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The notion of Fourier type and cotype of linear maps between operator spaces with respect to certain unimodular
(possibly nonabelian and noncompact) group is defined here. We develop analogous theory compared to Fourier
types with respect to locally compact abelian groups of Banach space operators. We consider the Heisenberg

group as an example of nonabelian and noncompact groups and prove that Fourier type and cotype with respect
to the Heisenberg group implies Fourier type with respect to classical abelian groups.
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1 Introduction

The reason why we have to consider vector-valued anlaysis are apparent nowadays because they provide new
points of view to several important problems such as partial differential equations, nonlinear functionals and
stochastic counterparts of derterministic problems. Thus, many researchers have been extending classical the-
orems such as Hausdorff-Young inequality([1, 8, 16]), boundedness of Hilbert transform([3, 17]), Fourier
multiplier theorem([23]) and Hardy inequality([2]) to vector-valued settings. Note that all these results are based
on commutative harmonic analysis. Since honcommutative harmonic analysis is getting more and more impor-
tant, it is very meaningful to consider its vector-valued version.

In this paper, we are going to concentrate on vector-valued Hausdorff-Young inequality on certain unimodular
groups. If we look back Banach space theory, we have Fourier type with respect to locally compact abelian
groups introduced by J. Peetre in [16] fRrand by M. Milman in [15] in general case. A Banach spacés
called Fourier type, for 1 < p < 2, with respect to a locally compact abelian gradpf, 7, the X-valued
Fourier transform of@7 is a well-defined bounded linear operator frdm(G, X) to L, (@, X) whereG is the
dual group ofG. The definition for operators is a simple extension of this. A Banach space op€rafér— Y
is called Fourier type with respect td7 if the F¢ ® T' is extended to a bounded linear operator frbpiG, X)
to Lp/(& Y') whereF¢ is the Fourier transform ofy. See [1, 4, 8, 12] and [17] for further information.

For the case that the underlying groGpis compact(possibly nonabelian), the notion of Fourier type and
cotype with respect t6: is given by J. Garsia-Cuerva and J. Parcet in [9] in the framework of operator spaces,

a noncommutative analogue of Banach spaces. In [9], they used vector-valued Haussdorff-Young inequality on
compact groups to measure how nice structure an operator space has with the help of representation theory for
compact groups. We want to extend this definition to some noncompact groups including all locally compact
abelian groups and compact groups by slightly different approach not using representation theory. However, if
we restrict our definition to the case that the underlying group is compact, it is equivalent to the definition in [9].

This paper is organized as follows: In section 2, we collect well known facts about vector-valued noncom-
mutative L, -spaces, locally compact groups and Fourier analysis on unimodular groups. In section 3, we define
Fourier type and cotype of linear maps between operator spaces with respect to certain unimodular groups and
we investigate some basic properties. In section 4, we restrict our attention to abelin groups and extend results in
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Banach space setting to operator space setting. At the end of this section, we pose a compatibility problem be-
tween two Fourier notions. In the final section, we consider the Heisenberg group as an example of noncompact,
nonabelian unimodular group. Since the Heisenberg group has a simple structure of representations, we give
alternative equivalent definition of Fourier type and cotype using representation theory. Finally, we investigate
relationship between Fourier notions with respect to the Heisenberg grouf and

2 Preliminaries

2.1 Noncommutative vector-valuedL,-spaces

In this section, we collect some materials we need later about noncommutative vectord/gisggaices mainly
adopted from [18] and some of their modifications. For the general information about operator spaces, see [6].
First, we define noncommutative vector-valuggspaces in the category of operator space. These definition are
based on the following decomposition of vector-valdgdspace:

Lp(X) = [Loo(X), La(X)]1 = [Loo @ X, Ly @y X]1,

1
where®, (resp.®,) is the injective(resp. projective) tensor product in Banach space sense.
Definition 2.1 Let FE be an operator space and= N.

(1) We defineS? (E) := S @min E and S}(E) := SPRE. Forl < p < oo, we defineS) (E) :=
(S5 (E), ST (E)] 1.

1
P

(2) Let(£2, A, u) be a measure space. Then we define

Loo(pt; E) == Loo(1t) @min E

and
Ly(p, E) = L1 (1) ®E.

If 1 <p < oo, wedefinel, (i, E) := [Loo(it, E), L1(E)]1.
(3) Letp be a semi-finite normal faithful trace on an injective von Neumann algebr@ihen we define
Li(¢, E) == Li(9)®FE,

and forl < p < oo, we define

LP(SDaE) = [M Qmin E7L1(§03E)]

S

If p= oo, wedenotd? (p, E) = M @,in E.

The followings are basic properties related to noncommutative vector-vdlyespaces that will be used
frequently in the sequel.

Proposition 2.2 Let £ and F' be operator spaces antl’ and N be hyperfinite von Neumann algebras with
faithful normal semi-finite traceg and+) respectively.

(1) Letl < p < oo. Alinearmapl’ : E — F is completely bounded if and only if
sup HIS;L T :S)(E) — SS(F)H < 00,
and we have
e :SUPHIS;} ®TH .

L(Sp(E),Sp (F))
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(2) (Fubini type theoremd)et1 < p < oo. Then for any measure spa¢@, A, 1) andn € N, we have
completely isometric isomorphism

Ly(p, Sy (E)) = 55 (Ly(p, E)).
Similarly, we have completely isometric isomorphisms
Lp(, Lp(¥, E)) = Lyp(¥, Lp(p, E)) = Ly(p @ ¢, E),

wherep ® 9 is a faithful normal semi-finite trace of the von Neumann algebra tensor prddaciv which
is hyperfinite also.

(3) (Duality)Letl < p < co. The natural embedding froth, (¢, E*) into L, (¢, E)* is completely isometric.
Furthermore, for anyf" € L, (¢, E) ande > 0, we haveF' € L,/ (y, E*) with norm1 such that

IFN L, pry < (1+e)(F,F).

(4) (Minkowski type inequalitylet1 < p; < ps < co. Then for any measure spa(®, A, 1) andn € N, the
natural map fromZ,, (11, Sy, (E)) into Sp, (L, (1, £)) is complete contraction. The same statement holds
if we replaceu into a faithful normal semi-finite tracg of an injective von Neumann algehbid.

(5) Letl <p < oo. Foranyf € L,(¢q, F) we have

1AL, eerene < WL, e,y < MFll2, (pore, 5 -

Particularly, for f @ z € L,(¢) ® E we have
15 ® 2y, ey = 111z, oo 1l -

Proof. See chapter, 2 and3 of [18] for the proof of (1), (2) and (5). The hyperfinitenessdf means
that M = UM, (weak -closure) wherél/,, is a net of finite dimensional-subalgebra directed by inclusion. Let
©q be the restriction o to M,. Then we have a complete isometty (¢, E*) = L,(pq, E)*(isometry, in
the Banach space setting). Thus we get (3). For (4), we only have to recall the fact that the natural map from
E1®(E2 Qmin E3) iNto (E1®E2) ®Rmin E3 1S @ complete contraction(contraction, in the Banach space setting)
for any operator spacds,, F» and E3(chapter 8 of [6]). O

Remark 2.3 We need the injectivity oft/ in Definition 2.1 to assure thdt?, (¢, E) and L (p, E') are com-
patible each other for the complex interpolation. See chapter 3 of [18] for the detail. The hyperfiniteness used in
the above proposition is implied by the injectivity([5]).

2.2 Weil's formula

In this section, we consider Weil's formula about quotient spaces and its modification.

Proposition 2.4 (Weil's formula) Let G be a unimodular group and/ be a closed subgroup @ which is
unimodular also. For any Haar measurgs; and ug on G and H, respectively, there exists a (unique up to
constant)G-invariant Radon measure., ; on G/ H such that for every € L;(G) and lower semi-continuous
f:G—10,00]

[ t@dno@) = [ [ fahdun(bduc (o),
G G/HJH
Proof. See p.57 and p.62 of [7] and [20]. O

Although the integral form of Weil's formula looks similar to Fubini’s theorem, it is not exactly Fubini’s
theorem. Therefore, we need additional condition in order to reduce it to Fubini’'s theorem.
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Proposition 2.5 (The Borel selection lemma)et G be a second countable locally compact group d@ha
closed subgroup af. Then there exist a Borel sdt C G such that4d meets each coset &f at exactly one point
and the following two functions are measurable bijections:

gla:ACG—G/H, ¢:AxH —G.
a— aH (a,h) — ah

We call A a Borel selection fo whereq is the canonical quotient map fro6i onto G/ H.
Proof. Seelemma 1.1 and 1.2 of [14]. O

Remark 2.6 If we give a measurg 4 on A induced byg| 4, then we have the following for Borel sefs5C A
and K C H with finite measure:

/ 13(0)1K(f)dMH(§)duA(a)=/ / Loy (aH )1k (&)dpum (§)dug m(aH)
AxH G/H JH
:/ /1q(B>(GH)1K(h€)dﬂH(§)duG/H(aH)
Ja/u JH

— / (1p x 1g) 0 ¢~ (2)dpc(z)
G

wherelp x 1x(a,&) = 1p(a)lx () fora € Aand¢ € H.
Thus¢ becomes a measure preserving map betwder H, u4 X pg) and(G, ug).

2.3 Fourier analysis on unimodular groups

In this section, we present summary of Fourier analysis on unimodular groups adopted in [13] and [21]. For
general information about locally compact groups and abstract harmonic analysis, see [7] and [11].
For a locally compact abelian grodp the Fourier transform of € L, (G) is defined on the dual groug by

EOR /G @)y (@)dx

fory € G. Whenf ¢ Li(G)NLa(G), D : [ +— f¢ is an isometric map intaLQ(é) which can be extended
to an isometry betweeh,(G) and Ly (G). Furthermore M/, the multiplication byf“ on Lo (G) is unitarily
equivalent viab to L ¢, the convolution withf on Lo (G) which is given byd L ;& ~! = M. Thus if we identify

fG with M;q, we get another Fourier transforfry. Since non-abelin groups do not have their dual groups, we
use this Fourier transform in our formulation.

Let G be a unimodular group which means that the left Haar measuteanfd the right Haar measure @f
coincide. Forf € L,(G), we write L, for the left convolution byf acting onLs(G) by:

Ly(g)(x) = /G Fw)gly 2)dy

forall g € Lo(G). Let VN(G) be the von Neumann algebra generated{by } s, (). This VN(G) is
called the group von Neumann algebra®fand is equal to the von Neumann algebra generateffhy,.cq,
whereL, is the left translation acting oh2(G) by L,(g)(z) = g(a='z) for all g € Lo(G). Then we have a
unique faithful semifinite normal traces(simply ¢) on VN (G) which satisfies the following: Iff € L,(G)

is continuous and positive definite then we hdvec Li(y) andp(Ly) = f(e) wheree is the identity ofG.
Whenf € Li(G) N Ly(G), Fe : f — Ly is an isometric map intd.» () which can be extended to an isometry
betweenl,(G) and Ly (). Furthermore, we have fourier inverse transform defined faF'al L, (¢) by

Fo H(F)(z) = p(L;F)
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for = € G. Then we have thaF; ' (F) € C.(G) and bounded by F||,, and also we have Parseval’s formula
as follows: Letf, € Li(G) andF, € Ly (). SetF;, = Ly, andf, = F ' (Fy). Then we have

(Fy, Fy) = p(Fy"Fy) = /G (@) o) da.

Remark 2.7 (1) In the case thaf? is abelian,(VN(G), ) is equivalent as a von Neumann algebra to
Lo (G) with the usual integration on the dual groGiof G under the mappind ; — f©.

(2) In the case thafr is compact, we consider the dual obj&lwhich consist of all equivalence classes of
irreducible unitary representations@f and we define Fourier transform by

fﬁﬂ=4ﬂ@ﬁ@w

for f € L1(G) andr € G. Let

Lo ={Fc¢€ H Ma, @ sup [[F"|| gar < o0},
TrEé neé
whered, is the dimension ofr. Then this is equivalent as a von Neumann algebrd/(G), ¢) under
the mappingL ; — f€ with the following tracey):

B(F) = 3 detr(F)

TrEé

for appropriate positivé” € [[__a Ma, . For the proof, see [13].
Now we present Plancherel’s theorem and Hausdorff-Young inequality in the category of operator space.
Theorem 2.8 Let G be a unimodular group.

(1) The Fourier transforn¥¢ is a complete isometry betweén(G) and Ly (¢¢).

(2) For 1 < p < 2, F¢ is a complete contraction from,(G) into L,/ (pg) and its inverse transfornfs ' is
a complete contraction from, (¢ ) into L,/ (G) wherep’ is the conjugate exponent pf

Proof. Note that it is already known th&k; is an isometry betweehs (G) and Ly (@) in [13]. By (1) of
Proposition 2.2, we need to consider

Isy ® Fg : S3(L2(G)) — S5 (La(pc)).

Since we have complete isometrif8(L2(G)) = Lo(G,S%) and ST (La(va)) = La(va, Sy ), and Sy is a
Hilbert space, we have that, © F¢ is contractive, which means th#t; is completely contractive. Since the
same argument works fof; ! we get ().

For the proof of (2), we considefs : L1(G) — VN(G), then we have thaF¢ is a complete contraction
since the source spacelis-space, which has maximum operator space structure. Simifagly; : L, (oq) —

L. (G) is a complete contraction since the target spade.isspace, which has minimum operator space struc-
ture. O

3 Fourier type and cotype with respect to certain unimodular groups

In order to define Fourier type with respect a unimodular gr@upve need some technical assumptiongton
Since we have to consider vector-valubgl space comes from the group von neumann algéhhgG) and
its natural tracep;, we need injectivity o N(G) by Remark 2.3. Fortunately, & is amenable or second
countable and connected thenV (G) is injective([5]). Thus we can include all locally compact abelian groups,
compact groups and connected Lie groups.

From now on, letz be a unimodular group with injectv N (G) andT : E — F be a linear map between
operator spaces, and jebe the numbet < p < 2 andp’ be the conjugate exponent @f Now we provide the
definition of Fourier type and cotype.
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Definition 3.1 (1) T is said to havé&r-Fourier typep if
FG@TLP(G)(@E—)LP/(@G)@F

extends to a completely bounded map frép(G, E) into L,/ (¢c, F)(if p’ = co we considel? (¢q, F))
and in this case we denold'| 7Z,¢|| := || Fe¢ @ T,

(2) Tis said to haves-Fourier cotype’ if
F@T:Ly(pc) ®E — Ly(G)@ F

extends to a completely bounded map frbpi, E) into L, (G, F) and in this case we dendt@| FCS
l76 " @ T,
In particular, we say that an operator spdcéasG-Fourier typep(resp. G-Fourier cotypey’) if Ig, the
identity operator orE, has.

Remark 3.2 Let G be a compact group. We define

L, ={Fe ] Ma, : [Zdﬂum\ggﬂr < o0}

ﬂEé TrEé

and

Sl

< o0}

£o(B)={F € [T Ma, : [ 3 de IF" g0 |
71'6@ Treé

for any operator space E and< r < oo, whereG is the dual object o7. Since we have a complete isometry
LY (pG) = Loo; Ly — f¢ (Remark 2.7), we get a complete isomekry(pi) = £1; Ly — f¢ by the inversion
formula. Thus by the extension properties of tensor products in operator space, we have complete isometries
Lo (¢c,  E) = Loo(E) and Ly (¢g, E) = L1(E); Ly ® v — f¢ ® z for x € E. Consequently, we get a
complete isometry.,. (¢, F) = L,.(E)(1 < r < oo). This implies that the definition of Fourier type and cotype
in this section is equivalent to those in [9] when the underlying group is compact.

Every linear map that has Fourier type or cotype is completely bounded and every completely bounded map
has Fourier typé and cotypex as in the usual type, cotype theory.

Proposition 3.3 (1) If T hasG-Fourier typep, thenT' is completely bounded with
-1
||T||cb < H]:G||LP(G)—>LP/(§00) ||T|‘F7;)GH ’
and if T" hasG-Fourier cotypep’, thenT is completely bounded with

I < |7 @ IT17es

1 —1
HL?(‘PG)"L;/

(2) If T is completely bounded, thefi has G-Fourier type 1 and G-Fourier type co with ||T|FTC|| =
|TIFCE| = 1Tl 4
Proof. For the proof of (1), assume thAthas G-Fourier typep, then by the definition we havés ®
T : L,G,E) - Ly(pa,F) is completely bounded, which meam_s;/ ® (Fe@T) : Sy(Ly(G,E)) —
Sy (Ly (pa, E)) is uniformly bounded for all positive integerby (1) of Proposition 2.2. Note thal, (L, (vc, F))

is completely isometric td., (g, S (E)) by (2) of Proposition 2.2. Then for any € L,(G) and(z;;) €
M,(E), (f ® z;;) is mapped td; ® (Tz;;) and we have

1Ll e I(T5)]

S;‘,(F) = ||Lf ® (Tx’ij)HLp,(@G,S;/(F))
< |ITIFTENNI @ 2illgn, i, (6,m)
< |TIFLE If @ (ﬂfij)”Lp(G,S;,(E))

= TIFLE N1 f Iz, e 1Cii)llse, () »
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by (4) and (5) of Proposition 2.2. Since we taKerbitrarily, we get the desired result. The same argument
applies for the cotype case also.

For the proof of (2), it is sufficient to assume tiatis a complete contraction. Then singe; : L;(G) —
VN(G) is also a complete contraction, their tensor prodBgt® T extends to a complete contraction from
Li1(G)®E into VN (G)®F. Since the canonical embedding frafdV (G)&F into VN (G) @i, F is completely
contractive, we get a complete contractibp @ T : Ll(G)<§>E — VN(G)®minF. Thus we can say that has
G-Fourier typel with || T|FZT,%|| < 1. If we apply (1), then we get the desired equality. Similarly we can say
thatT" hasG-Fourier cotypeso with || T|FCS || = 1. O

Remark 3.4 By the definition, it is trivial that Fourier type and cotype norms of linear maps between operator
spaces have ideal properties as follows: Gedbe a unimodular group with injectvE N (G) andT : E; — Es
andS : E; — Ej3 be linear maps between operator spaces. Then we have

ISTIFTE < 180, [ TIFT7]]

and
ISTIFTE || < 1Tl [|SIF T -
We have the same inequalities for the cotype case also.

The simplest examples of spaces with Fourier ty@nd cotypep’ is L,-spaces, and Fourier properties get
better as the exponent get closeto

Proposition 3.5 (1) Let(Q,.A, 1) be a measure space agdbe a semi-finite normal faithful trace on a von
Neumann algebrdZ. ThenL,(x) and L, () hasG-Fourier typep and G-Fourier cotypep’.

(2) Letl < p < q < 2. ThenG-Fourier typeq(resp. G-Fourier cotypeq’) impliesG-Fourier typep(G-Fourier
cotypep).

Proof. For (1) we consideks(u)(resp. La(y)) first. If we give the natural OSS ohy(u)(resp. La(v)),
it is G-Fourier type and cotyp2 by the same argument in the proof of Theorem 2.8. Then sin¢g)(resp.
L1(y)) hasG-Fourier typel and L. (u)(resp. Lo (p)) hasG-Fourier cotypeso(Proposition 3.3), we get the
desire result by interpolation. (2) is obtained similarly. O

Remark 3.6 For the best case, Fourier tygeand cotype2, we only have characterization for spaces for
restricted class of groups. In [10], they proved noncommutative Kwapien’s theorem, which says that for every
infinite compact groug, an operator space with-Fourier type2 and cotype2 is completely isomorphic to an
operator Hilbert space.

We have duality relationship of type and cotype as follows.
Theorem 3.7 LetT : £ — F be alinear map and™ is the adjoint ofl". then we have the followings:

(1) T hasG-Fourier typep if and only if 7* hasG-Fourier cotypep’ with the same norm;
(2) T hasG-Fourier cotypep’ if and only if7* hasG-Fourier typep with the same norm.

Proof. We only prove ‘only if’ part of (1) since others are obtained similarly. Now it is sufficient to prove
that
1T Fg' (Ai)]

I TIFTE| - 11(Aiz)

S (L (GE)) S sz, 2y (o)) -

By (3) of Proposition 2.2, for any givenwe have(f;;) € S}'(L,(G, E)) with norm1 such that
17 ® F& (Al su, (1, 6,y < L+ T @ Fg' (Aig), (fig)-

Since(T ® F&)* =T* @ F;', andT @ FC(f;;) € S2(Ly (¢c, F)) we have
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T ® Fg'(4ij)] (L, (G,5%)) <(1+){(Ai), T @ FE(fi))
<A+ A sn, 1, (g6, 1T ©FFislllsy iz, (o)
<(1+e¢) ||(Aij)‘|sg,(Lp(¢G7F*)) ’ ||T|-7:7;GH ’ ||(fij)‘|sg(Lp(G,E))
=1+ 9N (Al (1, ey - [ TIFTE
Sincee > 0 can be chosen arbitrarily, we get the desired result. O

3.1 Transference principles

In this subsection, we consider general transference principles. The first one is about direct product of groups.
We begin with two lemmas, and the second one will be used later.

Lemma 3.8 LetG; and G2 be unimodular groups with injectié N (G1) andV N(G2). ThenT has(G; x
G)-Fourier typep(resp. cotype’) if and only if 7o, ® T hasGs-Fourier typep(resp. cotype’) with the same
norm.

Proof. We haveV N(G; x G2) = VN(G1)®VN(G2) and g, xc, = ¢c, ® ¢a,. Then by (2) of
Proposition 2.2, we havk, (G x G2, E) is completely isometric td., (G2, L,(G1, E)) and Ly (v, x sy, F)
is completely isometric td.,/ (¢, , Ly (va,, E)). SinceFg, xa, = Fa, @ Fa,, we have

HT|‘7:7;G1XG2H = ||fG1XG2 ®Tch = ||fG2 ®'7:G1 ®T”cb = HfGl ®T|f7;7G2|| .
The proof for the cotype case is the same. O

Lemma 3.9 LetG; and G4 be unimodular groups with injectivE N (G1) andV N (G2). Suppose that there
exists constant’ > 0 such that
|ITIFL || < C|ITIFT |

for all T with G-Fourier typep(1 < p < 2). Then we have
ITIFT7>C | < C||T|IFT |
for all T with (G1 x G)-Fourier typep. The same result holds for cotype case.

Proof. By our assumption and Lemma 3.8, we have that
ITIFL=C| = |79 o TIFT| < Cf|F @ TIFT | = O || TIFT7 .
The proof for cotype case is the same. O

By Lemma 3.8, we have the following relationship between Fourier properties when we consider direct product
of groups.

Theorem 3.10 LetG; andG be unimodular groups with injectiié N (G1) andV N(Gs). LetT : By — E»
andS : E; — F3 be a completely bounded linear maps between operator spaces. Then we have

W) TIFLE < 1P 15 oyt () ITIFTEC2

1 (pG,y

<|7a) ;

@ ||riFeg:

G1xG
[717c5 <"

—1
PRI TR

@ [|STIFT? | < |TIFR | ||SIFT,72:

@) ||sTiFcg e

< HT|fC§1

|s17cg
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Proof. By the previous lemma, we have
ITIFE || = 176, @ Tlley < 17621262 1,0 () [1Fer © TIFT
= 7.l 61, (pop ITIFT ],
and we have
ISTIFT || = |[Fa, @ STIFT || = ||S(Fe, © TIFT|
< |SIFT |17 @ Tl = [|SIFT2HITIFT
by Theorem 3.4. This proves (1) and (3). The proof for (2) and (4) is similar. O

Theorem 3.10 says that Fourier properties behave well with respect to direct product of group. That leads
us to further investigation about the case that groups are combined by weaker relationship, but we only get the
following restricted results.

Theorem 3.11 Let G be a unimodular group with injectiv€ N(G) andT : E — F hasG-Fourier type
p(resp. cotype’).

(1) Let H be an open subgroup 6f with injectiveV N (H ). ThenT has H-Fourier typep(resp. cotype’) with
).

(2) Suppose that is second countable and I8t be a compact normal subgroup@fwith injectiveV N (G/H).
ThenT hasG/H-Fourier typep(resp. cotype’) with

1717 | < | TIFLE| (resp- || 17,

< ||T|Fcs

HT|f7;G/HH < ||T|FTE|| (resp. HT|fc§/HH < ||T1Fes|).

Proof. (1) First of all, since the restriction of a Haar measuré ¢ H is also a Haar measure &f, H is
also unimodular. Now we prove our theorem by showing that several specific maps are complete contractions.
Let @, and¥, for 1 < r < oo be given by:

@, Ly (H) — Ly (G), ¥, :L(G) — L.(H)
fef g glu
wherefis the extension of to wholeG by giving 0 outsideH. Let ¢,- andi),. be given by:
¢r 2 Le(on) = Lr(c), ¥r: Le(pa) — Lr(om)
Ly Ly Lg = Ly,

wherefis the extension of as the above. If we can show thef @ Iz, ¥,y ® Ip, ¢, ® I andy, ® Ir are
complete contractions between corresponding vector-valued Lebesgue spaces then the proof is dugrsince
andF ;' ® T factorizes as follows:

LP’(SOHv F)

%@El Twp/@mw

L,(H,E) Z22%,

Ly,(G,E) Foor Ly (va, F)

and

FleT
LP(SDHaE) =

¢p®1EJ( T\PP/Q@IF

LP(@GﬂE) LP’(GaF)'

LP'(H>F)

-1

FleT
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12 Sh. First Author: Fourier-unimodular

First we considet?, ® Ir and¥,y @ I . Itis easily seen thab,, ¥, ¥; and¥, are contractive. Since their
source and target spaces drg and L;-spaces, we have that they are complete contractions, and consequently
so ared,, ® Ig, Vo, ® Ir, ®; ® Ig and¥; ® Ir by extension properties of injective and projective tensor
products in operator spaces. Then by interpolation, we get complete contrakfion$z andV,, ® Ir.

For the next, we consider, ® Iz andiy,, ® Ir. Note thatS?, C L£(S%). Then we have fof € C.(H, S)
that

) 2
HIS;LO ® ¢OO(Lf>||Mn(VN(G)) - HLf‘ Lgo((pG15'n) ”g”L S(G S")<1 HLf g ’ L2 (G)
2
= sup gy~ Ly )dy dx
llgll,<1 Sz
2
gy tx)dy|| dx
||9H <1 Sy
2
— sup / H/f gy o)dy|| e,
lgll. <1 Fy sy

where M, (-) meansn-th matrix level([6]), and the last equality is obtained when we apply Weil's formula for
the right Haar measure which is the same with left Haar measure by the unimodulafity Dus if we set

g:(y) = g(yx), then we get

2

1Zsn, ® S (L3 vy = ”;lung/ H/ F@)ga(y™E)dy . d¢
2 Hzx
< e 1L vy 3 / g @I, dy
glla

= | s”up ”Lf”M (VN(H)) HQHQ < ”LJ‘”M (VN(H)) "

9lla
Since suchL's are dense i/, (VN (H)), we get a complete contractian, by (1) of Proposition 2.2 which
means that so 8., ® Ig.

Also we have foly € C.(G, S7.) that

2 2
HISQO ®¢°° HM (VN(H HLQ‘HHLQO(¢H,S];O) Ikl S(I;Iln)<l HLQ‘H(h)HLQ(H7S;")
2

= sup /H/ gl @)h(y™ z)dy
inl,<iJm || a

2
dx

n
S5

2
= sup / /g(y)h(y’lx)dy dx
Inl,<tJe /e Sp
< g 8o
s 1Ll 3, v ne La(Go2)

< HLg”Mn(VN(G)) ’

where is the extension of with 0 outsideH. Thus we get), is a complete contraction, and sajis, @ I.
In the case ob,, for any f € C.(H, ST"), we have

T Y g9
sy © o1 (L)1 oest) = 127 1, oo IEallg <) i
< s e < Il s -

2

el <
LY, (o5
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The first inequality is by the above result abaut. Thus we get a complete contraction ® Iz by the same
argument as above which leads by interpolation to a complete contragti®an .

Similarly, we have foly € C.(G, S7) that

1Zsy ® ¥1(Lo)ll g5y = I Eotin Ly orrsp) = Ehllg qon s <1 (Lot L)
< sup [(Lg, Lz)| < 1Ll L, (pes7) »

<1
LY (pg,5m)=

whereh is the extension of. to wholeG in the same manner we exterfid The first inequality is by the above

result aboutp,. Thus we get a complete contractign ® Ir by the same argument as above which leads by
interpolation to the complete contractigy ® Ir.

(2) SinceH is compact, it is unimodular. Thus by Weil's formula we can easily show ¢hatl is also
unimodular. Now we follow the same procedure as the above.d.et L.(G/H) — L,.(G) be given by

@, (f)(z) = f(z) = f(zH) forz € G, and let¥, : L,(G) — L,.(H) be given by
V(Path) = f(aH) = [ Fla)dn

forl1 <r <ocoandx € G. Let¢, : L,(pn) — L-(G) be given byp, (Ly) = L wheref(z) = f(zH) for
z € Gandy, : L,(pc) — Lr(¢n) be given by, (L;) = Ly where

faH) = [ Fahydn
H
forl <r < ocoandz € G.

We can easily see thét,,, V,, ¢; and¥; are contractive. Thus we get complete contractibps /5 and
V¥, ® Ir by the same reason as in the proof of (1).

Next, we considet, ® I andy, ® Ir. Let A C G be the Borel selection of the canonical quotient map
q: G — G/H asin Lemma 2.5. By Remark 2.6 and Proposition 2.4, we havg foIC.(H, SI.) that

2
HISQQ & Qsoo(Lf)HMn(VN(G))

2 2
S L
H Mg ees2) gl o op) <1 79 La(G)
2
= sup g(ytz)dy dx
llgll<1 sy
2
sup / foq(a)g(h™*a™ a'W)dhda|| dh'dd’
lgll,<1/AJHIJAJH Sy
2
oq(a)[/ g(h_la_la’h’)dh]da da’dh’
HgHzgl ST
lslugl/ L4 5, v v /H/ (h™"ah')dh da}dh/
g

2

dx.
sz

<||LfHM (VN(G/H))  Sup / /g(h_ll‘)dh
allJu

lgllp, <1
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14 Sh. First Author: Fourier-unimodular

By applying Proposition 2.4, Lemma 2.5 and Remark 2.6 for right cosets, we have, for the Borel sdbeetiGn
of¢ :G— G/H,z — Hx

s, © doe (L) |37, vy
2
dh’] db

< ||LfH sup / / H/ h=th'b)dh
Mo (VN(G/H)) | - 2 )5 s

2
15wy 5w [ ] H / gb(h)dh‘ aw|
ol <18 Uw |/ s

< sl woiermy s [ ] [ ot
B H

llgll,<1

% dh]db

”LfHM (VN(G/H)) SUP / / ||g(hb)||§§,dh db
lgl,<1/8 L H ]

2
< Lt vt vnviaym) -

The first equality is due to the fact that— h’h ! is measure preserving, and the second inequality is by standard
Minkowski inequality. Thus we get a complete contractibg by (1) of Proposition 2.2 so that,, ® Ig is
completely contractive also.

Fors.,, we considerf~e C.(G,S%). Then we have

HIS;;O ®¢oo(Lf)H2

Mn(VN(G/H))

9 2
=1L l2e, (oo m.5m) = sup L5926/

HgHL2(G/H,S£L)§1

2
= sup / fleH)g(z "2’ H)dzH|| da'H
lallo<1 Sy || oy o
2
= sup / / {/ f(xh)dh}g(x_l '"H)dxH|| dz'H
lall <1 Joym ||[Jaym Ln .
2
/ /th (W rz='2'n)dhdzH|| dh'dx' H,
" olhzi Josm S |[Jom o

whereg(z) = g(zH). The last line is by the fact thdf is compact and(h~'z~'2'h') = g(z~'2’H). Since
191l 1,57y = 1191 Ly 1,55 DY Weil's formula, we have

2

Ien ® 6oe(L+ H = sup
H n ( f> M,(VN(G/H)) l9llLy(c,sp) <1/ G

‘ 2

Y)g(y~to)dy||  da

sy

< HL; .
Mo (VN(G)

Thus we get another complete contractiop ® .

For ¢; ® Ip andyy ® Ir, we can show that they are completely contractive by the same argument as in
the proof of (1) using the previous results abgyt andv.,. Then by the interpolation again, we get complete
contractionsp, ® Ir andy,, ® Ir. This proves (2). O

4 Fourier types with respect to abelian groups

In this section, we are going to focus on abelian groups. Since we have many results for locally compact abelian
groups in Banach space setting([1], [8] and [12]), our main theme in this section would be to extend those results
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into operator space setting. After that, a question about compatibility between operator space case and Banach
space case is presented. Note that we don't need to consider Fourier cotype when we deal with abelian groups
by Theorem 3.7 and the fact that Fourier inverse transform is essentially the same with Fourier transform with
respect to dual group. Furthermore, we only mention that we can prove stronger duality theorem analogous to
that in [12] by the same approach. Also note that by Remark 2&,i# abelian therL, (¢q, E) = Lp(é, E)
completely isometrically under the mappihg — fG, whered is the dual group of.

We present equivalence theorems between Fourier types with respect to classical abeliai gfoapdT.
In the proof, we use the same idea as in Banach space case and the same constant

Be=int (3|57 )
kEZL

for 1 < r < oo, which is found in [8]. Note thaB,. > 0for1 <r < cc andB, < By = 1forr > 2.
Theorem 4.1 LetT : E — F be alinear map between operator spaces. Then we havedady,

sin 6
0+ krm

@ || T

< |[riFr

—d R
< B, |77

@ |r1Fz

T4 —d
<Jrsr| <

1T

Proof. We only prove (1) and the case- 1, because (2) is implied by (1) and Theorem 3.7. For genkral
we can apply Lemma 3.9. Suppose tiiahasZ-Fourier typep. In order to check thdl’ hasR-Fourier typep,
we have to consider uniform boundedness of

Isn, @ (FR@T): Spi(Ly(R, E)) — Sp(Ly (R, F)).

Let fi;(t) = > nez Lims, (m+1)s) ()2 wherez®) € E andé > 0. Then we have

—2mid
f Z e—2‘n’zm55 I—e ™ Sxij
©j =, 2mis m
m
and
’ p’
—~R_||P b1 sinms [? ij\ —2mims
H(Tfij ) L msnin =4 — Z(Tmm)e ds
' (R.S7, () R mez S0 (F)
, »
s 11 sinws |? Z (Txij)efzmm(s+k) ds
0 (s + k) "
keZ meZ

Sn (F)
o

ds
s (F)

Z (Tx%)e—%rims

meZ

1
< 5?’—1/
0

<o | TIFTH H("’”%)HZ;(LP(Z’E» '

Z ..
Ly (B,57 (E)) < | TIFTE Ly

—R .
Thus we ge”(Tfij )H )| 57, (Ly(R.E)) if we prove

(4.1)

1(fi5)]

sn ey @y = 7 @ (0, -

Since functions like f;,) is dense irS;L, (Lp(R, E)) we get the left inequality of the theorem.
Now we prove(4.1). ConsidertI) : L.(Z) — L (R) and¥, : L.(R) — L,(Z) given by®,.((an)nez) =
> nez Lns,(nt1)5)an and W, j("ﬂ t)dt forall 1 < r < co. ltis easy to see thatd || =
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16 Sh. First Author: Fourier-unimodular

[Ueo| =1, [|®1]| < & and||¥,]| < 1 so that they are completely bounded with the same c.b. norm since source
and target spaces afg, andL;. Thus we have thab,, ® Ig, ¥, ® Ig, 1 ® [g and¥; ® Ig are completely
bounded with the same c.b. norm so that by the interpolation we get completely boundel, mapz and

U, ® Ip with [|®, ® Ig],, < 5» and||¥, ® I, < 5% . This proveq4.1).
For the right inequality, we consider

Isi, ® (FE @ T) : Sp(Ly(Z. E)) — Sp(Ly (T, F)).

Let fi;(t) = > ez Lim,(m+1)) (£)2k . Then we have

+—R —2mims 1— e 2ms i
fij (8)= Z e? W%ﬁ
MmEZ
and
R (P sinms|? Y
Tfi' :/ Tx:rjz e—27rims ds
H( i) L (R,ST, (F)) | Ts mze:Z( ) s ()
p/
sinms v’ v
T:cij 6727Tim(s+k) ds
| Sl e
m S7 (1)
1 P
> By, / > (T e 2mims ds.
0 MEZL SZ’(F)
Thus we have that
—Z _R P
7ol < B! \ Tfi )|
) Lp/(]R,S;,(F)) v |l (RS (F))
IT\FTRH i s, 2, 2,0
R
7' ||| (a7)] ST (Ly(Z,E))
where the last inequality is biyt.1) with § = 1. This proves the second inequality. O

There is another equivalence relationship about classical groups.

Theorem 4.2 LetT : E — F be a linear map between operator spaces. hbe1l < p < 2 andyp’ is the
conjugate exponent @f Then we have faf € N,

@ ||7iFze

= |TI777

@ |riFz

= |77

Proof. We only consider (1) andl = 2 case for the same reason as in the previous theorem. Biee
Z x 7 we have||T|FTZ|| < HT|J—'7;Z2 H by Theorem 3.10. For the converse inequality, consider

Iy, @ (Foz @ T) : Sp(Ly(Z2, E)) — S (Ly (T, F)).

Then for any(:z:ﬁ}") € S (Ly(Z?, E)) wherel <i,j <nandl < |I|,|m| < N for N € N we have

p/

p/
/ / Tx%")ef%i(l“mt) dtds
L (T2,57(

1<‘l| |m|<N Sn’,(F)
P
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If we setM = 2N + 1, thenl + mM are distinct for alll < [I|,|m| < N and(e~?7""),,, < x has the same
distribution with(e‘%ith)‘mEN. Thus by the translation invariance and the previous observation we get

/

) Lopl . "
H(Txi;n) :/ / Z (szn)e—Qﬂl(ls+th) dtds
Ly (T2,87, (F)) 0 JO i<l lm|<N Sm(F)

1 1 v

:/ / Z (Txgn)e—2wilse—2wi(l+'rnM)t dtds
R (FETNENE 57, (F)
1 , } ,

=< ; ||T|]:7;>ZHP H(xé}nei%us)‘ Z;;,(L,,(Z,E))ds

= HT|‘7:TPZHP H(xé?l)ngg,(LP(Z?,E))'

The last line holds since we have complete isoméyZ?, E) ~ L,(Z, E); (z'™) +— (y*) wherey* = xr*)
for a bijectionp : Z — Z2. This complete isometry is obtained as in the proof4f) in Theorem 4.1. Since we
take NV arbitrarily we get the desired result. O

Now we compare two Fourier types with respect to a locally compact abelian grotine first one is Fourier
type of Banach space and the second one is Fourier type of operator spagebé atoperator space which has
G-Fourier typep in operator space sense. If we densté) as the first matrix level of, then

LO(G,E) = (Loo(G) @min B)V = Log(G) @3 BV = Lo(G, EW)

and
LG, E) = (I(G)RE)Y = Li(G) ®, EY = Ly(G, ED)

isometrically(chapter 8 of [6]), and consequerﬂ&)(G, E) = L,(G,EW)isometrically by interpolation. Thus
we have thaf(") hasG-Fourier typep in Banach space sense. This naturally leads us to the question that whether
the converse can be obtained or not.

Problem LetG be a locally compact abelian group and be a Banach space which h&sFourier typep
in Banach space sense. Can we give an operator space structuXevamich hasG-Fourier typep in operator
space sense?

We have trivial answer fgy = 2 case. If we give an operator space structur&oy (min X, max X)%, then
for X, G-Fourier type2 in Banach space sense med@n$ourier type2 in operator space sense. This is by the
fact thatX hasG-Fourier type2 in Banach space sense if and onlyifis isomorphic to a Hilbert space and for
a Hilbert spacé+, we have a complete isometfyiin H, max H)% ~ OHy whereO Hy is the operator Hilbert
space([19]). In the case that< 2, we could not answer at the time of this writing.

5 Fourier type and cotype with respect to the Heisenberg group

In this section, we concentrate on the Heisenberg group as an example of nonabelian and noncompact group.
Since the Heisenberg group is unimodular and connected Lie group, we have the definition of Fourier type and
cotype given in Definition 3.1. However representations of the Heisenberg group are well-known and easy to
describe, so that we can present another equivalent definition of Fourier type and cotype using representation
theory. The materials about the Heisenberg group which you will see in this section are mainly adopted from
[22], andS,.(1 < r < c0) means the Schatten-von Neumann class definetb@R™) from now on.

We define the Heisenberg groith, onR™ x R™ x R with the group law given by

1
('rayat)(v7wa3) = (a:+v,y+w,t+s+§(x-w—y~v)),
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18 Sh. First Author: Fourier-unimodular

where- means the usual inner producti®¥ andn € N. It is easily seen that the Lebesgue measluéydt on
R™ x R™ x R is both left and right translation invariant. This makés unimodular. By the Stone-von Neumann
theorem, we have a complete list of all irreducible unitary representatiofs, pbut we need only a part of it
here. For each nonzero reglwe define a unitary representation i by

(@, y, ) (€) = eMeNTEFTTY (¢ 4 y)

for ¢ € Lo(R™).
Now we define Fourier transform dfi,, as follows: for each nonzero realandf € L,(H,), ff=()) is the
operator acting o, (R™) by

P (A = / F (o tyma (2. ) ddt,
H,

wherez = (z,y) € C™.
The followings are Plancherel’s theorem and the Hausdorff-Young inequality for the Heisenberg group.

Theorem 5.1 (1) The Fourier transform on the Heisenberg group is a complete isometryZedifi,, ) onto
Lo(dp, Sy) wheredp(X) = (27) "' |A]" d) on the set of nonzero reak:.

(2) The Fourier transform on the Heisenberg group is a complete contraction fipfH,,) into L, (dy, Spr),
and the inverse Fourier transform is a complete contraction floy(dy, S,) into L,/ (H,,).

Proof. Note that it is already known that the Fourier transform on the Heisenberg group is an isometry
from Lo (H,) onto La(du, S2) in [22, 13]. For the extension to the operator space setting, we follow the same
procedure as in Theorem 2.8. O

One of the usual technic in analysis on the Heisenberg group is taking Fourier transform with respect to the
last variablet. Then we get the following integral transform:
If we denotef*(z) = [ €' f(z, t)dt, then we have

Flre = [ PEmE)eds
wherer, (z, y)p(€) = eM= 279 o (¢ 4 ), and this leads for us to consider another operator of the form

Wi = [ alem()d:

for functions onC".
When) = 1, we call this the Weyl transform and denote itB}(g). We have the Plancherel theorem for the
Weyl transform as follows:

IW(glls, = 2m)2 llgllL,cn -
Then by the change of variables, we get
IWa(9)lls, = 2m)% [A7% |lg]l, - (5.1)
Furthermore, we have fas, ¢ € Ly(R™),

(Wx(g)p, ) = / 9(2) 0 (2 )0, ) d

n

Sincer, (z) is unitary, it follows that

[(ma (), ) < el [l

so that we have
(W@, V) < llella 1912 gl -
This means that

IWA(9)lls.. < llgll; - (5.2)
Combining (5.1) and (5.2) by interpolation with the paraméter 5 we get the following lemma.
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Lemma 5.2 For any nonzero reak andg € L,(C™), we have
IWa(9)lls,, < @m)" |A#" g, -

Now we give another definition for Fourier type and cotype on the Heisenberg group.
Definition 5.3 LetT : E — F be a linear map between operator spaces/&nd be the Fourier transform
mappingf to ff-,

(1) Tis said to haved,,-Fourier typep if
Fu, @T : L,(Hp) ® E — Ly (dp, Spr) @ F

extends to a completely bounded map frég(H,,, E) into L,/ (du, Sy (F')) and in this case we denote
| TIFZ | = | Fr, @ Tl

(2) Tis said to haved,,-Fourier cotypey’ if
Fpl®@T: Ly(dp,Sp) ® E — Ly(Hy,) ® F

extends to a completely bounded map frém(du, S,(E)) into L, (H,, F) and in this case we denote
|zt = |7, o 7]

The definition for spaces is straightforward.
Remark 5.4 The Fourier transform of,, takes convolution into products as in the commutative case, that is

_—_H,

(Fxg) "(\) = fl (g (N).

Sincef — ]’7{ is a complete isometry, we have complete isoméfly(¢p,, ) = Loo(du, Soo); Ly +— an.
Then by the same observation in Remark 3.2, we have complete isondetfies, , F) = L.(du, S-(E))(1 <
r<oo0); Ly @z fH" ® « for any operator spacE andz € E. This implies that the definition of Fourier
type and cotype on the Heisenberg group in this section is equivalent to those in Definition 3.1.

The above Fourier properties are related with classical Fourier type. The following transference theorem
provides an example of partial connection between commutative and noncommutative case.

Theorem 5.5 LetT : E — F be a linear map between operator spaces which HasFourier typep or
H,,-Fourier cotypep’. ThenT hasZ-Fourier typep.

Proof. Considefz},)i—1,,... € Lp(Z, M, (E)), wherel <i,j < nanddefinef;;(t) = >, c; lprk 2n(k+1)) (£)2};

—_—~ /L]'
We extendf;; to whole H,, by fi;(z,y,t) = g(x,y)fi;(t), whereg(z,y) = 1j,172» (z,y) means characteristic
function on|0, 1] C C™. Then we have

~H, } ,
Fi ) =1lg) [ e fii0dt = oO0Ws(9) Y 2 eal,
R keZ
where s
e2miX _ |
A\) =
P(A) B
Thus we get
—~H, .
7o = [ Wa@)l,, (3 Tk
87, (S, () =y}

87 (F)
and consequently
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P’ v’

/\Hn
H(T}; ) = / o) {|(O M Tak) d\
Lp/ (dl’LVSZ/(Spl(F))) R kEZ S;L,(F)
1 P
_ / ST o+ 10) |3 ek d),
0 LeZ kEZ S;L/(F)

where®(\) = (21) "1 A" (V)P ||WA(9)HPP,-

We want to show that there is a constéhsuch thab < C < )7, _, ®(X +1) < oo for almost all € [0, 1].
Now we claim that — 3_ ;. ; ®(A + 1) is continuous on a compact interyal 1]. For each!| > 1, itis trivial
that\ — ®(\ + 1) is continuous or0, 1]. Furthermore, since

)

2
A

o] < |

we have by Lemma 5.2

’ ’

p p

112
oMl < 0|5 X

’ 71 2
HgHip(cn) = (2m) by

forany\ € R. Thus we get
o' 1 P 1
S leo+c Y —— < Y
E 2r Sa P T 2w S P

forany N > 2 andX € [0,1]. Sincep” > 2,3, . [®(A + )| converges uniformly and this proves our claim.
By the continuity ofA — 3=, _; (A + 1), we have), € [0, 1] such that

Ci=) ®A+1)= Ael%fl] > d(A+1).
1]>1 [1]>1

If we suppose that’ = 0, then we have{\V,(g)||s , = 0, which means

Wao+1(Dlls, = 2m)* Mo+ 17 llgllL,cny =0

and this is contradictory, so that
Y oA+ =C>0

lez

for almost allA € [0, 1]. Sinceyp is bounded on0, 1], we have by Lemma 5.2 again thdt(\)| is uniformly
bounded oR — {0}, so that

SN+l =d dA+D)+ > (A +1)

lEZ [1]>1 1<1

is finite almost all\ € [0, 1].

Copyright line will be provided by the publisher



mn header will be provided by the publisher 21

Now we have

1 p/ 1
(Z e2ﬂiAkT$§j) — |:/ (Z eQWiAkTmfj) dA:| p
kEZ 87 (Ly (T, F)) O 1l kez 87 (F)
_a =Hn
<CV\(Tfi; )
Ly (@17 (5,1 (F)))
7% Hn Iy
< O ||[TIFT™ | H(fij)‘ S7 (L (Hp\E))
_ 1
<C v ||TIFT™| ||(fij)||s;,(Lp(]R,E))

— ¢ v (2n)7 ||T|FT

”(WJ‘)"sg,(Lp(z,E)) :

Last two lines are by the fact that the extensjon-» f: 1j0,12» ® f is @ complete contraction froth, (R, E)
into L, (H,,, E) and(4.1) with § = 27. Now we get the desired result with the following inequality:

|T\FT7| < 075 (@m)> |[TIF T

For the case thaf hasH,,-Fourier cotype’, we have thaf™ hasH,,-Fourier typep by the duality(Theorem
3.7). Then by the previous result,* hasZ-Fourier typep. By the duality again]” hasZ-Fourier cotypep’
which is equivalent t@'-Fourier typep, and consequently hasZ-Fourier typep by the equivalence of classical
groups(Theorem 4.1).

Remark 5.6 By the previous theorem, Kwapien’s theorem for the Heisenberg group follows; an operator
space withH,, -Fourier type2 or H,-Fourier cotype2 is completely isomorphic to an operator Hilbert space.
This is by the fact thaZ-Fourier type2 is equivalent tdl'-Fourier type2 andT is an infinite compact group.

O
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