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Abstract. We investigate zeros of Jacobi-Sobolev orthogonal polynomials with respect to

φ(f, g) =
R 1

−1
f(x)g(x)(1− x)α(1 + x)βdx + γ

R 1

−1
f ′(x)g′(x)(1− x)α+1(1 + x)βdx

where α > −1, −1 < β ≤ 0 and γ > 0.
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1. Introduction

Consider a Sobolev inner product on the space P of real polynomials given by

(1.1) φ(p, q) := 〈σ, pq〉+ γ〈τ, p′q′〉
where σ and τ are positive-definite moment functionals and γ > 0. Let {Pn(x)}∞n=0, {Qn(x)}∞n=0,
and {S(γ)

n (x)}∞n=0 be the sequences of monic polynomials orthogonal with respect to σ, τ , and
φ(·, ·) respectively. Set

〈σ, P 2
n(x)〉 = un, 〈τ, Q2

n(x)〉 = vn, φ(S(γ)
n , S(γ)

n ) = sn(γ), n ≥ 0.

Then it is well known([5]) that both Pn(x) and Qn(x) have n real simple zeros. There also
have been many works on zeros of Sobolev orthogonal polynomials S

(γ)
n for various choices

of σ and τ ([2, 3, 6, 16]). Recently, Marcellán, Pérez, and Piñar showed that S
(γ)
n has n

real simple zeros, which interlace with zeros of Pn(x) when σ = τ is the Laguerre moment
functional([13]) and the Gegenbauer moment functional([11]). These results not only extend
the previous works by Althammer[2] and Cohen[6] but also motivate the works by M. G.
de Bruin and H. G. Meijer[4, 15]. In [15], they presented an exhaustive overview about the
location of zeros of S

(γ)
n (x) when {σ, τ} is a coherent pair.

Here, we are interested in the location of zeros of Jacobi-Sobolev orthogonal polynomials
{S(γ)

n (x)}∞n=0 when

σ = (1− x)α(1 + x)βdx and τ = (1− x)α+1(1 + x)βdx

on [−1, 1]. In this case, {σ, τ} is a coherent pair of type C if −1 < β < 0, type B if β = 0,

and type A and C if β > 0 according to the classification in [15]. So we can deduce from [15,
Theorem 4.2] that for −1 < β < 0, S

(γ)
n (x) has n real simple zeros, all of which lie in (−1, 1)

except possibly the smallest zero. Furthermore, they showed ([15, Theorem 5.2]) that the
smallest zero must be greater than

α− β

α + β + 2
− 5

2
.

Note that the above lower bound for zeros of S
(γ)
n (x) is always less than −1 for α > −1 and

−1 < β < 0.
1
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In this work, we give more precise location for the smallest zero with respect to the point
−1.

2. Main Results

Assume that {σ, τ} is a coherent pair ([4, 8, 10]), that is, there are non-zero constants an

such that
P ′

n(x) + an−1P
′
n−1(x) = nQn−1(x), n ≥ 2.

Expanding Pn(x) + an−1Pn−1(x) in terms of {S(γ)
k (x)}n

k=0, we obtain

(2.1) Pn(x) + an−1Pn−1(x) = S(γ)
n (x) + dn−1(γ)S(γ)

n−1(x), n ≥ 2;

dn−1(γ) =
an−1un−1

sn−1(γ)
, n ≥ 2.

Set φij := φ(xi, xj) and ∆n(φ) := det[φij ]ni,j=0. Then sn(γ) = ∆n(φ)
∆n−1(φ) (∆−1(φ) = 1), n ≥ 0

so that

dn(γ) =
anun∆n−1(φ)

∆n(φ)
, n ≥ 1.

Since ∆n(φ) is a polynomial in γ of degree n, lim
γ→∞ dn(γ) = 0 for n ≥ 1.

It is easy to see from the orthogonality that S
(∞)
n (x) := lim

γ→∞S
(γ)
n (x) exists for n ≥ 0. Since

lim
γ→∞ dn(γ) = 0, by (2.1),

(2.2) S(∞)
n (x) = Pn(x) + an−1Pn−1(x), n ≥ 2.

Hence, S
(∞)
n (x) is quasi-orthogonal of order n with respect to σ so that S

(∞)
n (x) (n ≥ 2)

has n real simple zeros {ynk(∞)}n
k=1 satisfying

(2.3) yn1(∞) < xn1 < yn2(∞) < xn2 < · · · < ynn(∞) < xnn.

If we write S
(γ)
n (x) = xn +

∑n−1
k=0 C

(n)
k (γ)xk, n ≥ 1, then we can easily obtain from the

orthogonality of {S(γ)
n (x)}∞n=0

C
(n)
k (γ) = −∆(k)

n−1(φ)/∆n−1(φ), 0 ≤ k ≤ n− 1,

where ∆(k)
n−1(φ) is the determinant of [φij ]n−1

i,j=0 whose k-th column is replaced by [φ(xn, xj)]n−1
j=0 .

Note that ∆n−1(φ) and ∆(k)
n−1(φ) (0 ≤ k ≤ n − 1) are polynomials in γ of degree at most

n− 1. Since ∆n−1(φ) 6= 0, zeros of S
(γ)
n (x) (n ≥ 1) are continuous functions in γ for γ ≥ 0.

Consider now the Jacobi differential equation for α + β 6= −1,−2, · · ·
(2.4) (1− x2)y′′(x) + {(β − α)− (α + β + 2)x}y′(x) + n(α + β + n + 1)y(x) = 0,

which is admissible ([9]) so that it has for each n ≥ 0 a unique monic polynomial solution of
degree n, i.e., Jacobi polynomial

P (α,β)
n (x) =

(
2n + α + β

n

)−1 n∑

k=0

(
n + α

k

)(
n + β

n− k

)
(x− 1)n−k(x + 1)k.

For α + β 6= −1,−2, · · · (see [1])

(2.5) P (α,β)
n (x) + an−1P

(α,β)
n−1 (x) = P (α,β−1)

n (x), n ≥ 1
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where

an =
2(n + 1)(n + α + 1)

(2n + α + β + 1)(2n + α + β + 2)
, n ≥ 0

and

(2.6) P (α,β−1)
n (x)′ = nP

(α+1,β)
n−1 (x), n ≥ 0.

For α, β > −1 and γ > 0, let

φ(p, q) :=
〈
σ

(α,β)
J , pq

〉
+ γ

〈
σ

(α+1,β)
J , p′q′

〉

and {S(γ)
n (x; α, β)}∞n=0 the monic Jacobi-Sobolev orthogonal polynomials with respect to

φ(·, ·), where σ
(α,β)
J is the positive-definite Jacobi moment functional defined by

〈
σ

(α,β)
J , p(x)

〉
:=

∫ 1

−1
p(x)(1− x)α(1 + x)βdx, p ∈ P.

Then by the relations (2.5) and (2.6), {σ(α,β)
J , σ

(α+1,β)
J } is a coherent pair so that

(2.7) S(γ)
n (x;α, β) + dn−1(γ)S(γ)

n−1(x; α, β) = P (α,β)
n (x) + an−1P

(α,β)
n−1 (x), n ≥ 1

for some constants dn−1(γ), which are positive since an > 0 for α, β > −1. We also have

S(∞)
n (x;α, β) := lim

γ→∞S(γ)
n (x;α, β) = P (α,β−1)

n (x), n ≥ 0.

According to the classification in [15], {σ(α,β)
J , σ

(α+1,β)
J } is of type C so that by Theorem 4.1

and Theorem 5.2 in [15], S
(γ)
n (x; α, β) has n real simple zeros ynk = ynk(γ) (1 ≤ k ≤ n) such

that
α− β

α + β + 2
− 5

2
< yn1 < yn2 < · · · < ynn < 1 and yn2 > −1.

Moreover, if β > 0, then {σ(α,β)
J , σ

(α+1,β)
J } is also of type A. Hence by Theorem 4.2 in [15],

{ynk}n
k=1 interlace with the zeros {xnk}n

k=1 of S
(∞)
n (x;α, β) = P

(α,β−1)
n (x) as

xn1 < yn1 < xn2 < yn2 < · · · < xnn < ynn.

In particular, yn1 > −1 if β > 0.

We are now concerned with the location of the smallest zero yn1 of S
(γ)
n (x;α, β) with

respect to the point −1 for α > −1 and −1 < β ≤ 0.

Theorem 2.1. If α > −1 and γ > 0, then S
(γ)
n (x;α, 0) (n ≥ 2) has n real simple zeros

{ynk}n
k=1 with

(2.8) −1 < yn1 < xn1 < yn2 < xn2 < · · · < ynn < xnn < 1

where {xnk}n
k=1 are zeros of P

(α,0)
n (x).

We will prove Theorem 2.1 taking into account ideas used in ([11, 13]). Set

z[·] = (1− x2)I − γ(1− x)[(−(α + β + 1)x− (α− β + 1))D + (1− x2)D2]

where D = d
dx . Then it is shown in [12] that z[·] is a symmetric operator for φ(·, ·) in the

sense that φ(z[p], q) = φ(p,z[q]) for any p(x) and q(x) in P.
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Lemma 2.2. Let β = 0. Then for any polynomial p(x) of degree k (≥ 0), there exists a
unique polynomial p1(x) of degree k such that

z[p1(x)] = (1− x2)p(x).

Proof. When β = 0, z[·] = (1− x2)[I + γ(α + 1)D − γ(1− x)D2]. Let

p1(x) =
k∑

i=0
bi(1 + x)i and p(x) =

k∑
i=0

ci(1 + x)i.

Then we obtain the following linear system of equations

(2.9)





bk = ck,

bk−1 + γk(α + k)bk = ck−1

bi + γ(i + 1)(α + i + 1)bi+1 − 2γ(i + 1)(i + 2)bi+2 = ci, 0 ≤ i ≤ k − 2

from which {bi}k
i=0 can be obtained recursively. ¤

Lemma 2.3. sgnS
(γ)
n (−1;α, 0) = (−1)n, n ≥ 0.

Proof. From (2.5) and (2.7),

S(γ)
n (−1;α, 0) + dn−1(γ)S(γ)

n−1(−1;α, 0) = P (α,−1)
n (−1) = 0, n ≥ 1.

Since dn(γ) > 0, n ≥ 0 and S0(x;α, 0) = 1, sgnS
(γ)
n (−1;α, 0) = (−1)n, n ≥ 0. ¤

Proof of Theorem 2.1. Fix any n ≥ 1 and set

wi(x) =
P

(α,0)
n (x)
x− xi

, 1 ≤ i ≤ n, where xi = xni (1 ≤ i ≤ n) are zeros of P
(α,0)
n (x).

By Lemma 2.2, there exists a unique polynomial pi(x) of degree n− 1 such that

z[pi(x)] = (1− x2)wi(x), 1 ≤ i ≤ n.

Hence,

φ(S(γ)
n (x;α, 0), pi(x))

=
∫ 1
−1 S

(γ)
n (x;α, 0)pi(x)(1− x)αdx + γ

∫ 1
−1 S

(γ)
n (x;α, 0)′p′i(x)(1− x)α+1dx

=
∫ 1
−1 S

(γ)
n (x;α, 0)[pi(x) + γ(α + 1)p′i(x)− γ(1− x)p′′i (x)](1− x)αdx

−2α+1γS
(γ)
n (−1;α, 0)p′i(−1)

=
∫ 1
−1 S

(γ)
n (x;α, 0)wi(x)(1− x)αdx− 2α+1γS

(γ)
n (−1;α, 0)p′i(−1)

= λiS
(γ)
n (xi;α, 0)wi(xi)− 2α+1γS

(γ)
n (−1;α, 0)p′i(−1)

where λi’s are the Christoffel numbers for the Jacobi polynomial P
(α,0)
n (x).

Since sgnwi(xi) =sgnP
(α,0)
n (xi)′ = (−1)n−i, then

sgnS(γ)
n (xi; α, 0) = sgn(wi(xi)S(γ)

n (−1;α, 0)p′i(−1)) = (−1)isgnp′i(−1).
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Because cn−1 = 1 and wi(x) has n−1 simple zeros in (−1, 1), we obtain by the Cardano-Vieta
formula (−1)n−i−1ci > 0, 0 ≤ i ≤ n− 1. Then we have from (2.9)

sgnbi = (−1)n−1−i and sgnp′i(−1) = sgnb1 = (−1)n, 0 ≤ i ≤ n− 1.

Hence, sgnS
(γ)
n (xi; α, 0) = (−1)n−i, 1 ≤ i ≤ n. Since sgnS

(γ)
n (−1;α, 0) = (−1)n, S

(γ)
n (x;α, 0)

has n real simple zeros {ynk}n
k=1 with

−1 < yn1 < x1 < yn2 < x2 < · · · < ynn < xn < 1. ¤
Note that Theorem 2.1 also follows Theorem 4.1 in [15] and the subsequent remark, where
different arguments are used.
For α > −1 and −1 < β < 0, we have the following which is the Jacobi version of Theorem
5.1 in [15].

Theorem 2.4. [cf. Theorem 5.1 in [15]] Let yn1(γ) denote the smallest zero of S
(γ)
n (x;α, β)

and yn,1(∞) the smallest zero of S
(∞)
n (x;α, β). For α > −1 and −1 < β < 0, we have

(i) yn1(∞) < −1 if n ≥ 2;
(ii) y21(∞) is a lower bound for the zeros of S

(γ)
n (x; α, β) for all n ≥ 1 and all γ > 0;

(iii) if n ≥ 3, then for γ large

yn−1,1(γ) < yn,1(γ) < yn,1(∞)

and for γ small
yn,1(∞) < −1 < yn,1(γ) < yn−1,1(γ).

Proof. From the relation in (2.5)

P (α,β−1)
n (x) = P (α,β)

n (x) +
2n(n + α)

(2n + α + β − 1)(2n + α + β)
P

(α,β)
n−1 (x), n ≥ 1

and the three-term recurrence relation ([5, (2.29), page 153]) for monic Jacobi polynomials

P (α,β)
n (x) =(x− β2 − α2

(2n + α + β − 2)(2n + α + β)
)P (α,β)

n−1 (x)

− 4(n− 1)(n + α− 1)(n + β − 1)(n + α + β − 1)
(2n + α + β − 1)(2n + α + β − 2)2(2n + α + β − 3)

P
(α,β)
n−2 (x), n ≥ 1

we get the relations
(α + β + 2)(α + β + 3)

(α + 1)(α + 2)
S

(∞)
2 (x;α, β)(x) = (x+1)2+2(

β + 1
α + 1

)(x2−1)+
β(β + 1)

(α + 2)(α + 1)
(x−1)2

and for n ≥ 3

(2.10) S(∞)
n (x;α, β) = (x + 1)P (α,β)

n−1 (x)− 2(n + β − 1)(n + α + β − 1))
(2n + α + β − 1)(2n + α + β − 2)

S
(∞)
n−1(x;α, β).

Then by the same arguments used to prove Theorem 5.1 in [15], we have the theorem. ¤

We see from Theorem 2.4 that if α > −1 and −1 < β < 0, then for n ≥ 2, the smallest
zero yn1(γ) of S

(γ)
n (x; α, β) can be less than or equal to or greater than −1 depending on γ.

Theorem 2.5. Let n ≥ 2. Then for the zeros {ynk(γ)}n
k=1 of S

(γ)
n (x; α, β) (γ > 0), we have

(i) yn−1,1(γ) < yn,1(γ) < yn1(∞) or yn−1,1(γ) > yn,1(γ) > yn1(∞) or yn−1,1(γ) =
yn,1(γ) = yn1(∞);
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(ii) {yn,1(∞)}∞n=2 is strictly increasing with an upper bound −1;
(iii) if there is an n ≥ 3 such that yn−1,1(γ) ≤ yn,1(γ) then ym−1,1(γ) < ym,1(γ), m > n,

so that {yn,1(γ)}∞n=2 is strictly decreasing or {yn,1(γ)}∞n=m is strictly increasing for
some m ≥ 2;

(iv) for 0 ≤ γ ≤ ∞, lim
n→∞ yn,1(γ) = −1.

Proof. (i) From (i) of Theorem 2.4 and (ii) of Theorem 4.1 in [15], we have

(2.11) yn1(∞) < −1 < yn2(γ) and yn1(γ) < xn1 < yn2(γ), n ≥ 3,

where xn1 is the smallest zero of P
(α,β)
n (x). We deduce from (2.2) that if yn1(γ) = yn−1,1(γ),

then yn1(γ) = yn−1,1(γ) = yn1(∞). If yn1(γ) < yn−1,1(γ), then yn1(∞) < yn1(γ) < yn−1,1(γ)
since

sgnS(∞)
n (yn1(γ)) = sgnS

(γ)
n−1(yn1(γ)) = (−1)n−1.

If yn1(γ) > yn−1,1(γ), then yn1(∞) > yn1(γ) > yn−1,1(γ) since

sgnS(∞)
n (yn1(γ)) = sgnS

(γ)
n−1(yn1(γ)) = (−1)n.

(ii) From (2.10), we obtain

sgn(S(∞)
n (yn−1,1(∞)) = sgn(yn−1,1(∞) + 1)sgnP

(α,β)
n−1 (yn−1,1(∞)) = (−1)n.

Hence for n ≥ 2, yn,1(∞) < yn+1,1(∞) < −1. Thus {yn,1(∞)}∞n=2 is a strictly increasing
sequence with an upper bound −1.

(iii) Assume that there exists an n ≥ 3 such that yn−1,1(γ) ≤ yn1(γ) but yn1(γ) ≥ yn+1,1(γ).
Then from (i), we have

yn−1,1(γ) ≤ yn1(γ) ≤ yn1(∞) and yn+1,1(∞) ≤ yn+1,1(γ) ≤ yn,1(γ).

It implies that yn+1,1(∞) ≤ yn1(∞), which is a contradiction to (ii). Thus {yn,1(γ)}∞n=2 is a
strictly decreasing sequence or {yn,1(γ)}∞n=m is a strictly increasing sequence for some m ≥ 2.

(iv) For γ = 0, yn1(0) = xn1. Thus {yn1(0)}∞n=2 is a decreasing sequence and lim
n→∞ yn,1(0) =

−1. Let γ ∈ (0,∞). Then (iii) shows that {yn,1(γ)}∞n=2 converges :

lim
n→∞ yn,1(γ) := y(γ).

On the other hand, from Theorem 2 and Corollary 1 in [7], we have that the limit y(γ) lies
in [−1, 1], which shows that y(γ) = −1. For γ = ∞, (ii) implies that

lim
n→∞ yn,1(∞) := y(∞) ≤ −1.

Finally, by Theorem 2.4 (iii), there is a γ with 0 < γ < ∞ and

y2,1(γ) < y3,1(γ) < y3,1(∞)

so that we have from (i) and (iii) that

yn−1,1(γ) < yn,1(γ) < yn,1(∞), n ≥ 3,

which shows that y(∞) = −1. ¤

Since S
(∞)
n (x;α, β) = P

(α,β−1)
n (x), n ≥ 0, we have the following.

Corollary 2.6. For α > −1 and −2 < β < −1, the smallest zeros of {P (α,β)
n (x)}∞n=0 converge

to −1.
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The following table gives numerical computations of the smallest zeros of S
(γ)
n (x;−1

2 ,−1
2).

γ = 0 γ = 1 γ = 100 γ = 100000 γ = ∞
n = 2 −0.7071067 −1.1150692 −1.3621040 −1.3660250 −1.3660254
n = 3 −0.8660254 −1.1202612 −1.1209032 −1.1206532 −1.1206532
n = 4 −0.9238795 −1.0627289 −1.0601785 −1.0601489 −1.0601489
n = 5 −0.9510565 −1.0367560 −1.0360529 −1.0360461 −1.0360461
n = 6 −0.9659258 −1.0242415 −1.0240185 −1.0240162 −1.0240162
n = 7 −0.9749279 −1.0172377 −1.0171494 −1.0171485 −1.0171485
n = 8 −0.9807852 −1.0128997 −1.0128590 −1.0128586 −1.0128586
n = 9 −0.9848077 −1.0100208 −1.0099999 −1.0099997 −1.0099997
n = 10 −0.987688363 −1.008010659 −1.007999075 −1.007998969 −1.007998963

Table of the smallest zeros of S
(γ)
n (x;−1

2 ,−1
2)
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