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Abstract

Lopsided sets (of sign vectors), as introduced by Lawrence in the context of uniform
oriented matroids, can be regarded as those (“super”)isometric subgraphs of hyper-
cubes for which isometry is inherited by their associated graphs of “fibres”, relative
to any (Cartesian) factorization into two smaller hypercubes. There exists a plethora
of equivalent characterizations, demonstrating that this concept is most natural and
versatile in combinatorics. For example, antimatroids and median convexities are all
particular instances of lopsided sets.



1 Introduction

In this paper, we investigate lopsided sets, which were introduced by Jim Lawrence
[11] in 1983. Recently, they were rediscovered in the context of extremal combinatorics
and named ample sets; see [7]. They constitute a certain class of subsets S of the
elementary abelian 2-group

Sign (X) := {-1,+1}*

of all sign maps defined on some finite set X, that is, the set of all maps from X into
the two—element set {—1,+1}. Lopsided sets can be regarded as a common generaliza-
tion of antimatroids (convex geometries) and median graphs (among which are trees,
hypercubes, and covering graphs of distributive lattices). The primary motivation of
Lawrence in his paper [11] was to investigate and generalize those subsets

S(K):={se€ Sign(X) | {te K |t(z)s(z) >0 forall z € X} # 0}

of Sign (X) that arise from convex sets K of R® defined to comprise exactly those
sign maps from Sign (X) that represent the closed orthants of R* intersecting K. He
presented examples of lopsided sets that cannot be realized in this way, and he also
used lopsidedness to characterize uniform oriented matroids. One of the main results
of [11] is the following strikingly elementary description of lopsidedness (via “total
asymmetry”). First, viewing Sign (X) as the vertex set of the “solid” hypercube
H(X) :=[-1,+1]* C R* of dimension #X, one can speak of its faces

[s1,82] :={s € H(X) | s(z) € [s1(x), so(x)] for all z € X}

for s1,s9 € Sign(X). Two vertices s and ¢ from a face F are said to be antipodes
in F if F = [s,t]. Now, according to [11, Theorems 3,4], a subset S of Sign (X) is
lopsided if and only if, whenever F is a face of H(X) and S N F is closed with respect
to the antipodal mapping for F (i.e., if the antipode in F of any vertex from SN F
also belongs to §), then S N F is either empty or all of Sign (X) N F. In particular,
S is lopsided exactly when its complement in Sign (X) is, so that one could speak of
lopsided bipartitions of Sign (X). Examples of bipartitions that are not lopsided are
indicated in Figures 1 and 2: in each case, Sign (X) is displayed as a graph, viz., the
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# X -dimensional cube, and either part of the bipartition is closed under the antipodal
mapping of Sign (X).

FIGUuRE 1. Obstructions to lopsidedness.

FIGURE 2. Two complementary isometric 8-cycles that are not lopsided.

In the present paper, we provide several combinatorial characterizations of lopsided
sets, each emphasizing one or another feature of lopsidedness, as well as relationships
with other properties of set systems.

Given any subset Y of X, one can always associate two subsets Sy and SY of
Sign (X —Y) with an arbitrary set § C Sign (X) of sign maps:

Sy :={t € Sign(X -Y) ‘ some extension s € Sign (X) of ¢ belongs to S},
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SY :={t € Sign(X —Y) | every extension s € Sign (X) of ¢ belongs to S}.
These operations suggest two ways to derive a simplicial complex from S :
X(8)={Y CX|S|,=8x_y = Sign(Y)},
X(S) = {Y C X | 8¥ £0}.

Using this notation, the original definition of lopsidedness amounts to the condition
that for each A C X,

either A€ X(S) or X — A e X(Sign(X)—S8).

The starting point of our investigations was the simple, yet slightly surprising obser-
vation (cf. Section 4, Cor. 1, see also [7]) that

#X(S) <#S < #X(S)

holds for whatever subset S of Sign (X) one considers. So, it appeared to be natural
to define a set S of sign maps to be ample if equality #S = #X(S) holds. Ampleness
turned out to be preserved when passing to the sets SY and Sy, and to imply connect-
edness (and, even more, isometricity) of the subgraph induced by S in the hypercube
Sign (X). Tt followed that Sy and SY had to be connected (isometric) subgraphs of
Sign (X — Y) for every ample subset S of Sign (X). Conversely, connectivity (or
isometricity) of SY for all Y C X turned out to imply ampleness, suggesting to call
such subsets superconnected or superisometric. Further investigation finally resulted in
recognizing that our ample sets coincided exactly with Lawrence’s lopsided sets and
that an amazingly rich and multi—facetted theory regarding such subsets of Sign (X)
could be developed. Here is a list of some of the most remarkable properties of lopsided
sets, each of which could be used to define them (altogether we establish 30 equivalent
conditions):

superisometry: SY is isometric for all Y C X,
superconnectivity: SY is connected for all Y C X,
commutativity: (8Y)z = (Sz)Y holds for any disjoint Y, Z C X,
ampleness: #S = #X(S),

sparseness: #8 = #X(S).



2 Sets of Sets and Sets of Maps

Throughout this paper, X denotes a finite set with n := #X elements, and X" is any
(set-theoretic) simplicial complex consisting of subsets of X, that is, we assume that
X C P(X) satisfies the condition

BCAeX=BelAX.

It is not required that X or X be nonempty. A standard example of a simplicial
complex X is given by the collection of independent sets of a matroid defined on X.

There are two natural notions of complementation for collections 2 of subsets of
X: one could consider either the complement P(X) — 2 of 2 in P(X), or the set
{X — A ] A € AU} of all complements of the sets in A. Remarkably, while neither
P(X)—X nor {X—A| A€ X} is asimplicial complex when X is a simplicial complex
different from () and P(X), the concatenation of the two complementation operators
associates a simplicial complex

(1) X*'=PX)—{X-A|AecX}={X-A|AeP(X)- X}
to any given simplicial complex X C P(X). Obviously, for all A, B C X with AUB =
X and AN B = (), one has either A € X or B € X*, but not both. Further,
PX)={ACX|A¢X}U{ACX|X-A¢ax"}
X=X,
HX + #HX* =2".
Restriction to subsets of X lifts to an operation on complexes. As above, it is

convenient to refer rather to the complement Y of the subset of X to which one wants
to restrict, i.e. to define

(2) Xy ={AN(X-Y)|AeX}={AcX|ANY =0}

for every subset Y of X. Regarding Xy as a complex of subsets of X — Y, we have

(3) () ={(X-Y)-A|AeP(X-Y) - X}
={(X-Y)-A|ACX-Yand A¢ X}
={BCX-Y|(X-Y)-B=X-(BUY) ¢ X}
={BCX-Y |BUY € X"}



Therefore, ((X*)y)* coincides with

(4) XV :={BCX-Y|BUY€eX}={A-Y|Y CAecX}
implying that also

(5) (Ay)* = (&) and (XV)" = (X")y

must hold. We record the following elementary properties:

(6) XY C Ay,
X0 =x = X,
XY £ = X =P(X),
Xx#0 <= X #0 < DeX.

Furthermore, for all Y, Z C X with Y N Z = (), we have

(7) (XY)Z — XYUZ’
(XY)Z = XYUZa
(X)z={A-Y |YCAeX ANZ =0}
={A-Y |YCAe X}
= (Xy)Y.

To motivate the next concept, recall that the “topes” of an oriented matroid defined
on X are described by certain sign maps from Sign (X). In particular, if X C R and
if one assigns to every linear map A : R* — R with X Nker()\) = () the sign vector s)
from Sign (X) defined by sy(z) := sgn(A(z)) for z € X, then a subset of Sign (X) is
obtained, that is well known to encode a number of geometric properties of X.

In what follows, S is any subset of Sign (X). By convention Sign (f)) consists of

the empty map. The set-theoretic complement of & is denoted by S*:

(8) S* = Sign(X) - 8.



As before, restriction of maps to a subset considered as an operation on subsets of
Sign (X) is referred to by the complement Y of that subset:

9) Sy:={s|, ,|s€S}
= {t € Sign (X —Y) | some extension s € Sign (X) of ¢ belongs to S}.

The set ((S*)y)* then coincides with
(10) 8Y :={t € Sign(X -Y) ‘ every extension s € Sign (X) of ¢ belongs to S}.
Therefore
(11) (Sy)* = (S*)Y and (8Y)* = (S")y.
As above, we record some simple properties:
(12) SY C Sy,
Sl=85=3,
S* £ < S = Sign(X),
Sx#0 — S #0.
Further, for Y, Z C X with Y N Z = 0, we have
(13) () =8
(Sv)z = Svuz,
(SY)Z = {t |(X—Y)—Z‘ le SY}
={t |X_(YUZ)‘ t € Sign (X —Y) and every
extension of ¢ belongs to S}
C (8z)Y ={t € Sign(X — (YU Z)) | every extension of
t to X — Z can be extended to a map in S}.

If Y = {e} is a singleton set, we omit set brackets in the corresponding sub- and
superscripts for X and §; then note that

(14) #Xe + #AX° = H#X,



(15) #S, + #8° = #S.

There is, of course, a purpose for developing these concepts and notations in parallel:
every simplicial complex X can be encoded by the set

S(X):={sa| Ae X},

(z) +1 ifzeA,
SaA\T) =
—1 otherwise

where

denotes the characteristic sign map of A (relative to X). Clearly, X' coincides with
{ACX | (8(X))x_a = Sign(A)}
as well as with
[AC X[ (S(X)" +0}.

In the same fashion, X is obtained from (S(X))x_w for any subset W of X that
includes UX. Thus, Xy is obtained from (S(X))y and so is &Y from (S(X))Y¥. The
above equations for X’ suggest two ways to derive, quite generally, a simplicial complex
from an arbitrary subset S of Sign (X):
(16)  X(S)={ACX |[Sx a=8],=Sign(A)} ={AC X | (Sx-a)" #0},

X(S)={ACX|S"#0} ={AC X | (8")x_a #0}.

To see that these complexes may be different, consider X = {1,2} and § = {——, ++}
(where maps to {—1,+1} are encoded as sign vectors). Then X(S) = {0}, but X(S) =
10,{1}, 23} B

In general, X(S) C X(S) holds; and the two operators are related via complemen-
tation:

(17) X(8") = (X(8))" and X(S") = (X(S))".

Hence

(18) {ACX |AeX(S)}U{ACX | X —-Aec X(S)} =P(X).
Moreover, for every subset Y of X, we have the inclusions

(19) (X(S))y € X(Sy) C X(Sy) = (X(S))y,

(20) (X(S))" = X(S") C X(S¥) C (X(5)".



3 Conditional Antimatroids

As we have just seen, every simplicial complex X is trivially retrieved as

X =X(S)=X(S)
from its set S of characteristic sign maps. To give a more general instance, first consider
a subset £ of P(X) satisfying

(i) Ve L,
(ii) K,L € Limplies KNL € L.

Whenever p € K € L such that K — {p} € L, then p is called an eztreme point; the
set of all extreme points of K is denoted by ex(K). We say that K € L is generated
by A C K if K is the smallest member of £ containing A; this is expressed by the
short-hand [A] = K. Note that A necessarily includes ex(K) whenever A generates K.
Set systems L satisfying (i) and (ii) with the additional property that every member
K of L is generated by its set of extreme points are called conditional antimatroids
since such sets meeting the additional requirement X € £ are known as antimatroids
or convex geometries; see Edelman and Jamison [9].

Proposition 1. Let S be the set of characteristic sign maps encoding a set system
L CP(X) satisfying (i) and (ii). Then

X(S) ={ACX|ACK for some K € L, and [A— a] # [A] for all a € A}
={ACX ‘ A is a minimal generating set of some K € L},

X(8) ={AC X | there exists some C C X with ANC =0 such that
BUC € L for all B C A}
= {ex(K) | K € L}.

In particular, X(S) = X(S) holds exactly when L is a conditional antimatroid.

A natural example of a conditional antimatroid is given by the set £ of all (strict)
partial orders on a set M. We then regard each partial order as an asymmetric,
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transitive subset of the Cartesian square M? minus the diagonal, i.e., of X = {(u,v) |
u,v € M,u # v}. The extreme points of any member < of L are exactly its “covering
pairs” (u,v), that is, u < v and there is no w € M with u < w < v. For the set S of
characteristic sign maps associated to £, we then have

X(8) = X(S) = {H C X | H is the Hasse diagram of a partial order on M}.

1<3<2

2<3<1

FIGURE 3. The conditional antimatroid of all partial orders on {1,2,3} represented
by their characteristic sign maps; cf. [5, Fig. 3].

A particular class of conditional antimatroids is given by set systems £ C P(X)
which satisfies conditions (i) and (ii) and

(iii) for any x # y in |J L, there exists some K € £ with #{z,y} N K =1,

(iv) K,L,M € £ with K,L C M implies K UL € L.

For each x € | J L there exists a smallest member, [z], of £ containing z, by (ii),
such that [z] # [y] for z,y € [J £ in view of (iii). Then every p € K with p ¢ [z] for
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all z € K — {p} is an extreme point of K (and vice versa) because

K—{pt=J{ls] [z e Kbutp ¢ fa]} € £

by (iv). This shows that K is generated by its extreme points. Thus, conditions (i)—(iv)
guarantee that £ is a conditional antimatroid. Note that if in addition one imposes
X € L, then £ becomes an antimatroid as well as a distributive sublattice of P(X).
An important subclass of the former class is described by the requirements (i), (ii),
(iii), and
(v) Ki,M; € L (i = 1,2,3) with K; U K; C M, for {i,5,k} = {1,2,3} implies
KiUKyUK;3 €L,

which indeed implies (iv). We then call £ a median set system since, by virtue of (ii)
and (v), it is closed under the median operation m of P(X) defined by

m(Ll, LQ, L3) = (L1 N Lg) U (L1 N Lg) U (L2 N L3)

Every abstract (finite) median algebra (for which the former set-theoretic ternary
operation is axiomatized) can be represented by a median set system via the Sholander
embedding into some power set P(X); minimality of the chosen set X then guarantees
(iii); see [3, 12]. An inherent feature of median algebras is that they may be oriented
so that any element can serve as the empty set in the associated set representation: a
median set system £ is mapped onto another one,

LANZ ={KArZ|KEeL}

by the automorphism of P(X) taking the symmetric difference with a fixed set Z € £
since
(KAZ)YN(LAaZ)=m(K,L,Z) A Z forall K,L € L.

Proposition 2. A set system £ C P(X) is median if and only if L A Z is a conditional
antimatroid for each Z € L.

This observation suggests to call a set S C Sign (X) a median set if for some t € S
the set tS := {ts | s € 8} encodes a median set system, or equivalently, if tS encodes
a conditional antimatroid for every ¢t € S.
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4 Linear Independence
Every sign map s € Sign (X) can be lifted to a sign map 75 € Sign (P(X)) by

75(A) == H s(a) for ACX

a€A

(with 75(@) := +1, by convention). Clearly, these maps form a basis of the vector space
RPX) of all maps from P(X) into R. Then, restricting all 7, to some subset X of P(X)
will necessarily produce some linear dependence. However, simultaneously restricting
the set Sign (X) to some subset & C Sign (X), might restore linear independence.
And indeed, one can show that every set S C Sign (X) lifts to a linearly independent
set of maps defined on X'(S). This simple observation, which entails that X' (S) cannot
be smaller in size than &, is crucial for all that follows:

Theorem 1. Assume S C Sign(X) and X(S) C X C P(X). Then the lifting
{7s|x ‘ s € 8} of S constitutes a linearly independent subset of BY for any field F of
characteristic different from 2.

Proof. We proceed by induction on n = #X. For n = 0, the assertion is trivial
because the empty set is a linearly independent subset of every vector space (even if it
has dimension 0, as with F?), and {41} is a linearly independent subset of F = F{%},
S0, assume that some linear combination of the restricted maps 7, ‘ y (8 € S) gives the

Zaﬂs |X= Z OsTs |XEO

SES s€Sign (X)

zero map, that is,

holds for some coefficients a5 (s € Sign (X)) from F with a; = 0 for all s € S*. For
each e € X, (19) implies

X(S.) = (X(8). C X C X.

By virtue of the induction hypothesis, {7’5 | ¥ | s € Se} is a linearly independent subset

of F*. For each map s € Sign (X), there exists a (unique) companion s’ € Sign (X)

with s | e but s'(e) # s(e); so, the induction hypothesis implies that

=S ‘X—e

as+ay =0
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must hold for all s, s' with #{e € X | s(e) # s'(e)} = 1, whether in S or not. A trivial
induction on #{e € X ‘ s(e) # t(e)} then yields for any two maps s,t € Sign (X) that

a,  if (X)) = (X)),
Qp = .
—os  otherwise

must hold. Consequently, we have

0= Z as7s(X) = 2"y,
s€Sign (X)
where the subscript 1 refers to the constant sign map with value +1. Since char(F) # 2,
we conclude that o; = 0 must hold and, therefore, oy = 0 for all s € Sign (X) as
required. [

Corollary 1. For every set S C Sign (X), one has
(21) #X(S) < #S < #X(S).

Proof. The inequality #S < #X(S) is a trivial consequence of Theorem 1. Applying
this inequality to 8* yields

2" — #X(S) = #(X(S5)) = #X(S) > #8" =2" - #6,

which implies
#S > #X(S).
O

In thus setting the stage for the theory of lopsided sets, we closely follow a scheme
that has been applied (if not invented) by Emil Artin in his treatment of Galois theory
[1] and class field theory [2]. Using Dedekind’s lemma (quite comparable with our
Theorem 1) which states that a certain set A of maps, considered as vectors in a certain
vector space V, is linearly independent, he derives the basic inequality #4 < dimV
and then goes on to study in detail the situation(s) where equality holds. It is amazing
to realize how often this simple idea (by far not exhausted by present day extremal
combinatorics) has led to discovery or, at least, transparent organization of new insights
in pure and applied mathematics.
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5 Ampleness and Commutativity

As just pointed out, the preceding corollary suggests to study those systems S of sign
maps for which equality X(S) = X(S) holds. Clearly, the cardinality of this simplicial
complex must coincide with that of S in this case. The next result lists a considerable
number of equivalent properties. In particular, statement (v) served as the original
definition of ample sets in [7], whereas (xvii) was the original definition of lopsided sets
n [11].

Theorem 2. For any subset S C Sign (X), the following assertions all are equivalent:

(i) X(S) = X(S);
(i) #7(S) = #X(5);
(iii) X(S*) = X(S*);
(iv) #X(S*) = #X(5*);
(v) #S=#X(S);
(vi) #8* = #X(S*);
(vil) #8 = #X(S);
(viill) #8° = #X(S);
(ix) #8° = #(X(S))® and #S. = #(X(S))e for all e € X;
(x) #8° = #(X(S))° and #8. = #(X(S)). for all e € X;
(xi) #(SV)z = #X((8")2) = #(X(©S) )z = #(X(S)2)" = #X((S2)") =
#(Sy)Y for allY,Z C X withY nZ = 0;
(xii) #(SV)z = #X((8V)2) = #(X(S))z = #(X(S5))2)" = #X((S2)") =
#(87)Y for allY,Z C X withY N Z = 0;

(xiii) ((X(S)V)z = X((8Y)z2) = X((8V)z) = (X(S)Y)z for all Y,Z C X with
YNZ=0;
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xiv) (8Y)z = (Sz)Y forallY,Z C X withY NZ = 0;

(XV) (SY)X,Y = (Sxfy)y fO’l" allY g X,'

(XVi (SY)X_Y 7é ) — (SX_y)Y 75 0 fO’f‘ allY C X,'

(xvii) forall A,B C X with ANB = and AUB = X, either A € X(S) or B € X(§8*);
(xviii) for all A,B C X with ANB =0 and AUB = X, either A ¢ X(S) or B ¢ X(S*).

Proof. We proceed as indicated in Fig. 4: all implications and equivalences that are
labelled in the figure are straightforward.

Y:=Z:=0

(viii) (7) (v) (21) (i) trivial (4) an (i) trivial (iv) (21) (vi

Ve
(17)
(17)
an (16)\

(zvid) (zvi) (zvid)

trivial
(zv)
trivial

(i) (1s) (iv) (19) (wii)

FI1GURE 4. Schedule for the proof of Theorem 2.

The implication (xi) & (xii) = (xiii) follows from (19) and (20) because these
assertions imply that

X((8)z2) = X(8")z € (X(S)")z
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and
X((8")z) 2 X(8Y)z = (X(SV)2)

hold for every subset S of Sign (X) and every pair of disjoint subsets Y, Z of X.
Using (14), (15), (19), and (20), the equivalence (v) <= (ix) follows from the
inequality

(22)  #S =#S. +#S° < HX(S) + #X(S°) < #X(S)e + #X(S)* = #X(S).

This inequality also shows that (v)=-(xi) for #(Y U Z) < 1. We now use induction
on #(Y U Z) to establish (v)=(xi) for all Y, Z C X with YN Z = (. First assume
Z # 0. Pick e € Z and let Z' := Z — {e}. Then the induction hypothesis yields

#(S8) e = #X((8V)z) = #(X(S) )z = #(X(S)z)" =#X((S2)") = #(Sz)”
and therefore
(8M)z = (82)",
X((S")z) = (X(S)")z = (X(S)2)"
holds. Hence, using (22) with S replaced by
8’ = (SY)ZI = (SZI)Y
we get
#S, = #X(S.) = #X(S).,
that is,

#(S" )z = #X((S")2) = #(X(S)")z = #(X(5)2)".

We may also apply our induction hypothesis to S, because #S, = #X(S,) is already
established:

H(X(Se) ) = #X((Se)2)¥) = #((Se) )" -
Similarly, in view of X(S,) = X(S)., we obtain

#(Xz)" = #X((S2)") = #(S2)",
completing the induction for the case Z # (.

17



If Z =), a similar (yet simpler) argument works, picking some e € Y.

The remaining implications (x) <= (vi) = (xii) follow from their counterparts
(ix) <= (v)=(xi) by complementation symmetry, that is, by exchanging the roles of
S and 8*, and applying the formulae X ((SY)z)* = X(((8*)y)?) and ((X(S)Y)z)*
(X(S)*)y)? = (X(8*)y)? for Y, Z C X with Y N Z = ), which are derived from (5
(11), and (17). This completes the proof of Theorem 2.

~—

Y

O

6 Superconnectivity and Superisometricity

The set Sign (X), comprising the vertices of the solid hypercube H(X) = [—1, +1]%,
can be regarded as the graphic hypercube in which two sign maps s and ¢ form an
edge if and only if they differ at exactly one element e € X. The shortest-path distance
between s and t equals the Hamming distance D(s,t), which is defined as the cardinality
of the difference set

A(s,t):={ee X | s(e) # t(e)}.

In particular, the pairs with Hamming distance 1 are the edges of Sign (X). The set
S is called connected if it induces a connected subgraph of Sign (X), and it is called
isometric if every pair of vertices s,s’ of S can be connected in S by a path of length
D(s, s'). Finally, S is said to be weakly isometric if every pair of vertices s, s’ of S with
D(s, s') = 2 has a common neighbour in §. Using the shorthands

[s1,82]s 1= [s1,52] NS,

151, s2ls:= [s1, 52]s — {51, 52}

for s1, 59 € S, we may reformulate (weak) isometry as follows: S is weakly isometric if
and only if ]s1, s5[s# 0 for all s1, so € S with D(s1, s3) = 2; further, by a straightforward
induction on D(s1, s9), we infer that S is isometric if and only if [s1, $5|s is connected
for all 51,89 € S, if and only if |sy, sa[s7# 0 holds for all s1, s € S with D(sy, s9) > 2.

Lemma 1. A set § C Sign(X) of sign maps is weakly isometric if and only if
(So)! = (87), holds for all e, f € X with e # f. Moreover, S is isometric if and only
if Sy is weakly isometric for all Y C X or, equivalently, exactly when (Sz)! = (87),
holds for all Z C X and f € X — Z. In particular, lopsided sets are isometric.

18



Proof. By (13) we have (S7), C (S.)/. Every sign map s € (S,)/ has four extensions in
Sign (X), which together form the four vertices of a two-dimensional face F of H(X),
and at least two of those with distinct values at f must be contained in S. Moreover
s ¢ (87). if and only if S intersects F in exactly two opposite vertices (antipodes) of
F. Hence, S is weakly isometric if and only if (S/), = (S,)/ holds for all e, f € X with
e # f.

If [s,t]s is connected for s,t € S, then so is [s |Xiy,t |X—Y]SY for all subsets YV
of X. On the other hand, if |s,t[s is empty for some s,t € S with D(s,t) > 2, then
|s |X_Y, t |X_Y [sy is empty for any set Y C A(s,t) with #Y = D(s,t) — 2. Therefore,
isometry of § is equivalent to weak isometry of Sy for all Y C X.

To prove the final equivalence, we employ the preceding characterizations. If § is
isometric, proceed by induction on #Z. Pick any e € Z. Then

(82) = ((Sz-1)e) = (Sz-11))e = (8T)z2-1e))e = (8T)z.

Conversely, from this equality we infer, for Y C X and distinct e, f € X — Y, that
(Sv)e)! = (Svu) = (8vuer = (8)y)e = ((Sv))e- O

We can now establish several further characterizations of lopsidedness, all of which
are based on Theorem 2. Conditions (iii) and (vi) below are referred to as superisometry
and superconnectivity, respectively. That every lopsided set is isometric was observed
by Lawrence [11] (by referring to the Djokovié¢ condition; see [6]).

Theorem 3. For every S C Sign (X), the following assertions are equivalent:
(i) S is lopsided;
(ii) (8Y)yz is isometric for all disjoint subsets Y, Z of X ;
(iii) SY is isometric for all Y C X;
(iv) (8Y)z is weakly isometric for all disjoint subsets Y, Z of X;
(v) (Sz)Y is weakly isometric for all disjoint subsets Y, Z C X;
)

(vi) SY is connected for allY C X,
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Proof. The implications (i) = (ii) and (i) = (v) follow from Theorem 2 and Lemma
1. The equivalence (iii)<>(iv) is covered by Lemma 1. The implications (ii) = (iii) and
(iii) = (vi) are trivial.

(v) = (i): We show by induction on #Y + #Z that (§¥)z = (Sz)" holds for all
disjoint subsets Y, Z of X. For Y = () or Z = () there is nothing to prove. If Y = {e}
for some e € X, then f € Z implies

(82)Y = ((Sz-1)1)° = (Sz 1)) = (8)z(1})s = ("),

where the second equality follows from Lemma 1 and the assumption that S;_g;y is
weakly isometric, and the third one follows from our induction hypothesis. In particu-
lar, if Y properly includes {e} and is disjoint from Z C X — {e}, then

((89)2)" 71 = ((82)) ™ = (S2)"

is weakly isometric by (v). Consequently, by applying the induction hypothesis to S¢,
Y — {e}, and Z, we get

(82)" = ((82))" 71 = ((892)1 = (892 = (8")2,

as asserted. We conclude that S is lopsided by Theorem 2.

(iv) = (i): Then ((S¢)Y~{}), = (8Y) is weakly isometric for all e € Y C X and
Z C X — Y. Hence we infer (§Y); = (Sz)¥ as above by induction, thus establishing
lopsidedness.

(vi) = (iii): By a straightforward induction, it suffices to show that S is isometric
under the assumption that S is connected and all §¢ (e € X)) are isometric. Consider
any shortest path sg, s1,...,s; (k> 2) in S. Suppose by way of contradiction that

A(si—1, 8:) = A(sj—1, s;) =: {e} with s;(e) = s;_1(€)

for some 1 < ¢ < j < k. Then in §¢ there exists a path from s;_; ‘Xi{e}: Si |x (g to

Sj—1 ‘Xf{e}: 55 |X7{e} of length

#A(Sz ‘X—{e}’ Sj-1 |X—{e}) < D(Sia ijl) < .7 —1—q

by isometry of S¢. This entails a path of the same length from s;_; to s; in &, contrary
to the choice of s, ..., s; as a shortest path in S. [l
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Next, we have the following recursive characterizations:
Theorem 4. For every set S C Sign (X), the following conditions are equivalent:
(i) S is lopsided;
(ii) S is isometric, and both S, and 8¢ are lopsided for some e € X;
(iii) S is weakly isometric, and both S, and 8¢ are lopsided for some e € X;

(iv) S is connected, and S¢ is lopsided for every e € X.

Proof. From (iv), it follows immediately that SY is connected for every Y C X. In
view of Theorem 3, this establishes (iv) = (i). The implication (i) = (ii) follows from
Theorem 2 and Theorem 3, and (ii) = (iii) is trivial.

To prove the remaining implication (iii) = (iv), we will first show that S is con-
nected. For s,t € 8§, select any path ug,ui,...,u in S, joining s ‘X_e: ug and
t |X7e: ug. Each u; extends to some v; € S, and one necessarily has 1 < D(v;, vi41) < 2
foralli=0,...,k — 1. Whenever D(v;,v;11) = 2, we can adjoin a common neighbour
w; € § of v; and v;; by weak isometricity, and eventually obtain a path in S from s
to t.

Next, we will prove that S/ is weakly isometric for every f € X — {e}. Suppose by
way of contradiction that S/ violates weak isometricity: then there are two sign maps
s,tin 87 (at distance 2) having their two common neighbours u,v in Sign (X — {f})
outside /. We denote the two extensions to Sign (X) of each map s,t,u,v with
indices + and — according to their value +1 or —1 at f. Then, by assumption, S
includes {s;,s_} and {t;,t_}, but neither {u;,u_} nor {v;,v_}. On the other hand,
S must intersect {u;, v, } and {u_,v_} because S is weakly isometric. Therefore, say,
u_,v; ¢ S, so that S contains the 6-cycle formed by s, s_,v_,t_,t,, u . Necessarily,
all these maps have the same value at e, say —1, because S¢ is lopsided and, hence,
(weakly) isometric. For each w € Sign (X) with w(e) = —1, let w' denote its neigh-
bour with w'(e) = +1. Since S, being lopsided, cannot intersect a 3-dimensional face
of H(X — {e}) in a 6-cycle, we infer that at least one of v’ v’ belongs to S, say
v, € S. Now, as v, is a common neighbour of s, t,,v_,v" € S outside S, the second
common neighbour of v/, with each of s;,%,,v_ must lie in S because S is weakly iso-
metric. Hence {s;,s" }, {t;,?,},{v_,v_} C S, and consequently, by weak isometricity
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of 8¢, we also obtain {s_,s" },{u;,u' },{t_,t" } C&. This, however, implies that S°
intersects a face of Sign (X — {e}) in a 6-cycle, contradicting lopsidedness of S¢.

To conclude the proof, we proceed by induction on #X. We have just shown that
S’ is weakly isometric for every f # e. Moreover, as S, and S¢ are lopsided, so are
(87)e = (S.)! and (87)¢ = (8¢)! by Theorem 3, Lemma 1, and (13). Therefore, by
the induction hypothesis, S/ must satisfy condition (iv) and hence (i), that is, S/
is lopsided for every f € X. Since § has already been shown to be connected, this
establishes (iv). O

7 Push Downs and f-Vectors

For a set S C Sign (X), the f-vector f(S) is the sequence (fo(S), f1(S),..., fu(S)),
where

f(8) =# (S | Y € X, #Y =1}

is the number of i-dimensional cubes in S. For convenience, put f ;(S) := 0. Let us
define the two facets of H(X) corresponding to e € X by

Hf :={te H(X) | t(e) = +1},

H, :={te H(X)|t(e) = —1}.

There are straightforward relationships between the f-vector of a lopsided set & and
the f-vectors of S, 8¢ and of SN H,SNH,,5¢:

(23) fi(S) = fi(Se) + fi(S°) + fi=1(S°),
foralli=1,2,...,n and
(24) fi(8) = fi(SNHD) + i SNH[) + fi—1(S°),

for all i = 0,1,...,n. Recall from [11, Theorem 2| (or by arguing with superisometry)
that lopsidedness is preserved under intersection with faces of H(X). Then from (24)
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and lopsidedness of the sets SN H}, 8 N H_,S¢ one infers by induction that the f-
vector of a lopsided set satisfies the Euler’s relation Y 5 ,(—1)"f;(S) = 1. Actually, one
can easily turn this property into a new characterization of lopsidedness:

Corollary 2. A nonempty set S C Sign (X) is lopsided if and only if
Y (CNfi(SnF) =1
i>0
holds for all faces F of H(X).
The proof for the converse is by induction, showing that under the Euler’s relation
S is isometric and S° is lopsided for every e € X, which proves that S is lopsided by
Theorem 4(iv).
We can now characterize lopsidedness of S in terms of the number f;(S) of edges

of the graph of S, in a way analogous to ampleness and sparseness (which involves the
number fy(S) = #S8 of vertices of this graph instead).

Theorem 5. For every set S C Sign (X),
D AHY Y € X))} S N(S) <Y {#Y Y € X(S)}

When S is connected, fi(S) attains the lower bound, or the upper bound, respectively,
if and only if S is lopsided.

Proof. To establish the inequalities, we proceed by induction on #X. First we con-
sider the upper bound for fi(S). Put X\(S) := {Y € X(S)|#Y = k}. The following
inequalities are obvious for any e € X:

f1(8) < f1(8e) + f1(8°) + #S7,
HT(S) > #TH(S,) + # T 1(S) for 1< k<.
Since #8° < #X(8°), by the induction hypothesis we obtain
fi(S) < fu(Se) + f1(S) + #X(S°)
< Sk #TS) 4 Sk HILS) + D ATS)

= Y k(#Xk(Se) + #Xk1(S9))

23



n—1 .
If equality holds, then fi(S¢) = > k- #X(S°), and therefore by the induction hy-
k=0

pothesis, S§¢ is lopsided for all e € 3(, whence S is lopsided by Theorem 4(iv).
To prove the first inequality, notice that

D A#YIY € X(8)} <) {#YIY € X(SNH,)}+Y {#Y|Y € X(SNH] ) }H#X(5%).

Since f1(S) = fi(SNH;) + filSNH) + #8°¢ and #8° > #X(5°), by the induction
hypothesis we obtain the required inequality. If equality holds, then necessarily #5¢ =
#X(8¢) for every e € X, whence each S¢ is lopsided. Again, by Theorem 4(iv) S is
lopsided, concluding the proof. O

Recall that every simplicial complex X over X is retrieved from the lopsided set
of its characteristic sign maps. There are typically many more sets S C Sign (X)
giving rise to the same complex X. For instance, every tree 7 with edges 1,2,...,m
(comprising the set X) can be regarded as a lopsided set of sign maps yielding X (7) =
{0,{1},...,{m}}. Namely, select an arbitrary vertex ¢t of 7 as its root, which repre-
sents the constant sign map with value —1; to any vertex s of 7 one then associates
the map that assigns +1 to the edges on the path from s to ¢, and —1 otherwise.

All lopsided sets with the same simplicial complex have the same f-vector. To
see this, proceed by induction on the cardinality of X. Pick e € X and let X be the
simplicial complex of the lopsided sets S and 7. Then X, is the associated complex of
the lopsided sets S, and 7., while X'¢ is the complex of §¢ and 7°. By the induction
hypothesis and (23) we immediately conclude that f(S) and f(7) coincide.

For a set system £ C P(X), the push down operation with respect to e € X replaces
in £ every set Y such that Y — {e} ¢ £ by Y — {e}; see [10]. The resulting set system
is denoted by L[el]. Analogously, we define the push down operation of a set S of sign
maps encoding £ and denote the resulting set by S[el] : for each s € S the value of s at
e is changed from +1 to —1 provided that the resulting sign map with the flipped value
was not yet in S. When a sequence of push downs is executed with respect to (not

necessarily distinct) elements ey, ..., ex € X, write L[ey, ..., exd] := Llerd][eal] - - - [exd]
for the result of this serial push down. For an enumeration ey, ..., e, of X, the system
Llel, ... exl], a complete (serial) push down of L, is a simplicial complex, because

Lley, ... en,el] = Lles, ..., e,l] holds for every e € X.
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For § C Sign (X), we have
(25) Slel]NH, 28, and S[el] N H = S°.

Thus the push down with respect to e allows to represent S, and &€ internally within
facets. More generally, for Y C X with Y = {ey,...,ex} # 0, let

Hf :={t€ H(X) | t(e)=+1foralle €Y},

Hy :={te H(X)|t(e)=—1foralle € Y}.

Then
8[61, Ce ,ekJ,] N H; = Sy,

Sler,...,exd] N HY = S,
Hence, for Z = {f1,..., i} # 0,

(26) (SZ)YgS[fl:"'aflaela---:ek\L]m(Hg)lta

(27) (SY)Zg8[615"-:ekaf17"'afl\lf]m(H)—/F)Ea

where (Hg);; = (Hy), constitutes the same face of H(X). Therefore, if the serial push
downs commute, then S is lopsided by Theorem 2(xiv). From Theorem 2(xv) and
the equalities (26) and (27) applied to Z = X — Y, one concludes that S is lopsided
if all complete serial push downs yield the same simplicial complex: Sley,...,e,l] =
Slex1)s - - - » )] for all permutations 7.

Proposition 3. For a set S C Sign (X) and e € X,
X(S) C X(S[ed]) € X(S[ed]) € X(S).

In particular, if S is lopsided, then S|el] is also lopsided such that X (S[el]) = X(S)
and

(28) SY[el] = S[el]” for Y C X — {e}
hold, whence S and S[el] have the same f-vector.
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Proof. The inclusion X(S) C X (S|el]) follows from the definition of the push down
operation, while X' (S[el]) € X(S) holds because

T(Sled]) = B(S.) U{Y U{e} | Y € T(S%)} € T(S). O

Proposition 3 implies that all lopsided sets having the same simplicial complex can
be obtained from each other by push down operations and inverse operations.

Let & C Sign (X) be lopsided. Then S[el]) is lopsided for each e € X by Proposi-
tion 3 such that X (S[el]) = X(S). From this equality we conclude that all serial push
downs yield the same simplicial complex X (S). Since intersections of lopsided sets with
faces of H(X) are always lopsided, it suffices to show S[e, fl]) = S[f, el]) in order to
establish commutativity. But as we may assume that X = {e, f}, this is now evident.
Hence we have established the following characterization of lopsidedness.

Corollary 3. For a subset S C Sign (X), the following assertions are equivalent:
(i) S is lopsided;
(ii) all serial push downs commute;

(iii) all complete serial push downs yield the same simplicial complez.

A simplicial complex X is said to be conformal if any set of elements is included
in a member of X whenever each pair of its elements is contained in a member of X.
Of course, a simplicial complex is conformal exactly when it is a median set system.
On the other hand, median set systems can be characterized among lopsided sets by
employing conformality:

Lemma 2. If £L C P(X) is a conditional antimatroid or a median set system, respec-
tively, then so is Lel] for each e € X.

Proof. Let M = m(Ly, Ly, L3) € L for some Ly, Ly, Ly € L. If M — {e} € L, then the
push down with respect to e leaves the median in L]el]. So assume M — {e} ¢ L. If
{i,7} € {1,2,3} with i # j and L; — {e}, L, — {e} € L, then

M —{e} =m(L; — {e},L; — {e}, Ly) = M —{e} € L for {i,5,k} = {1,2, 3},
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a contradiction. Therefore the push down applied to L1, Lo, L3 removes e in at least
two instances, so that the median in L[el] is M — {e} € L[el]. O

Proposition 4. The following statements are equivalent for a lopsided set S C
Sign (X) :

(i) S is a median set;
(il) #(S*NF) #1 for every 3-dimensional face F of H(X);
(iii) the complete push down of S is median;

(iv) X(S) is conformal.

Proof. The implications (iii) = (iv) and (iv) = (ii) are trivial, while (i) = (iii) follows
from Lemma 2. To establish that (ii) = (i) we proceed by way of contradiction. First
observe that condition (ii) is preserved under push downs. Indeed, suppose by way
of contradiction that S[el] intersects a 3-dimensional face F of H(X) along three 2-
dimensional faces as indicated in Fig. 5. Consider the 3-dimensional face F' = {s :
A(s',s) = {e} for some s € F}. Neither F nor F' is fully contained in S. Since S
fulfills the condition (ii), necessarily #(S N F) < 6 and #(S N F') < 6. Each 2-
dimensional face of S[el] N F is the push down of a 2-dimensional face of either SN F
or SN F'. Hence we may assume without loss of generality that S shares with F two
2-dimensional faces and with ' one 2-dimensional face. This face share edges with two
another 2-dimensional faces of S each intersecting both F and F'. As a result, these
three 2-dimensional faces will generate the forbidden configuration. This establishes
our assertion.

Now, choose a lopsided set S satisfying (ii) such that sq,ss,s3 € S have their
median ¢t in §* with the distance sum k& = D(t, s1) + D(t, s2) + D(t, s3) being minimal.
If £ > 3, by minimality of k& there must be a neighbour ¢’ € §* of t on the way to one of
S1, S, 3, that is, t' € [t, s;] for some i. Let A(¢,%') = {e}. Then t' is the median of the
three images of s1, o, s3 under the push down relative to e, yielding a smaller distance
sum, contrary to the minimality of k. O
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FIGURE 5. Obstruction to medianness in lopsided sets

Conformality of X'(S) along with properties of lopsided sets (such as #8 = #X'(S))
constitute the gist of the results from [4, 8] on median sets S.
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Figure legends

FIGURE 1. Obstructions to lopsidedness.

FIGURE 2. Two complementary isometric 8-cycles that are not lopsided.

FIGURE 3. The conditional antimatroid of all partial orders on {1,2,3} represented
by their characteristic sign maps; cf [5, Fig.3].

FIGURE 4. Schedule for the proof of Theorem 2.

FIGURE 5. Obstruction to medianness in lopsided sets.
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FIGURE 1. Obstructions to lopsidedness.

F1GURE 2. Two complementary isometric 8-cycles that are not lopsided.
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1<3<2

2<3«1

FIGURE 3. The conditional antimatroid of all partial orders on {1,2,3} represented
by their characteristic sign maps; cf. [5, Fig. 3].
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