n ∈ N ∪ {0},
Φ(n)Ψ(n) = n.

Given X with the norm fundamental function Φ, define the Marcinkiewicz sequence space mΨ with
the following norm

‖x‖mΨ
= sup

n∈N

{∑n
k=1 x∗(k)
Ψ(n)

}
= sup

n∈N

{
Φ(n)

n

n∑

k=1

x∗(k)

}
.

Then the norm fundamental function of mΨ is Φ, and ‖x‖mΨ
≤ ‖x‖X for all x ∈ X ([4]). This

implies that if x ∈ SX is a complex extreme point of BmΨ , then x is a complex extreme point of
BX .

In the proof of Theorem 6.8, we showed that if Ψ is not strictly increasing then there is an n ∈ N
such that

x0 =
n∑

i=1

Ψ(n)
n

ei

is a complex extreme point of BmΨ . Note that

‖x0‖X =
Ψ(n)

n
‖e1 + · · ·+ en‖X =

Ψ(n)Φ(n)
n

= 1.

Hence if Ψ is not strictly increasing, then x0 is a complex extreme point of BX . Note also that
if Ψ is not strictly increasing, then we can take Q and ϕ as in the proof of Theorem 6.8. Since
‖x‖mΨ

≤ ‖x‖X , Q is 2-homogeneous norm-attaining polynomial on X and ϕ is norm-attaining
bounded linear functional on X. Moreover they are not finite. Thus we proved the following
proposition.

Proposition 6.10. Suppose a complex r.i. sequence space X with the Fatou property has a norm
fundamental function Φ such that {Φ(n)

n } is not strictly decreasing. Then BX has a complex extreme
point. Moreover, there is a norm-attaining 2-homogeneous polynomial on X which is not finite,
and there is a norm-attaining bounded linear functional on X which is not finite.

Corollary 6.11. Let X be a complex r.i. sequence space with the Fatou property. Assume no point
of SX is a complex extreme point of BX . Then the norm fundamental function of its associate
space X ′ is strictly increasing.
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Now, we present a simple but useful fact about complex extreme points of unit ball for r.i.
sequence spaces.

Proposition 6.12. Suppose X is a complex r.i. sequence space and suppose that x0 ∈ X is an
order continuous element of X. Then x0 ∈ SX is a complex extreme point of BX if and only if x∗0
is a complex extreme point of BX .

Proof. Observe that if T : X → X is an isometric isomorphism, then T preserves the complex
extreme points of BX .

Let x0 ∈ SX and x0 be an order continuous element. Then limn→∞ x∗0(n) = 0. So there is
a permutation σ of N such that |x0(σ(n))| = x∗0(n) for each n ∈ N. Let λn = sign(x0(σ(n)) for
n ∈ N. Define an isometric isomorphism T on X as follows

Tx = {λnx(σ(n))}, x ∈ X,

Then Tx0 = x∗0, and so x0 is a complex extreme point of BX if and only if x∗0 is a complex extreme
point of BX . ¤

Example 6.13. We shall show that the converse of Corollary 6.11 does not hold in general, even
though X is an order continuous symmetric sequence space. Let X be the set of all complex
sequences x such that

‖x‖ =
∞∑

k=1

(
√

n−√n− 1)x∗(n) < ∞.

Since the sequence {√n − √n− 1} is decreasing, (X, ‖ ‖) is a Lorentz space and it is order con-
tinuous [11, 12]. The norm fundamental functions Φ and Ψ of X and X ′, respectively, are equal
and Φ(n) =

√
n = Ψ(n) for all n ∈ N.

We shall show that every point of SX is a complex extreme point of BX . By Proposition 6.12,
we have only to show that every point x∗ ∈ SX is a complex extreme point of BX . Let x∗ ∈ SX

and y ∈ X be such that ‖x∗ + ζy‖ ≤ 1 for all |ζ| < 1. Then by the Hardy-Littlewood inequality
[4],

∞∑
n=1

(
√

n−√n− 1) |x∗(n) + ζy(n)| ≤
∞∑

n=1

(
√

n−√n− 1)(x∗ + ζy)∗(n) ≤ 1.

The function f : BC → `1 defined by

f(ζ) =
∞∑

n=1

(
√

n−√n− 1) (x∗(n) + ζy(n)) en,

is analytic and ‖f(ζ)‖1 attains its maximum at ζ = 0. By the Maximum Modulus Theorem
(Theorem 3.1 in [15]), f is constant. Hence y = 0, and x∗ is a complex extreme point of BX .

Note that even though both Φ and Ψ are strictly increasing concave functions and X is order
continuous, we cannot obtain the converse of Corollary 6.11.

Note also that although m0
Ψ is order continuous and it has the same norm fundamental function

as X, no point of Sm0
Ψ

is a complex extreme point of BmΨ since Ψ is strictly increasing. Therefore
we cannot completely determine the extreme point of r.i. space X by its norm fundamental
function.
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