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Abstract. We give a new simplifying argument for the proof of the Gevrey regularity of
solutions of non-linear elliptic equations. Our proof relies on a weak form of the Schauder
estimates and therefore, we hope, it can be applied to treat other cases other than the
elliptic one.

In this paper we present a new argument for the proof of the Gevrey regularity of so-
lutions of a non-linear elliptic equation. This kind of results is well-known. We mention
some works of Berstein, Gevrey, Hopf, Lewy, Giraud, Morey, Petrovskii, Friedman,.... who
proved the analyticity of classical solutions of such equations or systems. Recently we
treated the Gevrey regularity of classical solutions of some models of semilinear elliptic
degenerate equations, see [1], [2], [3]. These, we hope, will shed some light for further
research of the Gevrey regularity of solutions of more general classes of non-linear non
elliptic equations (like the Laplacian does for general elliptic equations). But the method
there is based on some geometric properties of explicit fundamental solutions for the prin-
ciple linear part. So it is hard to be extended to treat more general situations. In this
note we present a new method to deal with non-linear elliptic equations. We follow the
scheme proposed by Friedman [4], but our proof here is based solely on the Schauder
estimates. Therefore, we hope, it may be well applied to a general situation, ([5]). We
will actually work in a more general space of functions than the space of Gevrey func-
tions. Let Lk be a sequence of positive numbers, satisfying the monotonicity condition(
k
i

)
LiLk−i ≤ C1Lk(i = 1, 2...; k = 1, 2...), where C1 is a positive constant. We note that if

the sequence Lk satisfies the monotonicity condition then the sequence CkLk also satisfies
the same condition for an arbitrary positive constant C. A function F(x, v), defined for
x = (x1, ..., xn) in a bounded domain Ω ⊂ Rn and for v = (v1, ..., vµ) ∈ E ⊂ Cµ, is said
to belong to the class C{Lk−a; Ω, E} (a is an integer) if and only if F(x, v) is infinitely
differentiable and to every pair of compact subsets Ω0 ⊂ Ω and E0 ⊂ E there corresponds
a constant C2 such that for (x, v) ∈ Ω0 × E0

∣∣∣∣∣
∂j+kF(x, v)

∂xj1
1 ...∂xjn

n ∂vk1
1 ...∂v

kµ
µ

∣∣∣∣∣ ≤ Cj+k
2 Lj−aLk−a,

(
j1 + · · ·+ jn = j, k1 + · · ·+ kµ = k; j, k = a, a + 1, a + 2...

)
.
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If F(x, v) = f(x), we simply write f(x) ∈ C{Ln−a; Ω}. Note that C{n!; Ω},
(C{n!s; Ω}) is the space of all analytic functions (s-Gevrey functions), respectively, in Ω.
For α = (α1, . . . , αn) we write Dαu for ∂|α|u

i|α|∂x
α1
1 ...∂xαn

n
, where |α| = α1 + · · ·+αn, i =

√−1.
We focus on the Gevrey regularity of C∞−solutions. The C∞−smoothness of a classical

solution of a non-linear elliptic equation may be deduced from a well-known theory (see
[6]). Since we deal with C∞−solutions, by differentiating the initial equation, we can
always assume that our equation is quasi-linear (if necessary we can consider a system of
equations as well), i. e. of the following form:

∑

|α|=m

Aα(x, u, Du, ..., Dβu)|β|≤m−1D
αu = B(x, u, Du, ...,Dβu)|β|≤m−1,

or in a short form

(1)
∑

|α|=m

AαDαu = B.

For x, y ∈ Ω let us write dx = dist(x, ∂Ω), dx,y = min(dx, dy). For k = 0, 1, 2, . . . , γ ∈
(0, 1), u(x) ∈ C∞(Ω̄) set

[u]k,0;Ω = sup
|β|=k
x∈Ω

|Dβu(x)|, [u]∗k,0;Ω = sup
|β|=k
x∈Ω

dk
x|Dβu(x)|, |u|∗k,0;Ω =

k∑

j=0

[u]∗j;Ω,

[u]∗k,γ;Ω = sup
|β|=k

(x,y)∈Ω2;x 6=y

dk+γ
x,y

|Dβu(x)−Dβu(y)|
|x− y|γ ,

|u|∗k,γ;Ω = |u|∗k,0;Ω + [u]∗k,γ;Ω

|u|(k)
0,γ;Ω = sup

x∈Ω
dk

x|u(x)|+ sup
(x,y)∈Ω2;x 6=y

dk+γ
x,y

|u(x)− u(y)|
|x− y|γ .

From the theory of linear elliptic equations the following a priori estimate is well-known
(see [6],[7]):

If v is a solution of a linear elliptic equation
∑

|α|=m

aα(x)Dαv = f(x)

with, say, C∞−coefficients, then for γ ∈ (0, 1) the following weighted Schauder estimate
holds

(2) |v|∗m,γ;Ω ≤ C3

(
[v]0,0;Ω + |f |(m)

0,γ;Ω

)
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where the constant C3 depends only on a finite number of derivatives of the coefficients
aα(x), the diameter of Ω. Suppose that we are given a number d. At every point x ∈ Ω we
define a ball Bd(x) with center at x and radius d. Put Ωd = ∪x∈ΩBd(x). For every point
x ∈ Ω applying (2) in Bd(x) we arrive at the following estimate

(3) [v]m,0;Ω ≤ C3

( [v]0,0;Ωd

dm
+ |f |0,0;Ωd

+ dγ [f ]0,γ;Ωd

)
.

By using an interpolation inequality we will use (3) in the following form that for every
ε > 0, there exists a constant C(ε) such that

(4) [v]m,0;Ω ≤ εd[f ]1,0;Ωd
+ C(ε)[f ]0,0;Ωd

+
C3[v]0,0;Ωd

dm
.

Denote by µ the (complex) dimension of the variables (u,Du, ...,Dβu)|β|≤m−1. The next
lemmas are essential in [4].

Lemma 1. There exist a constant C4 such that if g(δ) be a non-negative monotone
decreasing function defined in the interval 0 < δ ≤ 1 and satisfying

g(δ) ≤ 1
10

g
(
δ
(
1− 1

N

))
+

C

δN−1
(N ≥ 3),

where C is an arbitrary constant, then g(δ) ≤ CC4
δN−1 .

Lemma 2. Assume that Ω̄ ⊂ Ω1 and F(x1, ..., xn, u, Du, ...,Dβu)|β|≤m−1 ∈
C{Lk−2; Ω1,Cµ}. Then there exist constants C5, C6 such that for every H0,H1 ≥ 1,H1 ≥
C5H

2
0 if

[u]k,0;Ω ≤ H0, 0 ≤ k ≤ m;

[u]k,0;Ω ≤ H0H
k−m−1
1 Lk−m−1, m + 1 ≤ k ≤ N + m, 2 ≤ N ;

then
sup
x∈Ω

∣∣DαF(x1, ..., xn, u, Du, ...,Dβu)|β|≤m−1

∣∣ ≤ C6H0H
N−1
1 LN−1

for every α such that |α| = N + 1.

For the sake of completion we reproduce the proof of this lemma.

Proof. To avoid unnecessary complications all constants Ci which appear in the proof
will be chosen such that they are greater than 1. We will write (w1, w2, ..., wµ) for
(u,Du, ..., Dβu)|β|≤m−1. From the Faa di Bruno we see that DαF is a linear combination
terms of the form

∂j+kF
∂xj1

1 · · · ∂xjn
n ∂wk1

1 · · · ∂w
kµ
µ

µ∏

l=1

∏
αj

(Dαlwl)
ζ(αl) ,
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where k + j = j1 + · · ·+ jn + k1 + ... + kµ ≤ N + 1 and

∑

l

∑
αl

αl · ζ(αl) = α− (j1, . . . , jn).

Since F ∈ C{Lk−2; Ω1,Cµ}, there exist constants C7 such that

∣∣∣ Dj+kF
∂xj1

1 · · · ∂xjn
n ∂wk1

1 ...∂w
kµ
µ

∣∣∣ ≤ Cj+k
7 Lj−2Lk−2

for x ∈ Ω, w ∈ E ⊂ Ē ⊂ Cµ (j = j1 + · · ·+ jn, k = k1 + · · ·+ kµ; j, k ≥ 2).

Hence we can choose constants C8 such that

sup
x∈Ω

|DαF| ≤ dN+1

dξN+1
X(ξ)

∣∣∣
ξ=0

,

where X(ξ) = X1(ξ) ·X2(ξ) and

X1(ξ) = X1(v(ξ)) = 1 + C8v(ξ) +
N+1∑

i=2

Ci
8Li−2v

i(ξ)
i!

, X2(ξ) = 1 + C8ξ +
N+1∑

i=2

Ci
8Li−2ξ

i

i!
,

v(ξ) = H0

(
ξ +

N+1∑

j=2

Hj−2
1 Lj−2ξ

j

j!

)
.

We introduce the following notation: for two infinitely differentiable functions v(ξ), h(ξ)
with non-negative derivatives, we say v(ξ) ¿ h(ξ) if and only if v(j)(0) ≤ h(j)(0) for
0 ≤ j ≤ N + 1. We note that if C is an arbitrary constant and

v1(ξ) ¿ h1(ξ), v2(ξ) ¿ h2(ξ)

then

Cv1(ξ) ¿ Ch1(ξ), v1(ξ) + v2(ξ) ¿ h1(ξ) + h2(ξ), v1(ξ)v2(ξ) ¿ h1(ξ)h2(ξ).

We would like to estimate v2(ξ). We claim that, there exists a constant C9 (independent
of N ) such that

(5) v2(ξ) ¿ C9H
2
0

(
ξ2 +

N+1∑

j=3

Hj−3
1 Lj−3ξ

j

(j − 1)!

)
.

Indeed, to estimate the coefficient of ξi in v2(ξ), we consider the following cases
I) The coefficient of ξ2, ξ3 are H2

0 ,H2
0L0.
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II) The coefficient of ξj(j ≥ 4) is

(6) H2
0

(2Hj−3
1 Lj−3

(j − 1)!
+

j−2∑

λ=2

Hj−4
1 Lλ−2Lj−λ−2

λ!(j − λ)!

)
.

The second sum in (6) can be estimated in the following way

j−2∑

λ=2

Lλ−2

λ!
Lj−λ−2

(j − λ)!
Hj−4

1 ≤ Hj−4
1 max

λ

Lλ−2Lj−λ−2

(λ− 2)!(j − λ− 2)!

j−2∑

λ=2

( 1
(λ− 1)(j − λ− 1)

)2

≤

C10H
j−4
1 Lj−4

(j − 4)!j2

j−3∑

Λ=1

( 1
Λ

+
1

j − Λ− 2

)2

≤ C11H
j−4
1 Lj−3

(j − 1)!
.

Therefore we have (5). Now by induction we can easily deduce that

vi(ξ) ¿ Ci−1
9 Hi

0

(
ξi +

N+1∑

j=i+1

Hj−i−1
1 Lj−i−1ξ

j

(j − i + 1)!

)
, (2 ≤ i ≤ N)

and finally
vN+1(ξ) ¿ CN

9 HN+1
0 ξN+1.

Next, it is easy to verify that X1(0) = 1, X2(0) = 1, X ′
1(0) = C8H0, X

′
2(0) = C8, X

(2)
1 (0) =

C8H0L0 + C2
8C9H

2
0L0 ≤ 2C8H0H1L0 if we take H1 ≥ C8C9H0 and X

(j)
2 (0) = Cj

8Lj−2 for
j ≥ 2.
We now compute X

(j)
1 (0) when 3 ≤ j ≤ N + 1. Since

X1(v) ¿ 1 + C8H0ξ +
(
C8H0L0 + C2

8C9H
2
0L0

)ξ2

2
+

N+1∑

j=3

(C8H0H
j−2
1 Lj−2

j!
+

Cj
8Cj−1

9 Hj
0Lj−2

j!
+

j−1∑

i=2

Ci
8C

i−1
9 Hi

0H
j−i−1
1 Li−2Lj−i−1

i!(j − i + 1)!

)
ξj

it follows that

X
(j)
1 (0) ≤ C8H0H

j−2
1 Lj−2 + Cj

8Cj−1
9 Hj

0Lj−2+

+
j−1∑

i=2

Ci
8C

i−1
9 Hi

0H
j−i−1
1 Li−2Lj−i−1j!

i!(j − i + 1)!
(for j = 2

≤ C12H0H
j−2
1 Lj−2 +

C13H0H
j−2
1 j!Lj−3

(j − 3)!

j−1∑

i=2

1
i(i− 1)(j − i + 1)(j − i)

≤

C14H0H
j−2
1 Lj−2,
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by taking H1 ≥ (C8C9H0)2.
Therefore by taking H1 ≥ (C8C9H0)2 = C5H

2
0 we obtain

dN+1X(ξ)
dξN+1

∣∣∣
ξ=0

=
N+1∑

j=0

(
j

N + 1

)
X

(j)
1 (0)X(N+1−j)

2 (0) ≤

C8C14NH0H
N−2
1 LN−2 + C14H0H

N−1
1 LN−1 + CN+1

8 LN−1 + (N + 1)CN+1
8 H0LN−2+

2(N + 1)NCN
8 H0H1L0LN−3 +

N−1∑

j=3

(
j

N + 1

)
C14H0H

j−2
1 Lj−2C

N+1−j
8 LN−j−1 ≤

(the final sum is absent if N ≤ 3) C15H0H
N−1
1 LN−1.

Hence
sup
x∈Ω

∣∣DαF
∣∣ ≤ C15H0H

N−1
1 LN−1 =: C6H0H

N−1
1 LN−1.¤

Lemma 3. Under the same hypotheses of Lemma 2 with k ≤ N + m replaced by k ≤
N + m− 1 then

sup
x∈Ω

∣∣DαF∣∣ ≤ C16[u]N+m,0;Ω + C6H0H
k−m−1
1 Lk−m−1

for every α such that |α| = N + 1.

Proof. Indeed, as in the proof of Lemma 2 all the terms in DαF can be estimated by known
bounds for [u]k,0;Ω (0 ≤ k ≤ N +m−1) except terms of the form

(
∂F

∂(Dβu)

)
|β|=m−1

Dβ+αu.

There are no more than nm−1 such terms and each term is bounded by

sup
x∈Ω

∣∣∣
( ∂F

∂(Dβu)

)
|β|=m−1

∣∣∣[u]N+m,0;Ω.

Therefore the conclusion of Lemma 3 follows.¤
The well-known result that we are to prove is:

Theorem. Suppose that Aα,B ∈ C{Lk−2; Ω,Cµ}. If u is a C∞−solution of (1) which in
turn is elliptic at u, i. e.

∑

|α|=m

Aα(x, u, Du, ..., Dβu)|β|≤m−1ξ
α 6= 0

for every (x, ξ) ∈ Ω×Rn\0. Then u ∈ C{Lk−m−1; Ω}. In particular, if Aα,B are analytic
(s-Gevrey) functions then so is u.

Proof. Since the theorem is purely local it suffices to prove that for every point x0 ∈ Ω,
there exists a neighborhood O(x0) such that u ∈ C{Lk−m−1;O(x0)}. Denote by Bρ(x0)
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the ball with center at x0 and radius ρ. Without loss of generality we can assume that for
ρ ≤ 2 the closed ball B̄ρ(x0) belongs to Ω. We will prove by induction that there exist two
constants H0,H1 ≥ 1 such that

[u]k,0;Bρ
≤ H0 for 0 ≤ k ≤ m,

[u]k,0;Bρ ≤ H0

(
H1

2− ρ

)k−m−1

Lk−m−1 for m + 1 ≤ k, 1 ≤ ρ < 2.(7)

Hence the desired conclusion follows. Since u ∈ C∞(Ω), we can always find constants
H0,H1 big enough such that (7) satisfies for 0 ≤ k ≤ 2m + 3. Assume that (7) holds for
k = N + m− 1, N ≥ m + 4. We shall prove (7) for k = N + m. Now, for 0 < δ ≤ 1 let us
write B, B′ respectively for B2−δ(x0), B2− δ(N−1)

N
(x0). Put gN (δ) = [u]N+m,0;B .

Since both sides are smooth, by Dα′−differentiating (with |α′| = N) the equation (1) we
obtain:

∑

|α|=m

AαDα(Dα′u) = −
∑

|α|=m

Dα′AαDαu + Dα′B−

∑

|α|=m

∑

0<α′′<α′

(
α′′

α′

)
Dα′−α′′AαDα+α′′u =: F1 + F2 + F3 in Ω.

Applying (4) for Ω = B, Ωd = B′, d = δ
N we have

(8) [Dα′u]m,0;B ≤ εδ

N
([F1]1,0;B′ + [F2]1,0;B′ + [F3]1,0;B′) +

C17N
m[u]N,0;B′

δm
+

C(ε)([F1]0,0;B′ + [F2]0,0;B′ + [F3]0,0;B′).

By Lemma 2, from the inductive assumptions we deduce that

(9) max{[F1]0,0;B′ , [F2]0,0;B′} ≤ C18H0

( NH1

(N − 1)δ

)N−2

LN−2 ≤ C19H0

(H1

δ

)N−2

LN−2,
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[F3]0,0;B′ ≤
∑

|α|=m

∑

0<α′′<α′

(
α′′

α′

)
[Dα′−α′′Aα]0,0;B′ [Dα+α′′u]0,0;B′ ≤

C20NH0LN−2

( NH1

(N − 1)δ

)N−2

+

∑

|α|=m

∑

1≤|α′′|≤N−2

C21H
2
0

(
α′′

α′

)( NH1

(N − 1)δ

)N−3

LN−2−|α′′|L|α′′|−1 ≤

C22H0LN−1

(H1

δ

)N−2

+ C23H
2
0LN−3

(H1

δ

)N−3 N−2∑

|α′′|=1

(|α′′|
N

)
(|α′′|−1

N−3

) ≤

C22H0LN−1

(H1

δ

)N−2

+

C24H
2
0LN−1

(H1

δ

)N−3 N−2∑

|α′′|=1

N

|α′′|(N − |α′′|)(N − |α′′| − 1)
≤

C25H0

(H1

δ

)N−2

LN−1(10)

if we take H1 ≥ H0.
By Lemma 3, from the inductive assumptions we see that

(11) max{[F1]1,0;B′ , [F2]1,0;B′} ≤ C26[u]N+m,0;B′ + C27H0

( NH1

(N − 1)δ

)N−1

LN−1 ≤

C26[u]N+m,0;B′ + C28H0

(H1

δ

)N−1

LN−1,

[F3]1,0;B′ ≤
∑

|α|=m

∑

0<α′′<α′

(
α′′

α′

)
[Dα′−α′′Aα]1,0;B′ [Dα+α′′u]0,0;B′+

∑

|α|=m

∑

0<α′′<α′

(
α′′

α′

)
[Dα′−α′′Aα]0,0;B′ [Dα+α′′u]1,0;B′ ≤

C29N [u]N+m,0;B′+
∑

|α|=m

∑

1≤|α′′|≤N−1

C30H
2
0

(
α′′

α′

)( NH1

(N − 1)δ

)N−2

LN−1−|α′′|L|α′′|−1+

∑

|α|=m

∑

1≤|α′′|≤N−2

C31H
2
0

(
α′′

α′

)( NH1

(N − 1)δ

)N−2

LN−2−|α′′|L|α′′| ≤
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C29N [u]N+m,0;B′ + C32H
2
0LN−2

(H1

δ

)N−2
(

N−1∑

|α′′|=1

(|α′′|
N

)
(|α′′|−1

N−2

) +
N−2∑

|α′′|=1

(|α′′|
N

)
( |α′′|
N−2

)
)
≤

C29N [u]N+m,0;B′+

C33NH2
0LN−1

(H1

δ

)N−2
(

N−1∑

|α′′|=1

1
|α′′|(N − |α′′|) +

N−2∑

|α′′|=1

1
(N − |α′′|)(N − |α′′| − 1)

)
≤

C29N [u]N+m,0;B′ + C34NH2
0

(H1

δ

)N−2

LN−1 ≤

C29N [u]N+m,0;B′ + C35NH0

(H1

δ

)N−1

LN−1

(12)

if we take H1 ≥ H0.
Therefore combining (8)-(12) we obtain

[u]N+m,0;B ≤ εδ

N

(
C36N [u]N+m,0;B′ + C37NH0

(H1

δ

)N−1

LN−1

)
+

C38H0H
N−m−1
1 LN−m−1N

m

δN−1
+ C(ε)C39H0

(H1

δ

)N−2

LN−1 ≤

C36εδ[u]N+m,0;B′ + C37εδH0

(H1

δ

)N−1

LN−1+

C40H0H
N−m−1
1 LN−1

δN−1
+ C(ε)C39H0

(H1

δ

)N−2

LN−1.

Now choose ε such that ε ≤ min{ 1
10C36

, 1
2C37C4

} we arrive at

gN (δ) ≤ 1
10

gN

(
δ
(
1− 1

N

))
+

H0H
N−1
1 LN−1

δN−1

( C40

Hm
1

+
C(ε)C39

H1
+

1
2C4

)
.

Hence by Lemma 1 we have

gN (δ) ≤
C4H0H

N−1
1 LN−1

(
C40
Hm

1
+ C(ε)C39

H1
+ 1

2C4

)

δN−1
.

If we choose H1 big enough such that C40
Hm

1
+ C(ε)C39

H1
≤ 1

2C4
we arrive at

[u]N+m,0;B = gN (δ) ≤ H0

(
H1

δ

)N−1

LN−1.

That is the same as (7) for k = N + m, δ = 2 − ρ. The proof of the theorem is therefore
completed. ¤
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