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ABSTRACT. We consider a FETI-DP formulation for the Stokes problem on
nonmatching grids in 2D. The FETI-DP method is a domain decomposition
method that uses Lagrange multipliers to match the solutions continuously across
the subdomain boundaries in the sense of dual-primal variables. We use the mor-
tar matching condition as the continuity constraints for the FETI-DP formulation.
Moreover, to satisfy the compatibility condition of the local Stokes problem and
to solve the Stokes problem efficiently, redundant continuity constraints are in-
troduced. Lagrange multipliers corresponding to the redundant constraints are
treated as primal variables in the FETI-DP formulation. We propose a precon-
ditioner for the FETI-DP operator, which is derived from a dual norm on the
Lagrange multiplier space. The dual norm is obtained from a duality pairing be-
tween the Lagrange multiplier space and the velocity function space restricted on
the nonmortar sides. Then, we show that the condition number of the precondi-
tioned FETI-DP operator is bounded by C maxi=1,··· ,N

{
(1 + log (Hi/hi))

2
}

,
where Hi and hi are the subdomain size and the mesh size, respectively, and C
is a constant independent of Hi’s and hi’s.

1. INTRODUCTION

In this paper, an iterative substructuring method with Lagrange multipliers is
studied for the Stokes problem under nonconforming discretizations. Noncon-
forming discretizations are important for multiphysics simulations, contact-impact
problems, the generation of meshes and partitions aligned with jumps in diffusion
coefficients, hp-adaptive methods, and special discretizations in the neighborhood
of singularities. Of the many methods for nonmatching discretizations, including
[6] and [17], we consider the mortar methods ([1, 3, 20, 21]). With the mortar
matching condition as the continuity constraints, the FETI-DP equation is formu-
lated.

Dual-primal FETI(FETI-DP) methods were introduced by Farhat et al.[9] as
a generation of FETI method[10]. The idea is to use primal variables at corner
points and Lagrange multipliers on edges to match solutions continuously across
subdomain boundaries. They also showed numerically that the FETI-DP method
is scalable with respect to the mesh size, the subdomain size and the number of
elements per subdomain for second and fourth order elliptic problems both. Man-
del and Tezaur[15] analyzed that the condition number of the FETI-DP method is
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bounded by C (1 + log (H/h))2 for both second and fourth order elliptic problems
in 2D, where H and h denote the subdomain size and mesh size. For 3D elliptic
problems with heterogeneous coefficients, Klawonn et al.[13] obtained the same
bound of the condition number.

Li[14] developed a FETI-DP method for the Stokes problem by adding redun-
dant continuity constraints. The Lagrange multipliers to the redundant constraints
are treated as the primal variables. Hence, the enlarged coarse problem accelerates
the convergence of the method. Moreover, the compatibility condition of the local
Stokes problem is satisfied at the FETI-DP iterations. It was also shown that the
Dirichlet preconditioner gives a condition number bound C(1 + log(H/h))2.

Recently, FETI(-DP) methods, which were originally developed for conforming
discretizations, have been applied to nonmatching discretizations([7, 8, 11, 16, 18,
19]). For elliptic problems in 2D, Dryja and Widlund[7] proposed the Dirichlet
preconditioner which gives the condition number bound C(1 + log(H/h))2 with
the Neumann-Dirichlet ordering of substructures. In general cases, that is, with-
out considering ordered substructures, they obtained C(1 + log(H/h))4 for the
condition number bound. Moreover, in [8], they proposed a different precondi-
tioner which is similar to the one in [12], and proved the condition number bound
C(1 + log(H/h))2. However, in their analysis, they imposed a restriction that
the mesh sizes on the nonmortar side and the mortar side are comparable. This
restriction is impractical when the coefficients of elliptic problems are highly dis-
continuous between subdomains (See Wohlmuth[21]).

For the same problem, Kim and Lee [11] formulated a FETI-DP operator in a
different way from Dryja and Widlund[7, 8] and proposed a Neumann-Dirichlet
preconditioner, which gives the condition number bound C(1 + log(H/h))2 with-
out the restriction on mesh size between neighboring subdomains. The proposed
preconditioner is different from the early developed FETI-DP preconditioners. In
this preconditioner, the connectivity matrix is multiplied by the function values
only on the nonmortar sides of interfaces not on the both sides of interfaces. For
the elliptic problems with heterogeneous coefficients, the authors chose the slave
and master sides according to the magnitude of coefficients. Then they obtained
the same condition number bound which does not depend on the coefficients.

We extend the result in [11] to the Stokes problem. In doing this, we use the inf-
sup stable P1(h)−P0(2h) finite elements in each subdomain. For the optimality of
the approximation under nonmatching discretizations, we impose mortar matching
conditions on the velocity functions using the standard Lagrange multiplier space
introduced in [3].

For the Stokes problem, Belgacem[2] showed the optimality of approximation
with mortar methods. The inf-sup constant for the mortar finite element function
space is crucial in the analysis of the approximation order. If the constant is inde-
pendent of mesh size and subdomain size, then the optimal order of approximation
follows independently of the number of subdomains and mesh size as in the case
of elliptic problems. In [2], it was shown that the inf-sup constant is independent
of mesh size but not shown for the subdomain size. For the P1(h) − P0(2h) mor-
tar finite elements, we compute the inf-sup constant numerically by increasing the
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number of subdomains and can see that the constant seems to be independent of
the number of subdomains.

We follow the FETI-DP formulation in [14]. With the same reason as mentioned
before, we introduce the redundant constraints to solve the Stokes problem effi-
ciently and correctly. Moreover, we propose a Neumann-Dirichlet preconditioner
and analyze the condition number bound. In the analysis of the condition number
bound, the continuity of the mortar projection in H

1/2
00 -norm is used. Hence, our

results can be extended to the Lagrange multiplier spaces satisfying this property.
A few of such Lagrange multiplier spaces are developed by Wohlmuth[20, 21].

This paper is organized as follows. Section 2 contains a brief introduction to
Sobolev spaces and finite elements. In Section 3, we derive a FETI-DP operator
for the Stokes problem and propose a preconditioner for the FETI-DP operator.
Section 4 is devoted to analyze the condition number bound of the preconditioned
FETI-DP operator. Numerical results are included in Section 5.

2. SOBOLEV SPACES AND FINITE ELEMENTS

2.1. Model problem. Let Ω be a bounded polygonal domain in R
2 and L2(Ω)

be the space of square integrable functions defined in Ω equipped with the norm
‖ · ‖0,Ω:

‖v‖2
0,Ω :=

∫

Ω
v2 dx.

L2
0(Ω) is the subspace of L2(Ω) satisfying

∫
Ω v dx = 0. H1(Ω) is the space of

functions, which are square integrable up to the first weak derivatives, and the
norm is given by

‖v‖1,Ω :=

(∫
∇v · ∇v dx +

1

d2
Ω

∫
v2 dx

)1/2

,

where dΩ means the diameter of Ω. The space H1
0 (Ω) is the subspace of H1(Ω)

with zero trace on the boundary of Ω.
In this paper, we consider the following Stokes problem: For f ∈ [L2(Ω)]2, find

(u, p) ∈ [H1
0 (Ω)]2 × L2

0(Ω) satisfying

−4u + ∇p = f in Ω,

−∇ · u = 0 in Ω,

u = 0 on ∂Ω.

(2.1)

We assume that Ω is partitioned into nonoverlapping bounded polygonal subdo-
mains {Ωi}

N
i=1 and the partition is geometrically conforming. That is, a subdomain

intersects with neighboring subdomains on the whole of an edge or at a vertex. For
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each subdomain, the following function spaces are introduced:

H1
D(Ωi) :=

{
v ∈ H1(Ωi) : v = 0 on ∂Ωi ∩ ∂Ω

}
,

L2
0(Ωi) :=

{
q ∈ L2(Ωi) :

∫

Ωi

q dx = 0

}
,

Π0 :=
{
q0 ∈ L2

0(Ω) : q0|Ωi is a constant for each i
}

.

Then, in a variational form, the problem (2.1) becomes:
Find

(
u, pI , p

0
)
∈
∏N

i=1

[
H1

D(Ωi)
]2

×
∏N

i=1 L2
0(Ωi) × Π0 such that

N∑

i=1

(∇u,∇v)Ωi −
N∑

i=1

(pI + p0,∇ · v)Ωi =

N∑

i=1

(f ,v)Ωi ∀ v ∈
N∏

i=1

[
H1

D(Ωi)
]2

,

−
N∑

i=1

(∇ · u, qI)Ωi = 0 ∀ qI ∈
N∏

i=1

L2
0(Ωi),

−
N∑

i=1

(∇ · u, q0)Ωi = 0 ∀ q0 ∈ Π0,

(2.2)

and the velocity u is continuous across the subdomain interfaces Γ =
⋃N

i,j=1(∂Ωi∩

∂Ωj). Here, (·, ·)Ωi denotes the inner product in [L2(Ωi)]
n for n = 1, 2.

We triangulate each subdomain Ωi. Then Ω2hi
i denotes the quasi-uniform tri-

angulation with the maximum diameter 2hi of the triangles. After bisecting each
edge of triangles in Ω2hi

i , we obtain a finer triangulation Ωhi
i from Ω2hi

i . Note that
these triangulations need not match across the subdomain interfaces. From these
triangulations, we consider the inf-sup stable P1(hi) − P0(2hi) finite elements in
each subdomain Ωi. Let

Xi :=
{
vi ∈

[
H1

D(Ωi) ∩ C0(Ωi)
]2

: vi|τ ∈ [P1(τ)]2 ∀ τ ∈ Ωhi
i

}
,

Qi :=
{

qi ∈ L2(Ωi) : qi|τ ∈ P0(τ) ∀ τ ∈ Ω2hi
i

}
,

Q0
i := Qi ∩ L2

0(Ωi),

where Pl(τ) is a set of polynomials of degree less then or equal to l in τ .
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To do FETI-DP formulation, we define the following spaces:

X :=

{
v ∈

N∏

i=1

Xi : v is continuous at subdomain corners

}
,

Q :=
N∏

i=1

Q0
i ,

Wi := Xi|∂Ωi for i = 1, · · · , N,

W =

{
w ∈

N∏

i=1

Wi : w is continuous at subdomain corners

}
.

In this paper, we will use the same notation for a finite element function and the
vector of nodal values of that function, that is, vi is used to denote a finite element
function or the corresponding vector of nodal values. The same applies to the
notations Wi, X , W , etc.

For v = (vt
1, · · · ,vt

N )t ∈ X , we write

vi =




v
i
I

v
i
∆

v
i
c


 ,

where the symbol I , ∆ and c represent the d.o.f.(degrees of freedom) correspond-
ing to the interior nodes, nodes on edges and nodes at corners, respectively. Since
v is continuous at subdomain corners, there exists a vector vc satisfying v

i
c = Li

cvc

for all i = 1, · · · , N , where Li
c is a map that restricts vc at the corners of the sub-

domain Ωi. The vector vc has the d.o.f. corresponding to the union of subdomain
corners. Let

vI =




v
1
I
...

v
N
I


 ,v∆ =




v
1
∆
...

v
N
∆


 .

We define the spaces XI , W∆ and Wc which consist of vectors vI , v∆ and vc,
respectively. Similarly, for w = (wt

1, · · · ,wt
N )t ∈ W , we consider wi to be

ordered into

wi =

(
w

i
∆

w
i
c

)
.

Then, for w ∈ W , we define w∆ ∈ W∆ and wc ∈ Wc as w∆|Ωi = w
i
∆ and

Li
cwc = w

i
c for i = 1, · · · , N .

Now, we introduce Sobolev spaces defined on the boundaries of subdomains.
For wi ∈ L2(∂Ωi), define

|wi|
2
1/2,∂Ωi

:=

∫

∂Ωi

∫

∂Ωi

|wi(x) − wi(y)|2

|x − y|2
ds(x) ds(y).

Then H1/2(∂Ωi) is the trace space of H1(Ωi) normed by

‖wi‖
2
1/2,∂Ωi

:= |wi|
2
1/2,∂Ωi

+
1

d∂Ωi

‖wi‖
2
0,∂Ωi

,
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where d∂Ωi is the diameter of ∂Ωi. For any Γij ⊂ ∂Ωi, H
1/2
00 (Γij) is the set

of functions in L2(Γij) such that the zero extension of the function into ∂Ωi is
contained in H1/2(∂Ωi). Let

|v|2
H

1/2

00
(Γij)

:=

(
|v|2

H1/2(Γij)
+

∫

Γij

v(x)2

dist(x, ∂Γij)
ds

)

and the norm for v ∈ H
1/2
00 (Γij) is given by

‖v‖
H

1/2

00
(Γij)

:=

(
|v|2

H
1/2

00
(Γij)

+
1

dΓij

‖v‖2
0,Γij

)1/2

,

where dΓij denotes the diameter of Γij . From Section 4.1 in [22], for v ∈ H
1/2
00 (Γij)

we have the following relation:

(2.3) C1‖ṽ‖1/2,∂Ωi
≤ ‖v‖

H
1/2

00
(Γij)

≤ C2‖ṽ‖1/2,∂Ωi
,

where C1 and C2 are constants independent of dΓij and ṽ is the zero extension of v

into ∂Ωi. For the product spaces [H1/2(∂Ωi)]
2 and [H

1/2
00 (Γij)]

2, those norms are
defined using the product norms and the inequalities in (2.3) also hold.

2.2. Mortar methods. Note that the space X is not contained in [H1
0 (Ω)]2. To

approximate the solution of the problem (2.1) in the space X , we impose the mortar
matching condition on the velocity functions. Let Γij = ∂Ωi ∩ ∂Ωj . Since the
triangulations are different across Γij , we distinguish them by choosing one as a
mortar side and the other as a nonmortar side. Hence, for each subdomain Ωi, we
define

mi :=
{

j : Ωh
i |Γij is the nonmortar side of Γij

}
,

si :=
{

j : Ωh
i |Γij is the mortar side of Γij

}
.

Then, we can write

∂Ωi \ ∂Ω = (
⋃

j∈mi

Γij)
⋃

(
⋃

j∈si

Γij).

Now, we define the following spaces from the finite elements on the nonmortar
sides of interfaces:

Wij :=

{
Wi|Γij if j ∈ mi,
Wj |Γij if j ∈ si,

W 0
ij := {wij ∈ Wij : wij vanishes at the end points of Γij} ,

W 0 :=
N∏

i=1

∏

j∈mi

W 0
ij

and consider the standard Lagrange multiplier space Mij introduced by Bernardi
et al.[3]. On Γij , let us denote the triangulation of the nonmortar side by Tij , then
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the Lagrange multiplier space Mij corresponding to Γij is defined as

Mij := {ψ ∈
[
C0(Γij)

]2
: ψ|τ ∈ [Pl(τ)]2, if τ ∩ ∂Γij = ∅, l = 1,

otherwise l = 0, ∀τ ∈ Tij}.

Then we take the Lagrange multiplier space

M :=
N∏

i=1

∏

j∈mi

Mij

and impose the following mortar matching condition on the velocity functions: For
v = (v1, · · · ,vN ) ∈ X , v satisfies that

(2.4)
∫

Γij

(vi − vj) · λij ds = 0 ∀λij ∈ Mij , ∀ i = 1, · · · , N, ∀j ∈ mi.

Let us define the spaces

V := {v ∈ X : v satisfies (2.4)} ,

P :=
{
q ∈ L2

0(Ω) : q|Ωi ∈ Qi ∀ i = 1, · · · , N
}

for the velocity and pressure, respectively. The space P is written into a direct sum
of the L2-orthogonal spaces Q and Π0, that is,

P = Q ⊕ Π0.

When Hood-Taylor finite elements P2(h)− P1(h) are used for each subdomain, it
was shown in [2] that the best approximation property holds for the approximation
space V × P . For P2(h) − P1(h) finite elements, the spaces M , V and P are
defined similarly to the P1(h) − P0(2h) finite elements. The inf-sup constant of
the space V ×P is crucial in the analysis of the approximation order. If the inf-sup
constant is independent of mesh size and subdomain size then the best approxi-
mation property holds. It was also shown that the inf-sup constant is independent
of the mesh size. However, it was not proved for the subdomain size. Following
the similar idea to Belgacem [2], we can see that the inf-sup constant of the space
V ×P is independent of the mesh size for P1(h)−P0(2h) finite elements. For the
subdomain size H , we compute the inf-sup constant numerically and observe that
the constant seems to be independent of H(see Section 5).

Now, we will rewrite (2.4) into a matrix form. Let Bij
i be a matrix with entries

(2.5) (Bij
i )lk = ±

∫

Γij

ψl · φk ds ∀l = 1, · · · , L, ∀k = 1, · · · , K,

where {ψl}
L
l=1 is basis for Mij and {φk}

K
k=1 is nodal basis for Wi|Γij . Here,

Wi|Γij means the restriction of functions in Wi on Γij . In (2.5), the +sign is chosen
if Ωi|Γij is a nonmortar side, otherwise the −sign is chosen. Then we rewrite (2.4)
as

(2.6) Bij
i vi|Γij + Bij

j vj |Γij = 0 ∀i = 1, · · · , N, ∀j ∈ mi.
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Define Eij : Mij → M to be an extension operator by zero and Rl
ij : Wl →

Wl|Γij for l = i, j to be a restriction operator and let Bi =
∑

j∈mi∪si
EijB

ij
i Ri

ij .
Then (2.6) becomes

(2.7) Bw = 0,

where

B =
(
B1 · · · BN

)
,

w =
(
w

t
1 · · · w

t
N

)t with wi = vi|∂Ωi , ∀i = 1, · · · , N.

We call B as the connectivity matrix borrowing the term from the FETI formulation
with conforming discretizations. Let Bi,∆ and Bi,c be matrices that consist of the
columns of Bi corresponding to the d.o.f. on edges and corners, respectively. Then,
using the notations introduced in Section 2, (2.7) is written into

(2.8) B∆w∆ + Bcwc = 0,

where B∆ =
(
B1,∆ · · · BN,∆

)
and Bc =

∑N
i=1 Bi,cL

i
c.

3. FETI-DP FORMULATION

3.1. FETI-DP operator. In this section, we formulate a FETI-DP operator with
the continuity constraints (2.8) obtained from the mortar matching condition (2.4).
To solve the Stokes problem efficiently and correctly, we will add the redundant
continuity constraints to the coarse problem:

(3.1)
∫

Γij

(vi − vj) ds = 0 ∀i = 1, · · · , N, ∀j ∈ mi.

In the FETI-DP method, the mortar matching condition holds when the solution
has converged. Hence, adding the redundant constraints to the coarse problem en-
hances the convergence of the FETI-DP method. When preconditioning the FETI-
DP operator, we solve a Dirichlet problem, i.e. a local Stokes problem, in each
subdomain. Furthermore, the compatibility condition of the local Stokes problem
follows from the redundant constraints.

We rewrite (3.1) as

(3.2) Rt(B∆w∆ + Bcwc) = 0,

where the matrix R has the number of columns corresponding to two times of
the number of Γij’s and rows corresponding to the d.o.f. on the space M and has
entries 1 and 0. For λ ∈ M , at each interior nodal point of Γij , λ|Γij has two
components corresponding to horizonal and vertical parts of velocity function. For
λ ∈ M , Rtλ = 0 means that for all Γij , the sums of λ|Γij corresponding to the
horizonal and vertical parts of velocity function are zero.

Let N be the Lagrange multiplier space corresponding to the constraints (3.2)
and for µ ∈ N , µ|Γij has two components that correspond to the constraints for
horizontal velocity and vertical velocity. Introducing Lagrange multipliers λ and
µ to enforce the constraints (2.8) and (3.2), the followings are induced from the
Galerkin approximation to (2.2):
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Find (uI , pI ,u∆,uc, p
0,µ,λ) ∈ XI ×Q×W∆×Wc ×Π0×N ×M such that

(3.3)




AII GII AI∆ AIc GI0 0 0

Gt
II 0 Gt

∆I Gt
cI 0 0 0

A∆I G∆I A∆∆ A∆c G∆0 Bt
∆R Bt

∆
AcI GcI Ac∆ Acc Gc0 Bt

cR Bt
c

Gt
I0 0 Gt

∆0 Gt
c0 0 0 0

0 0 RtB∆ RtBc 0 0 0

0 0 B∆ Bc 0 0 0







uI

pI

u∆

uc

p0

µ

λ




=




fI

0

f∆

fc

0

0

0




.

Here



AII AI∆ AIc

A∆I A∆∆ A∆c

AcI Ac∆ Acc


 is a stiffness matrix induced from

N∑

i=1

(∇u,∇v)Ωi ,




GII

G∆I

GcI


 is a matrix induced from

N∑

i=1

(−∇ · v, pI)Ωi ,




GI0

G∆0

Gc0


 is a matrix induced from

N∑

i=1

(−∇ · v, p0)Ωi

and the subscripts I , ∆, and c denote the interior, edges and corners, respectively.
Since p0|Ωi is constant, we have GI0 = 0. Let

z∆ =




uI

pI

u∆


 , zc =




uc

p0

µ


 .

We regard zc as a primal variable. Then (3.3) can be written as



K∆∆ K∆c B̃t
∆

Kt
∆c Kcc B̃t

c

B̃∆ B̃c 0






z∆

zc

λ


 =




f̃∆

f̃c

0


 .

After eliminating z∆, we obtain the following equation for zc and λ:
(
−Fcc Fcl

F t
cl Fll

)(
zc

λ

)
=

(
−dc

dl

)

where

Fll = B̃∆K−1
∆∆B̃t

∆,

Fcl = Kt
∆cK

−1
∆∆B̃t

∆ − B̃t
c,

Fcc = Kcc − Kt
∆cK

−1
∆∆K∆c,

dl = B̃∆K−1
∆∆f̃∆,

dc = f̃c − Kt
∆cK

−1
∆∆f̃∆.
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Note that
(

G∆0 Bt
∆R

Gc0 Bt
cR

)(
p0

µ

)
= 0 implies that

(
p0

µ

)
= 0. Using this it can be

shown easily that Fcc is invertible. Hence eliminating zc, we obtain the following
equation for λ:

(3.4) (Fll + F t
clF

−1
cc Fcl)λ = dl − F t

clF
−1
cc dc.

Let FDP = Fll + F t
clF

−1
cc Fcl and call it the FETI-DP operator. Since we add the

redundant constraints to the coarse problem, λ is not uniquely determined in M .
Let us define

(3.5) MR =
{
λ ∈ M : Rtλ = 0

}
.

In Section 4, we will show that FDP is symmetric and positive definite on MR and
λ ∈ MR is uniquely determined. In the following section, we define several norms
on the finite element function spaces and propose a preconditioner for the operator
FDP .

3.2. Preconditioner. For wi ∈ Wi, we define Siwi by



Ai
II Gi

II Ai
I∆ Ai

Ic

Gi
II

t
0 Gi

∆I
t

Gi
cI

t

Ai
∆I Gi

∆I Ai
∆∆ Ai

∆c
Ai

cI Gi
cI Ai

c∆ Ai
cc







u
i
I

pi
I

w
i
∆

w
i
c


 =




0

0

Si

(
w

i
∆

w
i
c

)


 ,

where the superscript i for a matrix denotes the part of the matrix corresponding to
subdomain Ωi.

Let us define

S := diag(S1, · · · , SN )

and it can be seen easily that S is a symmetric and positive definite(s.p.d.) operator
on W . Hence, we define

(3.6) ‖w‖W :=

(
N∑

i=1

< Siwi,wi >

)1/2

as a norm for w ∈ W . Here, < ·, · > denotes the l2-inner product of vectors. For
a function wij ∈ W 0

ij with j ∈ mi, let w̃ij be the zero extension of wij into Wi.
Using this, for w ∈ W 0 we define an extension w̃ ∈ W by

w̃ = (w̃1, · · · , w̃N ) with w̃i =
∑

j∈mi

w̃ij ∀i = 1, · · · , N,

and define a norm on W 0 by

(3.7) ‖w‖W 0 := ‖w̃‖W .
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We introduce the following subspaces with the norms induced from the spaces W
and W 0:

WR :=
{
w ∈ W : Rt(B∆w∆ + Bcwc) = 0

}
,

WR,G :=
{
w ∈ WR : Gt

∆0w∆ + Gt
c0wc = 0

}

W 0
R :=

{
w ∈ W 0 : w̃ ∈ WR

}
.

Recall the definition of MR in (3.5) and let < ·, · >m be a duality pairing
between MR and W 0

R defined as

< λ,w >m=

N∑

i=1

∑

j∈mi

∫

Γij

λij · wij ds.

Then we define a dual norm for λ ∈ MR by

(3.8) ‖λ‖2
MR

:= max
w∈W 0

R\{0}

< λ,w >2
m

‖w‖2
W 0

.

Now, we will find an operator F̂DP which gives

(3.9) < F̂DPλ,λ >= ‖λ‖2
MR

and propose F̂−1
DP as a preconditioner for the FETI-DP operator in (3.4). Define

Rij : W 0 → W 0
ij as a restriction operator and Ei

ij : W 0
ij → Wi as an extension

operator by zero. Then for w ∈ W 0
R,

‖w‖2
W 0 = ‖w̃‖2

W

=
N∑

i=1

< Siw̃i, w̃i >

=

N∑

i=1

< Si(
∑

j∈mi

Ei
ijRijw),

∑

j∈mi

Ei
ijRijw > .

Let Ŝ =
∑N

i=1(
∑

j∈mi
Ei

ijRij)
tSi(

∑
j∈mi

Ei
ijRij). Moreover, we have

(3.10) < λ,w >m=< B̂w,λ >

where B̂ = diagi=1,··· ,N

(
diagj∈mi

B̂ij
i

)
and B̂ij

i is a matrix obtained from Bij
i

after deleting the columns corresponding to the d.o.f. at the end points of Γij . Note
that B̂ij

i is invertible. Since, we restrict λ ∈ MR and w ∈ W 0
R, to find F̂DP in a

matrix form we need the following l2-orthogonal projections:

PW 0

R
: W 0 → W 0

R,

PMR
: M → MR.

For λ ∈ MR and w ∈ W 0
R, we may write

(3.11) < λ,w >m=< B̂pw,λ >, ‖w‖2
W 0 =< Ŝpw,w >,
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where
Ŝp = PW 0

R
ŜPW 0

R
, B̂p = PMR

B̂PW 0

R
.

Then it can be shown that the operators

Ŝp : W 0
R → W 0

R,

B̂p : W 0
R → MR

are invertible and Ŝp is s.p.d. on W 0
R. Hence, using (3.11), the maximum in (3.8)

occurs when w ∈ W 0
R satisfies Ŝpw = B̂t

pλ. Therefore, we have

‖λ‖2
MR

=< B̂pŜ
−1
p B̂t

pλ,λ > .

Let
F̂−1

DP = (B̂pŜ
−1
p B̂t

p)
−1 = (B̂t

p)
−1ŜpB̂

−1
p .

and we call it a Neumann-Dirichlet preconditioner for the FDP operator.
Define the l2-orthogonal projections

P ij
W 0

R
: W 0|Γij → W 0

R|Γij ,

P ij
MR

: M |Γij → MR|Γij .

Then the projection operators PW 0

R
and PMR

are composed of diagonal blocks of

P ij
W 0

R
’s and P ij

MR
’s, respectively. Moreover, it can be shown easily that

P ij
MR

B̂ij
i P ij

W 0

R
: W 0

R|Γij → MR|Γij

is invertible. Hence, it follows that

B̂−1
p = diagi=1,··· ,N diagj∈mi

(
B̂−1

ij

)
,

where B̂ij = P ij
MR

B̂ij
i P ij

W 0

R
and

F̂−1
DP =

N∑

i=1


∑

j∈mi

Ei
ijB̂

−1
ij Rij




t

Si


∑

j∈mi

Ei
ijB̂

−1
ij Rij


 .

Therefore, the computation of F̂−1
DPλ can be done parallely in each subdomain.

4. CONDITION NUMBER ESTIMATION

Lemma 4.1. We have

B(WR,G) = B(WR) = MR.

Proof. Since WR,G ⊂ WR, B(WR,G) ⊂ B(WR).
Now, we will show that B(WR) ⊂ B(WR,G). For w ∈ W 0, we consider

w̃ = (w̃1, · · · , w̃N ) ∈ W , the zero extension of w into the space W . Since
w̃j |Γij = 0 for j ∈ mi and w̃ is zero at subdomain corners, we have

(4.1) Bw̃ = B̂w,
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where B̂ is defined in (3.10). Since B̂ is a 1 − 1 mapping from W 0 onto M , from
the definition of W 0

R and MR, we get

(4.2) B̂(W 0
R) = MR.

For w ∈ W 0
R, the zero extension w̃ = (w̃1, · · · , w̃N ) satisfies

∫

∂Ωi

w̃i ds = 0 ∀ i = 1, · · · , N

and then applying divergence theorem

Gt
∆0w̃∆ + Gt

c0w̃c = 0

holds for w̃. Hence, for w ∈ W 0
R, we have w̃ ∈ WR,G and from (4.1) we obtain

(4.3) B̂(W 0
R) ⊂ B(WR,G).

From the definition of WR and MR,

(4.4) B(WR) = MR.

Combining (4.4), (4.2) and (4.3), we have that B(WR) ⊂ B(WR,G). �

Remark 4.1. For w ∈ W 0
R, we have w̃ ∈ WR,G.

Lemma 4.2. For λ ∈ MR, we have

< FDPλ,λ >= max
w∈WR,G\{0}

< Bw,λ >2

‖w‖2
W

.

Proof. The problem (3.3) is equivalent to solving the following min-max problem:
(4.5)

max
λ∈B(WR,G)

min
w∈WR,G

{
N∑

i=1

(
1

2
< Siwi,wi > − < di,wi >

)
+ < Bw,λ >

}
,

where di is the Schur complement forcing vector obtained from
(
f
t
I 0

t
f
t
∆ f

t
c

)t
after solving Stokes problem in each subdomain Ωi.

Define PWR,G
as the l2-orthogonal projection from W onto WR,G. Note that

from Lemma 4.1, B(WR,G) = MR and PM is the projection operator from M
onto MR introduced in Section 3. From (u∆,uc) in (3.3), let us define w =

(w1, · · · ,wN ) ∈ WR,G such that wi =

(
u

i
∆

Li
cuc

)
. Then taking Euler-Lagrangian

in (4.5), we can see that the solution (w,λ) ∈ WR,G × MR of (3.3) satisfies

(4.6)
(

Sp Bt
p

Bp 0

)(
w

λ

)
=

(
PWR,G

d

0

)
,

where

Sp = PWR,G
SPWR,G

, Bp = PMR
BPWR,G

,

d =
(
d

t
1 · · · d

t
N

)t
.

Since S is s.p.d. on WR,G, the equation for λ follows by eliminating w in (4.6):

(4.7) BpS
−1
p Bt

pλ = BpS
−1
p d,
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which is the same as (3.4). Therefore we have

(4.8) BpS
−1
p Bt

p = FDP .

For λ ∈ MR, consider

(4.9) max
w∈WR,G\{0}

< Bw,λ >2

‖w‖2
W

.

From (3.6), the definition of ‖ · ‖W , we may write

‖w‖2
W =< Sw,w > .

Since S is s.p.d. on WR,G, the maximum in (4.9) occurs when w ∈ WR,G satisfies
Spw = Bt

pλ. Hence, we have

(4.10) max
w∈WR,G\{0}

< Bw,λ >2

‖w‖2
W

=< BpS
−1
p Bt

pλ,λ > .

Combining (4.8) and (4.10), we complete the proof. �

Lemma 4.3. For λ ∈ MR, we have

max
w∈WR,G\{0}

< Bw,λ >2

‖w‖2
W

≥ ‖λ‖2
MR

.

Proof. For w ∈ W 0
R, w̃ ∈ WR,G and from (3.7), we obtain

(4.11) max
w∈WR,G\{0}

< Bw,λ >2

‖w‖2
W

≥ max
w∈W 0

R\{0}

< Bw̃,λ >2

‖w‖2
W 0

.

Since w̃j |Γij = 0 for j ∈ mi, we get

(4.12) < Bw̃,λ >=< B̂w,λ >=< λ,w >m .

Combining (4.11), (4.12) and (3.8), we complete the proof. �

Let us define a notation | · |Si :=< Si ·, · >1/2. Then the following lemma can
be found in Bramble and Pasciak[5].

Lemma 4.4. For wi ∈ Wi, we have

C1β|wi|Si ≤ |wi|1/2,∂Ωi
≤ C2|wi|Si ,

where β is the inf-sup constant for the finite elements of subdomain Ωi and the
constants C1 and C2 are independent of hi and Hi.

Since we have chosen inf-sup stable P1(h) − P0(2h) finite elements for each
subdomain, the constant β is independent of hi and Hi. Therefore, we have

(4.13) C1|wi|Si ≤ |wi|1/2,∂Ωi
≤ C2|wi|Si ,

where C1 and C2 are constants independent of hi and Hi.
We also have the following result which is derived from the Lemma 5.1 in [15].
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Lemma 4.5. For w ∈ W , we have

‖wi −wj‖
2

H
1/2

00
(Γij)

≤ C max
l∈{i,j}

{(
1 + log

Hl

hl

)2
}(

|wi|
2
1/2,∂Ωi

+ |wj |
2
1/2,∂Ωj

)
,

where wi is the restriction of w onto ∂Ωi for i = 1, · · · , N and C is a constant
independent of hi’s and Hi’s.

Definition 4.1. We define a projection πij : [H
1/2
00 (Γij)]

2 → W 0
ij for v ∈ [H

1/2
00 (Γij)]

2

by ∫

Γij

(v − πijv) · λij ds = 0 ∀λij ∈ Mij .

From Lemma 2.2 in [1], πij is a continuous operator on H
1/2
00 (Γij), i.e., there

exists a constant C such that

(4.14) ‖πijv‖H
1/2

00
(Γij)

≤ C‖v‖
H

1/2

00
(Γij)

∀v ∈ [H
1/2
00 (Γij)]

2

and the constant C is independent of Hi’s and hi’s.

Lemma 4.6. For λ ∈ MR, we have

max
w∈WR,G\{0}

< Bw,λ >2

‖w‖2
W

≤ C max
i=1,··· ,N

{(
1 + log

Hi

hi

)2
}
‖λ‖2

MR
,

where C is a constant independent of hi’s and Hi’s.

Proof. Note that

< Bw,λ >=
N∑

i=1

∑

j∈mi

∫

Γij

(wi − wj) · λij ds.

Since wi − wj ∈ [H
1/2
00 (Γij)]

2, from the definition of πij , we have

(4.15) < Bw,λ >=
N∑

i=1

∑

j∈mi

∫

Γij

πij(wi − wj) · λij ds.

Let zij = πij(wi − wj) and z ∈ W 0 with z|Γij = zij . Since
(
1

0

)
,

(
0

1

)
∈ Mij

and w ∈ WR,G,

(4.16)
∫

Γij

zij ds =

∫

Γij

(wi − wj) ds = 0.

From (4.16), we can see that RtBz̃ = 0 with z̃ as the zero extension of z. Hence,
z ∈ W 0

R and (4.15) is the duality pairing between z ∈ W 0
R and λ ∈ MR. From

(3.8), we get

(4.17) < Bw,λ >2=< λ, z >2
m≤ ‖λ‖2

MR
‖z‖2

W 0 .
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From (3.7), (3.6), (4.13), (2.3), (4.14) and Lemma 4.5, we obtain

‖z‖2
W 0 = ‖z̃‖2

W

=
N∑

i=1

|z̃i|
2
Si

≤ C

N∑

i=1

|z̃i|
2
1/2,∂Ωi

≤ C
N∑

i=1

∑

j∈mi

‖wi − wj‖
2

H
1/2

00
(Γij)

≤ C max
i=1,··· ,N

{(
1 + log

Hi

hi

)2
}

N∑

i=1

|wi|
2
1/2,∂Ωi

≤ C max
i=1,··· ,N

{(
1 + log

Hi

hi

)2
}
‖w‖2

W .

(4.18)

Here, C is a generic constant which is independent of hi’s and Hi’s.
Combining (4.17) and (4.18), we complete the proof. �

From Lemma 4.2, Lemma 4.3 and Lemma 4.6, we have

Theorem 4.1. For λ ∈ MR,

‖λ‖2
MR

≤ < FDPλ,λ > ≤ C max
i=1,··· ,N

{(
1 + log

Hi

hi

)2
}
‖λ‖2

MR
,

where C is a constant independent of hi’s and Hi’s.

Consequently, from (3.9) we obtain the following condition number estimate:

Corollary 4.1.

κ(F̂−1
DP FDP ) ≤ C max

i=1,··· ,N

{(
1 + log

Hi

hi

)2
}

.

5. NUMERICAL RESULTS

In this section, we provide numerical tests for the FETI-DP formulation de-
veloped in this paper. Let Ω = [0, 1] × [0, 1] ⊂ R

2 and consider the following
problem:

−4u + ∇p = f in Ω,

−∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(5.1)

where f is chosen so that the exact solution of the problem becomes

u =

(
sin3(πx)sin2(πy)cos(πy)
−sin2(πx)sin3(πy)cos(πx)

)
and p = x2 − y2.



A PRECONDITIONER FOR THE FETI-DP FORMULATION 17

TABLE 1. CG iterations(condition number) when N = 4 × 4

Matching Nonmatching
n

FETI-DP PFETI-DP FETI-DP PFETI-DP
5 12(5.23) 9(2.62) 16(8.35) 12(3.75)
9 24(2.50e+1) 13(4.39) 50(1.15e+2) 15(5.79)
17 37(6.68e+1) 15(5.94) 86(5.01e+2) 17(7.93)
33 45(1.45e+2) 17(7.75) 119(1.31e+3) 20(9.88)
65 58(2.69e+2) 19(9.85) 153(3.29e+3) 22(1.20e+1)

Let N denote the number of subdomains. We only consider the uniform partition
of Ω. The notation N = 4 × 4 means that Ω is partitioned into 4 × 4 square
subdomains. With this partition, we triangulate each subdomain in the following
manner. For all subdomains, we take the same number of nodes n, including end
points, in horizontal and vertical edges with n = 4k + 1 for some positive integer
k. We solve (5.1) on matching and nonmatching grids both. For matching grids,
we make uniform triangulations in each subdomain with (n − 1)/2 + 1 nodes on
horizontal and vertical edges of subdomain and denote it by Ω2hi

i , a triangulation
for the pressure. After bisecting each edge of triangles in Ω2hi

i , we obtain Ωhi
i ,

a triangulation for the velocity. For nonmatching grids, we take (n − 1)/2 + 1
random quasi-uniform nodes on each horizontal and vertical edges of subdomain,
and generate nonuniform structured triangulations. We denote it by Ω2hi

i . The
triangulation Ωhi

i is obtained from Ω2hi
i similarly to matching grids.

Now, we solve the FETI-DP operator with and without preconditioner varying
N and n. Those cases are denoted by PFETI-DP and FETI-DP, respectively. The
CG(Conjugate Gradient) iteration is stopped when the relative residual is less than
10−6.

In Tables 1-3, the number of CG iterations and the corresponding condition
number are shown varying N and n. In Table 1, N = 4 × 4 and n − 1 increases
by double. On both matching and nonmatching grids, PFETI-DP performs well
and the condition numbers seem to behave log2-growth as n increases. Especially
on nonmatching grids, the CG iteration stops quickly in PFETI-DP compared with
FETI-DP. In Tables 2 and 3, N increases with n = 5 and n = 9. For both cases of
FETI-DP and PFETI-DP, the CG iteration becomes stable as N increases. Hence,
we can see that the developed preconditioner gives the condition number bound as
confirmed in theory.

Moreover, we have observed the convergent behaviors of the approximated so-
lution. The H1 and L2-errors for velocity and pressure are examined. u

h and ph

denote the approximated solutions for the velocity and pressure and ‖u − u
h‖1,∗

means the square root of
∑N

i=1 ‖u − u
h‖2

1,Ωi
. The errors and reduction factors

are shown in Table 4 for various N and n with matching grids. Three cases are
considered: when n − 1 increases by double with N = 4 × 4, when N increases
by double in both edges of Ω with n = 5, and when N increases by double in both
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TABLE 2. CG iterations(condition number) when n = 5

Matching Nonmatching
N

FETI-DP PFETI-DP FETI-DP PFETI-DP
4 × 4 12(5.23) 9(2.62) 16(8.35) 12(3.75)
8 × 8 12(5.42) 9(2.62) 16(9.18) 12(3.68)

16 × 16 10(5.54) 9(2.55) 16(9.57) 11(3.42)
32 × 32 10(5.61) 9(2.53) 16(10.88) 12(3.78)

TABLE 3. CG iterations(condition number) when n = 9

Matching Nonmatching
N

FETI-DP PFETI-DP FETI-DP PFETI-DP
4 × 4 24(2.50e+1) 13(4.39) 50(1.15e+2) 15(5.79)
8 × 8 25(2.60e+1) 13(4.35) 53(1.19e+2) 15(6.21)

16 × 16 24(2.62e+1) 12(4.27) 57(1.34e+2) 16(6.27)
32 × 32 23(2.62e+1) 12(4.27) 56(1.25e+2) 16(6.24)

TABLE 4. H1 and L2-errors(factor) on matching grids

N =

4 × 4
n = 5 n = 9

‖u − u
h‖1,∗ ‖u − u

h‖0 ‖p − ph‖0

n N N
5 4 × 4 3.37e-1 3.75e-3 1.07e-1
9 8 × 8 4 × 4 1.72e-1 (0.510) 1.02e-3 (0.272) 5.99e-2 (0.559)
17 16 × 16 8 × 8 8.64e-2 (0.502) 2.64e-4 (0.258) 3.08e-2 (0.514)
33 32 × 32 16 × 16 4.32e-2 (0.500) 6.65e-5 (0.258) 1.55e-2 (0.503)
65 32 × 32 2.16e-2 (0.500) 1.66e-5 (0.249) 7.79e-3 (0.502)

edges of Ω with n = 9. For all cases, we can see that the H1-error for velocity,
‖u−u

h‖1,∗, and L2-error for pressure, ‖p− ph‖0, reduce by half and L2-error for
velocity, ‖u − u

h‖0, reduces by quarter. For the finite elements P1(h) − P0(2h),
these convergent behaviors are optimal.

For the case of nonmatching grids, the errors and reduction factors are shown in
Tables 5-7 with various N and n. In Table 5, we observe that the error ‖u−u

h‖1,∗

and ‖p− ph‖0 reduce by half and the error ‖u− u
h‖0 reduces by quarter as n− 1

increases by double with N = 4 × 4. When n = 5 and n = 9, as N increases,
the errors also show the optimal convergent behaviors in Tables 6 and 7. These
numerical results confirm that the stopping criterion for CG iteration in Tables 1-3
is sufficient.

As mentioned in Section 2, if the inf-sup constant for the space V × P is in-
dependent of N and n, then the optimality of approximation can be shown. Let
β∗ and β be the inf-sup constants for the space V × P and the P1(h) − P0(2h)
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TABLE 5. H1 and L2-errors(factor) on nonmatching grids: N =
4 × 4

n ‖u − u
h‖1,∗ ‖u − u

h‖0 ‖p − ph‖0

5 3.41e-1 3.79e-3 1.05e-1
9 1.78e-1 (0.521) 1.10e-3 (0.290) 6.08e-2 (0.579)
17 8.95e-2 (0.502) 2.85e-4 (0.259) 3.16e-2 (0.517)
33 4.48e-2 (0.500) 7.21e-5 (0.252) 1.58e-2 (0.500)
65 2.24e-2 (0.500) 1.81e-5 (0.251) 7.93e-3 (0.501)

TABLE 6. H1 and L2-errors(factor) on nonmatching grids: n = 5

N ‖u − u
h‖1,∗ ‖u − u

h‖0 ‖p − ph‖0

4 × 4 1.78e-1 1.10e-3 6.08e-2
8 × 8 8.95e-2 (0.502) 2.94e-4 (0.269) 3.28e-2 (0.539)

16 × 16 4.49e-2 (0.501) 7.33e-5 (0.249) 1.63e-2 (0.496)
32 × 32 2.25e-2 (0.501) 1.84e-5 (0.251) 8.18e-3 (0.501)

TABLE 7. H1 and L2-errors(factor) on nonmatching grids: n = 9

N ‖u − u
h‖1,∗ ‖u − u

h‖0 ‖p − ph‖0

4 × 4 3.37e-1 3.75e-4 1.07e-1
8 × 8 1.72e-1 (0.510) 1.02e-3 (0.272) 5.99e-2 (0.559)

16 × 16 8.64e-2 (0.502) 2.64e-4 (0.258) 3.08e-2 (0.514)
33 × 32 4.32e-2 (0.500) 6.65e-5 (0.258) 1.55e-2 (0.503)

finite elements, respectively, and β0 be the inf-sup constant for the space V × Π0.
Then the constant β∗ depends on β and β0 from the trick conceived by Boland and
Nicolaides [4]. Hence, if the constant β0 is independent of n and N , then the same
holds for β∗. In [2], for V ×Π0 which is obtained from the Hood-Taylor finite ele-
ments, it was shown that the constant β0 is independent of n, but not shown for N .
Following the proofs in [2], we can obtain the same results for the space V ×Π0 of
the P1(h)−P0(2h) finite elements. We have no proof that β0 is independent of N .
Instead, we compute the constant β0 numerically as N increases. The results are
given in Table 8 both for matching and nonmatching grids when n = 5 and n = 9.
We observe that the constant β0 becomes stable as N increases. Table 9 gives the
constant β0 as n increases with N = 4 × 4. This confirms that the constant β0 is
independent of n.
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