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Vector valued Fourier analysis on unimodular groups
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The notion of Fourier type and cotype of linear maps between operator spaces with respect to certain unimodular
(possibly nonabelian and noncompact) group is defined here. We develop analogous theory compared to Fourier
types with respect to locally compact abelian groups of Banach space operators. We consider the Heisenberg
group as an example of nonabelian and noncompact groups and prove that Fourier type and cotype with respect
to the Heisenberg group implies Fourier type with respect to classical abelian groups.
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1 Introduction

The reason why we have to consider vector-valued anlaysis are apparent nowadays because they provide new
points of view to several important problems such as partial differential equations, nonlinear functionals and
stochastic counterparts of derterministic problems. Thus, many researchers have been extending classical the-
orems such as Hausdorff-Young inequality([1, 8, 16]),Lp boundedness of Hilbert transform([3, 17]), Fourier
multiplier theorem([23]) and Hardy inequality([2]) to vector-valued settings. Note that all these results are based
on commutative harmonic analysis. Since noncommutative harmonic analysis is getting more and more impor-
tant, it is very meaningful to consider its vector-valued version.

In this paper, we are going to concentrate on vector-valued Hausdorff-Young inequality on certain unimodular
groups. If we look back Banach space theory, we have Fourier type with respect to locally compact abelian
groups introduced by J. Peetre in [16] forR and by M. Milman in [15] in general case. A Banach spaceX is
called Fourier typep, for 1 ≤ p ≤ 2, with respect to a locally compact abelian groupG if, FX

G , theX-valued
Fourier transform onG is a well-defined bounded linear operator fromLp(G,X) to Lp′(Ĝ,X) whereĜ is the
dual group ofG. The definition for operators is a simple extension of this. A Banach space operatorT : X → Y
is called Fourier typep with respect toG if theFG ⊗ T is extended to a bounded linear operator fromLp(G,X)
to Lp′(Ĝ, Y ) whereFG is the Fourier transform onG. See [1, 4, 8, 12] and [17] for further information.

For the case that the underlying groupG is compact(possibly nonabelian), the notion of Fourier type and
cotype with respect toG is given by J. Garsia-Cuerva and J. Parcet in [9] in the framework of operator spaces,
a noncommutative analogue of Banach spaces. In [9], they used vector-valued Haussdorff-Young inequality on
compact groups to measure how nice structure an operator space has with the help of representation theory for
compact groups. We want to extend this definition to some noncompact groups including all locally compact
abelian groups and compact groups by slightly different approach not using representation theory. However, if
we restrict our definition to the case that the underlying group is compact, it is equivalent to the definition in [9].

This paper is organized as follows: In section 2, we collect well known facts about vector-valued noncom-
mutativeLp-spaces, locally compact groups and Fourier analysis on unimodular groups. In section 3, we define
Fourier type and cotype of linear maps between operator spaces with respect to certain unimodular groups and
we investigate some basic properties. In section 4, we restrict our attention to abelin groups and extend results in
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Banach space setting to operator space setting. At the end of this section, we pose a compatibility problem be-
tween two Fourier notions. In the final section, we consider the Heisenberg group as an example of noncompact,
nonabelian unimodular group. Since the Heisenberg group has a simple structure of representations, we give
alternative equivalent definition of Fourier type and cotype using representation theory. Finally, we investigate
relationship between Fourier notions with respect to the Heisenberg group andZ.

2 Preliminaries

2.1 Noncommutative vector-valuedLp-spaces

In this section, we collect some materials we need later about noncommutative vector-valuedLp-spaces mainly
adopted from [18] and some of their modifications. For the general information about operator spaces, see [6].
First, we define noncommutative vector-valuedLp-spaces in the category of operator space. These definition are
based on the following decomposition of vector-valuedLp-space:

Lp(X) = [L∞(X), L1(X)] 1
p

= [L∞ ⊗λ X, L1 ⊗γ X] 1
p
,

where⊗λ(resp.⊗γ) is the injective(resp. projective) tensor product in Banach space sense.

Definition 2.1 Let E be an operator space andn ∈ N.

(1) We defineSn
∞(E) := Sn

∞ ⊗min E and Sn
1 (E) := Sn

1 ⊗̂E. For 1 < p < ∞, we defineSn
p (E) :=

[Sn
∞(E), Sn

1 (E)] 1
p
.

(2) Let (Ω,A, µ) be a measure space. Then we define

L∞(µ,E) := L∞(µ)⊗min E

and
L1(µ,E) := L1(µ)⊗̂E.

If 1 < p < ∞, we defineLp(µ,E) := [L∞(µ,E), L1(E)] 1
p
.

(3) Letϕ be a semi-finite normal faithful trace on an injective von Neumann algebraM . Then we define

L1(ϕ,E) := L1(ϕ)⊗̂E,

and for1 < p < ∞, we define

Lp(ϕ,E) := [M ⊗min E,L1(ϕ,E)] 1
p
.

If p = ∞, we denoteL0
∞(ϕ, E) = M ⊗min E.

The followings are basic properties related to noncommutative vector-valuedLp-spaces that will be used
frequently in the sequel.

Proposition 2.2 Let E andF be operator spaces andM andN be hyperfinite von Neumann algebras with
faithful normal semi-finite tracesϕ andψ respectively.

(1) Let1 ≤ p ≤ ∞. A linear mapT : E → F is completely bounded if and only if

sup
n

∥∥∥ISn
p
⊗ T : Sn

p (E) → Sn
p (F )

∥∥∥ < ∞,

and we have
‖T‖cb = sup

n

∥∥∥ISn
p
⊗ T

∥∥∥
L(Sn

p (E),Sn
p (F ))

.
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(2) (Fubini type theorems)Let 1 ≤ p < ∞. Then for any measure space(Ω,A, µ) and n ∈ N, we have
completely isometric isomorphism

Lp(µ, Sn
p (E)) ∼= Sn

p (Lp(µ,E)).

Similarly, we have completely isometric isomorphisms

Lp(ϕ,Lp(ψ, E)) ∼= Lp(ψ, Lp(ϕ,E)) ∼= Lp(ϕ⊗ ψ, E),

whereϕ⊗ψ is a faithful normal semi-finite trace of the von Neumann algebra tensor productM⊗N which
is hyperfinite also.

(3) (Duality)Let1 < p < ∞. The natural embedding fromLp′(ϕ,E∗) into Lp(ϕ,E)∗ is completely isometric.
Furthermore, for anyF ∈ Lp(ϕ,E) andε > 0, we haveF̃ ∈ Lp′(ϕ, E∗) with norm1 such that

‖F‖Lp(ϕ,E) < (1 + ε)〈F, F̃ 〉.

(4) (Minkowski type inequality)Let1 ≤ p1 ≤ p2 ≤ ∞. Then for any measure space(Ω,A, µ) andn ∈ N, the
natural map fromLp1(µ, Sn

p2
(E)) into Sn

p2
(Lp1(µ,E)) is complete contraction. The same statement holds

if we replaceµ into a faithful normal semi-finite traceϕ of an injective von Neumann algebraM .

(5) Let1 ≤ p ≤ ∞. For anyf ∈ Lp(ϕG, E) we have

‖f‖Lp(ϕG)⊗λE ≤ ‖f‖Lp(ϕG,E) ≤ ‖f‖Lp(ϕG)⊗γE .

Particularly, for f ⊗ x ∈ Lp(ϕ)⊗ E we have

‖f ⊗ x‖Lp(ϕG,E) = ‖f‖Lp(ϕG) ‖x‖E .

P r o o f. See chapter1, 2 and3 of [18] for the proof of (1), (2) and (5). The hyperfiniteness ofM means
thatM = ∪Mα(weak∗-closure) whereMα is a net of finite dimensional∗-subalgebra directed by inclusion. Let
ϕα be the restriction ofϕ to Mα. Then we have a complete isometryLp′(ϕα, E∗) ∼= Lp(ϕα, E)∗(isometry, in
the Banach space setting). Thus we get (3). For (4), we only have to recall the fact that the natural map from
E1⊗̂(E2 ⊗min E3) into (E1⊗̂E2) ⊗min E3 is a complete contraction(contraction, in the Banach space setting)
for any operator spacesE1, E2 andE3(chapter 8 of [6]).

Remark 2.3 We need the injectivity ofM in Definition 2.1 to assure thatL0
∞(ϕ, E) andL1(ϕ,E) are com-

patible each other for the complex interpolation. See chapter 3 of [18] for the detail. The hyperfiniteness used in
the above proposition is implied by the injectivity([5]).

2.2 Weil’s formula

In this section, we consider Weil’s formula about quotient spaces and its modification.

Proposition 2.4 (Weil’s formula)Let G be a unimodular group andH be a closed subgroup ofG which is
unimodular also. For any Haar measuresµG and µH on G and H, respectively, there exists a (unique up to
constant)G-invariant Radon measureµG/H onG/H such that for everyf ∈ L1(G) and lower semi-continuous
f : G → [0,∞] ∫

G

f(x)dµG(x) =
∫

G/H

∫

H

f(xh)dµH(h)dµG/H(xH).

P r o o f. See p.57 and p.62 of [7] and [20].

Although the integral form of Weil’s formula looks similar to Fubini’s theorem, it is not exactly Fubini’s
theorem. Therefore, we need additional condition in order to reduce it to Fubini’s theorem.
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Proposition 2.5 (The Borel selection lemma)Let G be a second countable locally compact group andH a
closed subgroup ofG. Then there exist a Borel setA ⊆ G such thatA meets each coset ofH at exactly one point
and the following two functions are measurable bijections:

q|A :A ⊆ G → G/H, φ :A×H → G.

a 7→ aH (a, h) 7→ ah

We callA a Borel selection forq whereq is the canonical quotient map fromG ontoG/H.

P r o o f. See lemma 1.1 and 1.2 of [14].

Remark 2.6 If we give a measureµA onA induced byq|A, then we have the following for Borel setsB ⊆ A
andK ⊆ H with finite measure:

∫

A×H

1B(a)1K(ξ)dµH(ξ)dµA(a) =
∫

G/H

∫

H

1q(B)(aH)1K(ξ)dµH(ξ)dµG/H(aH)

=
∫

G/H

∫

H

1q(B)(aH)1K(hξ)dµH(ξ)dµG/H(aH)

=
∫

G

(1B × 1K) ◦ φ−1(x)dµG(x)

where1B × 1K(a, ξ) = 1B(a)1K(ξ) for a ∈ A andξ ∈ H.
Thusφ becomes a measure preserving map between(A×H, µA × µH) and(G,µG).

2.3 Fourier analysis on unimodular groups

In this section, we present summary of Fourier analysis on unimodular groups adopted in [13] and [21]. For
general information about locally compact groups and abstract harmonic analysis, see [7] and [11].

For a locally compact abelian groupG, the Fourier transform off ∈ L1(G) is defined on the dual group̂G by

f̂G(γ) =
∫

G

f(x)γ(x)dx

for γ ∈ Ĝ. Whenf ∈ L1(G) ∩ L2(G), Φ : f 7→ f̂G is an isometric map intoL2(Ĝ) which can be extended
to an isometry betweenL2(G) andL2(Ĝ). Furthermore,Mf̂G , the multiplication byf̂G on L2(Ĝ) is unitarily

equivalent viaΦ to Lf , the convolution withf onL2(G) which is given byΦLfΦ−1 = Mf̂G . Thus if we identify

f̂G with Mf̂G , we get another Fourier transformLf . Since non-abelin groups do not have their dual groups, we
use this Fourier transformLf in our formulation.

Let G be a unimodular group which means that the left Haar measure ofG and the right Haar measure ofG
coincide. Forf ∈ L1(G), we writeLf for the left convolution byf acting onL2(G) by:

Lf (g)(x) =
∫

G

f(y)g(y−1x)dy

for all g ∈ L2(G). Let V N(G) be the von Neumann algebra generated by{Lf}f∈L1(G). This V N(G) is
called the group von Neumann algebra ofG and is equal to the von Neumann algebra generated by{La}a∈G,
whereLa is the left translation acting onL2(G) by La(g)(x) = g(a−1x) for all g ∈ L2(G). Then we have a
unique faithful semifinite normal traceϕG(simply ϕ) on V N(G) which satisfies the following: Iff ∈ L1(G)
is continuous and positive definite then we haveLf ∈ L1(ϕ) andϕ(Lf ) = f(e) wheree is the identity ofG.
Whenf ∈ L1(G) ∩ L2(G), FG : f → Lf is an isometric map intoL2(ϕ) which can be extended to an isometry
betweenL2(G) andL2(ϕ). Furthermore, we have fourier inverse transform defined for allF ∈ L1(ϕ) by

FG
−1(F )(x) := ϕ(L∗xF )
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for x ∈ G. Then we have thatFG
−1(F ) ∈ Cc(G) and bounded by‖F‖1, and also we have Parseval’s formula

as follows: Letf1 ∈ L1(G) andF2 ∈ L1(ϕ). SetF1 = Lf1 andf2 = FG
−1(F2). Then we have

〈F1, F2〉 = ϕ(F2
∗F1) =

∫

G

f1(x)f2(x)dx.

Remark 2.7 (1) In the case thatG is abelian,(V N(G), ϕ) is equivalent as a von Neumann algebra to
L∞(Ĝ) with the usual integration on the dual group̂G of G under the mappingLf 7→ f̂G.

(2) In the case thatG is compact, we consider the dual objectĜ which consist of all equivalence classes of
irreducible unitary representations ofG, and we define Fourier transform by

f̂G(π) =
∫

G

f(x)π∗(x)dx

for f ∈ L1(G) andπ ∈ Ĝ. Let

L∞ = {F ∈
∏

π∈Ĝ

Mdπ : sup
π∈Ĝ

‖Fπ‖Sdπ∞
< ∞},

wheredπ is the dimension ofπ. Then this is equivalent as a von Neumann algebra to(V N(G), ϕ) under
the mappingLf 7→ f̂G with the following traceψ:

ψ(F ) =
∑

π∈Ĝ

dπtr(Fπ)

for appropriate positiveF ∈ ∏
π∈Ĝ Mdπ . For the proof, see [13].

Now we present Plancherel’s theorem and Hausdorff-Young inequality in the category of operator space.

Theorem 2.8 LetG be a unimodular group.

(1) The Fourier transformFG is a complete isometry betweenL2(G) andL2(ϕG).

(2) For 1 ≤ p ≤ 2, FG is a complete contraction fromLp(G) into Lp′(ϕG) and its inverse transformFG
−1 is

a complete contraction fromLp(ϕG) into Lp′(G) wherep′ is the conjugate exponent ofp.

P r o o f. Note that it is already known thatFG is an isometry betweenL2(G) andL2(ϕG) in [13]. By (1) of
Proposition 2.2, we need to consider

ISn
2
⊗FG : Sn

2 (L2(G)) → Sn
2 (L2(ϕG)).

Since we have complete isometriesSn
2 (L2(G)) ∼= L2(G,Sn

2 ) andSn
2 (L2(ϕG)) ∼= L2(ϕG, Sn

2 ), andSn
2 is a

Hilbert space, we have thatISn
2
⊗ FG is contractive, which means thatFG is completely contractive. Since the

same argument works forFG
−1 we get (1).

For the proof of (2), we considerFG : L1(G) → V N(G), then we have thatFG is a complete contraction
since the source space isL1-space, which has maximum operator space structure. Similarly,FG

−1 : L1(ϕG) →
L∞(G) is a complete contraction since the target space isL∞-space, which has minimum operator space struc-
ture.

3 Fourier type and cotype with respect to certain unimodular groups

In order to define Fourier type with respect a unimodular groupG, we need some technical assumptions onG.
Since we have to consider vector-valuedLp space comes from the group von neumann algebraV N(G) and
its natural traceϕG, we need injectivity ofV N(G) by Remark 2.3. Fortunately, ifG is amenable or second
countable and connected thenV N(G) is injective([5]). Thus we can include all locally compact abelian groups,
compact groups and connected Lie groups.

From now on, letG be a unimodular group with injectiveV N(G) andT : E → F be a linear map between
operator spaces, and letp be the number1 ≤ p ≤ 2 andp′ be the conjugate exponent ofp. Now we provide the
definition of Fourier type and cotype.

Copyright line will be provided by the publisher



8 Sh. First Author: Fourier-unimodular

Definition 3.1 (1) T is said to haveG-Fourier typep if

FG ⊗ T : Lp(G)⊗ E → Lp′(ϕG)⊗ F

extends to a completely bounded map fromLp(G,E) into Lp′(ϕG, F )(if p′ = ∞ we considerL0
∞(ϕG, F ))

and in this case we denote
∥∥T |FT G

p

∥∥ := ‖FG ⊗ T‖cb.

(2) T is said to haveG-Fourier cotypep′ if

F−1
G ⊗ T : Lp(ϕG)⊗ E → Lp′(G)⊗ F

extends to a completely bounded map fromLp(ϕG, E) intoLp′(G,F ) and in this case we denote
∥∥T |FCG

p′
∥∥ :=∥∥FG

−1 ⊗ T
∥∥

cb
.

In particular, we say that an operator spaceE hasG-Fourier typep(resp. G-Fourier cotypep′) if IE , the
identity operator onE, has.

Remark 3.2 Let G be a compact group. We define

Lr = {F ∈
∏

π∈Ĝ

Mdπ
:
[ ∑

π∈Ĝ

dπ ‖Fπ‖r
Sdπ

r

] 1
r

< ∞}

and

Lr(E) = {F ∈
∏

π∈Ĝ

Mdπ :
[ ∑

π∈Ĝ

dπ ‖Fπ‖r
Sdπ

r (E)

] 1
r

< ∞}

for any operator space E and1 ≤ r < ∞, whereĜ is the dual object ofG. Since we have a complete isometry
L0
∞(ϕG) ∼= L∞; Lf 7→ f̂G (Remark 2.7), we get a complete isometryL1(ϕG) ∼= L1; Lf 7→ f̂G by the inversion

formula. Thus by the extension properties of tensor products in operator space, we have complete isometries
L0
∞(ϕG, E) ∼= L∞(E) andL1(ϕG, E) ∼= L1(E); Lf ⊗ x 7→ f̂G ⊗ x for x ∈ E. Consequently, we get a

complete isometryLr(ϕG, E) ∼= Lr(E)(1 ≤ r ≤ ∞). This implies that the definition of Fourier type and cotype
in this section is equivalent to those in [9] when the underlying group is compact.

Every linear map that has Fourier type or cotype is completely bounded and every completely bounded map
has Fourier type1 and cotype∞ as in the usual type, cotype theory.

Proposition 3.3 (1) If T hasG-Fourier typep, thenT is completely bounded with

‖T‖cb ≤ ‖FG‖−1
Lp(G)→Lp′ (ϕG)

∥∥T |FT G
p

∥∥ ,

and ifT hasG-Fourier cotypep′, thenT is completely bounded with

‖T‖cb ≤
∥∥F−1

G

∥∥−1

Lp(ϕG)→Lp′ (G)

∥∥T |FCG
p′

∥∥ .

(2) If T is completely bounded, thenT has G-Fourier type 1 and G-Fourier type∞ with
∥∥T |FT G

1

∥∥ =∥∥T |FCG
∞

∥∥ = ‖T‖cb.

P r o o f. For the proof of (1), assume thatT hasG-Fourier typep, then by the definition we haveFG ⊗
T : Lp(G,E) → Lp′(ϕG, F ) is completely bounded, which meansISn

p′
⊗ (FG ⊗ T ) : Sn

p′(Lp(G,E)) →
Sn

p′(Lp′(ϕG, E)) is uniformly bounded for all positive integern by (1) of Proposition 2.2. Note thatSn
p′(Lp′(ϕG, E))

is completely isometric toLp′(ϕG, Sn
p′(E)) by (2) of Proposition 2.2. Then for anyf ∈ Lp(G) and(xij) ∈

Mn(E), (f ⊗ xij) is mapped toLf ⊗ (Txij) and we have

‖Lf‖Lp′ (ϕG) ‖(Txij)‖Sn
p′ (F ) = ‖Lf ⊗ (Txij)‖Lp′ (ϕG,Sn

p′ (F ))

≤
∥∥T |FT G

p

∥∥ ‖(f ⊗ xij)‖Sn
p′ (Lp(G,E))

≤ ∥∥T |FT G
p

∥∥ ‖f ⊗ (xij)‖Lp(G,Sn
p′ (E))

=
∥∥T |FT G

p

∥∥ ‖f‖Lp(G) ‖(xij)‖Sn
p′ (E) ,
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by (4) and (5) of Proposition 2.2. Since we takef arbitrarily, we get the desired result. The same argument
applies for the cotype case also.

For the proof of (2), it is sufficient to assume thatT is a complete contraction. Then sinceFG : L1(G) →
V N(G) is also a complete contraction, their tensor productFG ⊗ T extends to a complete contraction from
L1(G)⊗̂E intoV N(G)⊗̂F . Since the canonical embedding fromV N(G)⊗̂F intoV N(G)⊗minF is completely
contractive, we get a complete contractionFG ⊗ T : L1(G)⊗̂E → V N(G)⊗minF . Thus we can say thatT has
G-Fourier type1 with

∥∥T |FT G
1

∥∥ ≤ 1. If we apply (1), then we get the desired equality. Similarly we can say
thatT hasG-Fourier cotype∞ with

∥∥T |FCG
∞

∥∥ = 1.

Remark 3.4 By the definition, it is trivial that Fourier type and cotype norms of linear maps between operator
spaces have ideal properties as follows: LetG be a unimodular group with injectiveV N(G) andT : E1 → E2

andS : E2 → E3 be linear maps between operator spaces. Then we have

∥∥ST |FT G
p

∥∥ ≤ ‖S‖cb

∥∥T |FT G
p

∥∥

and ∥∥ST |FT G
p

∥∥ ≤ ‖T‖cb

∥∥S|FT G
p

∥∥ .

We have the same inequalities for the cotype case also.

The simplest examples of spaces with Fourier typep and cotypep′ is Lp-spaces, and Fourier properties get
better as the exponent get closer to2.

Proposition 3.5 (1) Let (Ω,A, µ) be a measure space andϕ be a semi-finite normal faithful trace on a von
Neumann algebraM . ThenLp(µ) andLp(ϕ) hasG-Fourier typep andG-Fourier cotypep′.

(2) Let1 ≤ p < q ≤ 2. ThenG-Fourier typeq(resp.G-Fourier cotypeq′) impliesG-Fourier typep(G-Fourier
cotypep).

P r o o f. For (1) we considerL2(µ)(resp. L2(ϕ)) first. If we give the natural OSS onL2(µ)(resp. L2(ϕ)),
it is G-Fourier type and cotype2 by the same argument in the proof of Theorem 2.8. Then sinceL1(µ)(resp.
L1(ϕ)) hasG-Fourier type1 andL∞(µ)(resp. L∞(ϕ)) hasG-Fourier cotype∞(Proposition 3.3), we get the
desire result by interpolation. (2) is obtained similarly.

Remark 3.6 For the best case, Fourier type2 and cotype2, we only have characterization for spaces for
restricted class of groups. In [10], they proved noncommutative Kwapien’s theorem, which says that for every
infinite compact groupG, an operator space withG-Fourier type2 and cotype2 is completely isomorphic to an
operator Hilbert space.

We have duality relationship of type and cotype as follows.

Theorem 3.7 LetT : E → F be a linear map andT ∗ is the adjoint ofT . then we have the followings:

(1) T hasG-Fourier typep if and only ifT ∗ hasG-Fourier cotypep′ with the same norm;

(2) T hasG-Fourier cotypep′ if and only ifT ∗ hasG-Fourier typep with the same norm.

P r o o f. We only prove ‘only if’ part of (1) since others are obtained similarly. Now it is sufficient to prove
that ∥∥T ∗ ⊗ F−1

G (Aij)
∥∥

Sn
p′ (Lp′ (G,E∗)) ≤

∥∥T |FT G
p

∥∥ · ‖(Aij)‖Sn
p′ (Lp(ϕG,F∗)) .

By (3) of Proposition 2.2, for any givenε we have(fij) ∈ Sn
p (Lp(G, E)) with norm1 such that

∥∥T ∗ ⊗ F−1
G (Aij)

∥∥
Sn

p′ (Lp′ (G,E∗)) ≤ (1 + ε)〈T ∗ ⊗ F−1
G (Aij), (fij)〉.

Since(T ⊗FG)∗ = T ∗ ⊗ F−1
G , andT ⊗FG(fij) ∈ Sn

p (Lp′(ϕG, F )) we have
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∥∥T ∗ ⊗ F−1
G (Aij)

∥∥
Sn

p′ (Lp′ (G,E∗)) ≤(1 + ε)〈(Aij), T ⊗FG(fij)〉
≤(1 + ε) ‖(Aij)‖Sn

p′ (Lp(ϕG,F∗)) ·
∥∥T ⊗FG(fij)

∥∥
Sn

p (Lp′ (ϕG,F ))

≤(1 + ε) ‖(Aij)‖Sn
p′ (Lp(ϕG,F∗)) ·

∥∥T |FT G
p

∥∥ · ‖(fij)‖Sn
p (Lp(G,E))

=(1 + ε) ‖(Aij)‖Sn
p′ (Lp(ϕG,F∗)) ·

∥∥T |FT G
p

∥∥ .

Sinceε > 0 can be chosen arbitrarily, we get the desired result.

3.1 Transference principles

In this subsection, we consider general transference principles. The first one is about direct product of groups.
We begin with two lemmas, and the second one will be used later.

Lemma 3.8 LetG1 andG2 be unimodular groups with injectiveV N(G1) andV N(G2). ThenT has(G1 ×
G2)-Fourier typep(resp. cotypep′) if and only ifFG1 ⊗ T hasG2-Fourier typep(resp. cotypep′) with the same
norm.

P r o o f. We haveV N(G1 × G2) = V N(G1)⊗V N(G2) and ϕG1×G2 = ϕG1 ⊗ ϕG2 . Then by (2) of
Proposition 2.2, we haveLp(G1 × G2, E) is completely isometric toLp(G2, Lp(G1, E)) andLp′(ϕG1×G2 , F )
is completely isometric toLp′(ϕG2 , Lp′(ϕG1 , E)). SinceFG1×G2 = FG2 ⊗FG1 , we have

∥∥T |FT G1×G2
p

∥∥ = ‖FG1×G2 ⊗ T‖cb = ‖FG2 ⊗FG1 ⊗ T‖cb =
∥∥FG1 ⊗ T |FT G2

p

∥∥ .

The proof for the cotype case is the same.

Lemma 3.9 LetG1 andG2 be unimodular groups with injectiveV N(G1) andV N(G2). Suppose that there
exists constantC > 0 such that ∥∥T |FT G2

p

∥∥ ≤ C
∥∥T |FT G1

p

∥∥
for all T with G1-Fourier typep(1 ≤ p ≤ 2). Then we have

∥∥T |FT G2×G
p

∥∥ ≤ C
∥∥T |FT G1×G

p

∥∥

for all T with (G1 ×G)-Fourier typep. The same result holds for cotype case.

P r o o f. By our assumption and Lemma 3.8, we have that
∥∥T |FT G2×G

p

∥∥ =
∥∥FG ⊗ T |FT G2

p

∥∥ ≤ C
∥∥FG ⊗ T |FT G1

p

∥∥ = C
∥∥T |FT G1×G

p

∥∥ .

The proof for cotype case is the same.

By Lemma 3.8, we have the following relationship between Fourier properties when we consider direct product
of groups.

Theorem 3.10 LetG1 andG2 be unimodular groups with injectiveV N(G1) andV N(G2). LetT : E1 → E2

andS : E2 → E3 be a completely bounded linear maps between operator spaces. Then we have

(1)
∥∥T |FT G1

p

∥∥ ≤ ‖FG2‖−1
Lp(G2)→Lp′ (ϕG2 )

∥∥T |FT G1×G2
p

∥∥;

(2)
∥∥∥T |FCG1

p′

∥∥∥ ≤
∥∥F−1

G2

∥∥−1

Lp(ϕG2 )→Lp′ (G2)

∥∥∥T |FCG1×G2
p′

∥∥∥;

(3)
∥∥ST |FT G1×G2

p

∥∥ ≤
∥∥T |FT G1

p

∥∥∥∥S|FT G2
p

∥∥;

(4)
∥∥∥ST |FCG1×G2

p′

∥∥∥ ≤
∥∥∥T |FCG1

p′

∥∥∥
∥∥∥S|FCG2

p′

∥∥∥.
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P r o o f. By the previous lemma, we have
∥∥T |FT G1

p

∥∥ = ‖FG1 ⊗ T‖cb ≤ ‖FG2‖−1
Lp(G2)→Lp′ (ϕG2 )

∥∥FG1 ⊗ T |FT G2
p

∥∥

= ‖FG2‖−1
Lp(G2)→Lp′ (ϕG2 )

∥∥T |FT G1×G2
p

∥∥ ,

and we have∥∥ST |FT G1×G2
p

∥∥ =
∥∥FG1 ⊗ ST |FT G2

p

∥∥ =
∥∥S(FG1 ⊗ T )|FT G2

p

∥∥
≤

∥∥S|FT G2
p

∥∥ ‖FG1 ⊗ T‖cb =
∥∥S|FT G2

p

∥∥∥∥T |FT G1
p

∥∥ ,

by Theorem 3.4. This proves (1) and (3). The proof for (2) and (4) is similar.

Theorem 3.10 says that Fourier properties behave well with respect to direct product of group. That leads
us to further investigation about the case that groups are combined by weaker relationship, but we only get the
following restricted results.

Theorem 3.11 Let G be a unimodular group with injectiveV N(G) and T : E → F hasG-Fourier type
p(resp. cotypep′).

(1) LetH be an open subgroup ofG with injectiveV N(H). ThenT hasH-Fourier typep(resp. cotypep′) with
∥∥T |FT H

p

∥∥ ≤
∥∥T |FT G

p

∥∥ (resp.
∥∥T |FCH

p′
∥∥ ≤

∥∥T |FCG
p′

∥∥).

(2) Suppose thatG is second countable and letH be a compact normal subgroup ofG with injectiveV N(G/H).
ThenT hasG/H-Fourier typep(resp. cotypep′) with

∥∥∥T |FT G/H
p

∥∥∥ ≤
∥∥T |FT G

p

∥∥ (resp.
∥∥∥T |FCG/H

p′

∥∥∥ ≤
∥∥T |FCG

p′
∥∥).

P r o o f. (1) First of all, since the restriction of a Haar measure ofG to H is also a Haar measure ofH, H is
also unimodular. Now we prove our theorem by showing that several specific maps are complete contractions.
Let Φr andΨr for 1 ≤ r ≤ ∞ be given by:

Φr : Lr(H) → Lr(G), Ψr : Lr(G) → Lr(H)

f 7→ f̃ g 7→ g|H
wheref̃ is the extension off to wholeG by giving0 outsideH. Let φr andψr be given by:

φr : Lr(ϕH) → Lr(ϕG), ψr : Lr(ϕG) → Lr(ϕH)
Lf 7→ Lf̃ Lg 7→ Lg|H

wheref̃ is the extension off as the above. If we can show thatΦp ⊗ IE , Ψp′ ⊗ IF , φp ⊗ IE andψp′ ⊗ IF are
complete contractions between corresponding vector-valued Lebesgue spaces then the proof is over sinceFH⊗T
andF−1

H ⊗ T factorizes as follows:

Lp(H,E) FH⊗T−−−−→ Lp′(ϕH , F )

Φp⊗IE

y
xψp′⊗IF

Lp(G,E) −−−−→
FG⊗T

Lp′(ϕG, F )

and

Lp(ϕH , E)
F−1

H ⊗T−−−−−→ Lp′(H,F )

φp⊗IE

y
xΨp′⊗IF

Lp(ϕG, E) −−−−−→
F−1

G ⊗T
Lp′(G,F ).
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First we considerΦp⊗IE andΨp′⊗IF . It is easily seen thatΦ∞, Ψ∞, Ψ1 andΨ1 are contractive. Since their
source and target spaces areL∞ andL1-spaces, we have that they are complete contractions, and consequently
so areΦ∞ ⊗ IE , Ψ∞ ⊗ IF , Φ1 ⊗ IE andΨ1 ⊗ IF by extension properties of injective and projective tensor
products in operator spaces. Then by interpolation, we get complete contractionsΦp ⊗ IE andΨp′ ⊗ IF .

For the next, we considerφp ⊗ IE andψp′ ⊗ IF . Note thatSn
∞ ⊆ L(Sn

2 ). Then we have forf ∈ Cc(H,Sn
∞)

that

∥∥ISn∞ ⊗ φ∞(Lf )
∥∥2

Mn(V N(G))
=

∥∥∥Lf̃

∥∥∥
2

L0∞(ϕG,Sn∞)
= sup
‖g‖L2(G,Sn

2 )≤1

∥∥∥Lf̃ (g)
∥∥∥

2

L2(G)

= sup
‖g‖2≤1

∫

G

∥∥∥∥
∫

G

f̃(y)g(y−1x)dy

∥∥∥∥
2

Sn
2

dx

= sup
‖g‖2≤1

∫

G

∥∥∥∥
∫

H

f(y)g(y−1x)dy

∥∥∥∥
2

Sn
2

dx

= sup
‖g‖2≤1

∑

Hx

∫

H

∥∥∥∥
∫

H

f(y)g(y−1ξx)dy

∥∥∥∥
2

Sn
2

dξ,

whereMn(·) meansn-th matrix level([6]), and the last equality is obtained when we apply Weil’s formula for
the right Haar measure which is the same with left Haar measure by the unimodularity ofG. Thus if we set
gx(y) = g(yx), then we get

∥∥ISn∞ ⊗ φ∞(Lf )
∥∥2

Mn(V N(G))
= sup
‖g‖2≤1

∑

Hx

∫

H

∥∥∥∥
∫

H

f(y)gx(y−1ξ)dy

∥∥∥∥
2

Sn
2

dξ

≤ sup
‖g‖2≤1

‖Lf‖2Mn(V N(H))

∑

Hx

∫

H

‖gx(y)‖2Sn
2

dy

= sup
‖g‖2≤1

‖Lf‖2Mn(V N(H)) ‖g‖22 ≤ ‖Lf‖2Mn(V N(H)) .

Since suchLf ’s are dense inMn(V N(H)), we get a complete contractionφ∞ by (1) of Proposition 2.2 which
means that so isφ∞ ⊗ IE .

Also we have forg ∈ Cc(G,Sn
∞) that

∥∥ISn∞ ⊗ ψ∞(Lg)
∥∥2

Mn(V N(H))
=

∥∥Lg|H
∥∥2

L0∞(ϕH ,Sn∞)
= sup
‖h‖L2(H,Sn

2 )≤1

∥∥Lg|H (h)
∥∥2

L2(H,Sn
2 )

= sup
‖h‖2≤1

∫

H

∥∥∥∥
∫

H

g|H(y)h(y−1x)dy

∥∥∥∥
2

Sn
2

dx

= sup
‖h‖2≤1

∫

G

∥∥∥∥
∫

G

g(y)h̃(y−1x)dy

∥∥∥∥
2

Sn
2

dx

≤ sup
‖h‖2≤1

‖Lg‖2Mn(V N(G))

∥∥∥h̃
∥∥∥

2

L2(G,Sn
2 )

≤ ‖Lg‖2Mn(V N(G)) ,

whereh̃ is the extension ofh with 0 outsideH. Thus we getψ∞ is a complete contraction, and so isψ∞ ⊗ IF .
In the case ofφ1, for anyf ∈ Cc(H, Sn

1 ), we have

∥∥ISn
1
⊗ φ1(Lf )

∥∥
L1(ϕG,Sn

1 )
=

∥∥∥Lf̃

∥∥∥
L1(ϕG,Sn

1 )
= sup
‖Lg‖L0∞(ϕG,Sn∞)≤1

∣∣∣〈Lf̃ , Lg〉
∣∣∣

≤ sup∥∥∥Lg|H

∥∥∥
L0∞(ϕH ,Sn∞)

≤1

∣∣〈Lf , Lg|H 〉
∣∣ ≤ ‖Lf‖L1(ϕH ,Sn

1 ) .
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The first inequality is by the above result aboutψ∞. Thus we get a complete contractionφ1 ⊗ IE by the same
argument as above which leads by interpolation to a complete contractionφp ⊗ IE .

Similarly, we have forg ∈ Cc(G,Sn
1 ) that

∥∥ISn
1
⊗ ψ1(Lg)

∥∥
L1(ϕH ,Sn

1 )
=

∥∥Lg|H
∥∥

L1(ϕH ,Sn
1 )

= sup
‖Lh‖L0∞(ϕH ,Sn∞)≤1

∣∣〈Lg|H , Lh〉
∣∣

≤ sup
‖L

h̃‖L0∞(ϕG,Sn∞)
≤1

∣∣〈Lg, Lh̃〉
∣∣ ≤ ‖Lg‖L1(ϕG,Sn

1 ) ,

whereh̃ is the extension ofh to wholeG in the same manner we extendf . The first inequality is by the above
result aboutφ∞. Thus we get a complete contractionψ1 ⊗ IF by the same argument as above which leads by
interpolation to the complete contractionψp′ ⊗ IF .

(2) SinceH is compact, it is unimodular. Thus by Weil’s formula we can easily show thatG/H is also
unimodular. Now we follow the same procedure as the above. LetΦr : Lr(G/H) → Lr(G) be given by
Φr(f)(x) = f̃(x) = f(xH) for x ∈ G, and letΨr : Lr(G) → Lr(H) be given by

Ψr(f̃)(xH) = f(xH) =
∫

H

f̃(xh)dh

for 1 ≤ r ≤ ∞ andx ∈ G. Let φr : Lr(ϕH) → Lr(G) be given byφr(Lf ) = Lf̃ wheref̃(x) = f(xH) for
x ∈ G andψr : Lr(ϕG) → Lr(ϕH) be given byψr(Lf̃ ) = Lf where

f(xH) =
∫

H

f̃(xh)dh

for 1 ≤ r ≤ ∞ andx ∈ G.

We can easily see thatΦ∞, Ψ∞, Φ1 andΨ1 are contractive. Thus we get complete contractionsΦp ⊗ IE and
Ψp′ ⊗ IF by the same reason as in the proof of (1).

Next, we considerφp ⊗ IE andψp′ ⊗ IF . Let A ⊆ G be the Borel selection of the canonical quotient map
q : G → G/H as in Lemma 2.5. By Remark 2.6 and Proposition 2.4, we have forf ∈ Cc(H,Sn

∞) that

∥∥ISn∞ ⊗ φ∞(Lf )
∥∥2

Mn(V N(G))

=
∥∥∥Lf̃

∥∥∥
2

L0∞(ϕG,Sn∞)
= sup
‖g‖L2(G,Sn

2 )≤1

∥∥∥Lf̃ (g)
∥∥∥

2

L2(G)

= sup
‖g‖2≤1

∫

G

∥∥∥∥
∫

G

f̃(y)g(y−1x)dy

∥∥∥∥
2

Sn
2

dx

= sup
‖g‖2≤1

∫

A

∫

H

∥∥∥∥
∫

A

∫

H

f ◦ q(a)g(h−1a−1a′h′)dhda

∥∥∥∥
2

Sn
2

dh′da′

= sup
‖g‖2≤1

∫

H

∫

A

∥∥∥∥
∫

A

f ◦ q(a)
[ ∫

H

g(h−1a−1a′h′)dh
]
da

∥∥∥∥
2

Sn
2

da′dh′

≤ sup
‖g‖2≤1

∫

H

‖Lf‖2Mn(V N(G/H))

[ ∫

A

∥∥∥∥
∫

H

g(h−1ah′)dh

∥∥∥∥
2

Sn
2

da
]
dh′

≤ ‖Lf‖2Mn(V N(G/H)) sup
‖g‖L2

≤1

∫

G

∥∥∥∥
∫

H

g(h−1x)dh

∥∥∥∥
2

Sn
2

dx.
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By applying Proposition 2.4, Lemma 2.5 and Remark 2.6 for right cosets, we have, for the Borel selectionB ∈ G
of q′ : G → G/H, x 7→ Hx

∥∥ISn∞ ⊗ φ∞(Lf )
∥∥2

Mn(V N(G))

≤ ‖Lf‖2Mn(V N(G/H)) sup
‖g‖2≤1

∫

B

[ ∫

H

∥∥∥∥
∫

H

g(h−1h′b)dh

∥∥∥∥
2

Sn
2

dh′
]
db

= ‖Lf‖2Mn(V N(G/H)) sup
‖g‖2≤1

∫

B

[ ∫

H

∥∥∥∥
∫

H

gb(h)dh

∥∥∥∥
2

Sn
2

dh′
]
db

≤ ‖Lf‖2Mn(V N(G/H)) sup
‖g‖2≤1

∫

B

[ ∫

H

‖gb(h)‖2Sn
2

dh
]
db

= ‖Lf‖2Mn(V N(G/H)) sup
‖g‖2≤1

∫

B

[ ∫

H

‖g(hb)‖2Sn
2

dh
]
db

≤ ‖Lf‖2Mn(V N(G/H)) .

The first equality is due to the fact thath 7→ h′h−1 is measure preserving, and the second inequality is by standard
Minkowski inequality. Thus we get a complete contractionφ∞ by (1) of Proposition 2.2 so thatφ∞ ⊗ IE is
completely contractive also.

Forψ∞, we consider̃f ∈ Cc(G, Sn
∞). Then we have

∥∥∥ISn∞ ⊗ φ∞(Lf̃ )
∥∥∥

2

Mn(V N(G/H))

= ‖Lf‖2L0∞(ϕG/H ,Sn∞) = sup
‖g‖L2(G/H,Sn

2 )≤1

‖Lf (g)‖2L2(G/H)

= sup
‖g‖2≤1

∫

G/H

∥∥∥∥∥
∫

G/H

f(xH)g(x−1x′H)dxH

∥∥∥∥∥

2

Sn
2

dx′H

= sup
‖g‖2≤1

∫

G/H

∥∥∥∥∥
∫

G/H

[ ∫

H

f̃(xh)dh
]
g(x−1x′H)dxH

∥∥∥∥∥

2

Sn
2

dx′H

= sup
‖g‖2≤1

∫

G/H

∫

H

∥∥∥∥∥
∫

G/H

∫

H

f̃(xh)g̃(h−1x−1x′h′)dhdxH

∥∥∥∥∥

2

Sn
2

dh′dx′H,

whereg̃(x) = g(xH). The last line is by the fact thatH is compact and̃g(h−1x−1x′h′) = g(x−1x′H). Since
‖g̃‖L2(G,Sn

2 ) = ‖g‖L2(H,Sn
2 ), by Weil’s formula, we have

∥∥∥ISn∞ ⊗ φ∞(Lf̃ )
∥∥∥

2

Mn(V N(G/H))
= sup
‖g̃‖L2(G,Sn

2 )≤1

∫

G

∥∥∥∥
∫

G

f̃(y)g̃(y−1x)dy

∥∥∥∥
2

Sn
2

dx

≤
∥∥∥Lf̃

∥∥∥
2

Mn(V N(G))
.

Thus we get another complete contractionψ∞ ⊗ IF .
For φ1 ⊗ IE andψ1 ⊗ IF , we can show that they are completely contractive by the same argument as in

the proof of (1) using the previous results aboutφ∞ andψ∞. Then by the interpolation again, we get complete
contractionsφp ⊗ IE andψp′ ⊗ IF . This proves (2).

4 Fourier types with respect to abelian groups

In this section, we are going to focus on abelian groups. Since we have many results for locally compact abelian
groups in Banach space setting([1], [8] and [12]), our main theme in this section would be to extend those results
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into operator space setting. After that, a question about compatibility between operator space case and Banach
space case is presented. Note that we don’t need to consider Fourier cotype when we deal with abelian groups
by Theorem 3.7 and the fact that Fourier inverse transform is essentially the same with Fourier transform with
respect to dual group. Furthermore, we only mention that we can prove stronger duality theorem analogous to
that in [12] by the same approach. Also note that by Remark 2.7, ifG is abelian thenLp(ϕG, E) ∼= Lp(Ĝ, E)
completely isometrically under the mappingLf 7→ f̂G, whereĜ is the dual group ofG.

We present equivalence theorems between Fourier types with respect to classical abelian groupsR, Z andT.
In the proof, we use the same idea as in Banach space case and the same constant

Br = inf
θ∈R

( ∑

k∈Z

∣∣∣∣
sin θ

θ + kπ

∣∣∣∣
r ) 1

r

for 1 ≤ r < ∞, which is found in [8]. Note thatBr > 0 for 1 ≤ r < ∞ andBr ≤ B2 = 1 for r ≥ 2.

Theorem 4.1 LetT : E → F be a linear map between operator spaces. Then we have ford ∈ N,

(1)
∥∥∥T |FT Rd

p

∥∥∥ ≤
∥∥∥T |FT Zd

p

∥∥∥ ≤ B−d
p′

∥∥∥T |FT Rd

p

∥∥∥.

(2)
∥∥∥T |FT Rd

p

∥∥∥ ≤
∥∥∥T |FT Td

p

∥∥∥ ≤ B−d
p′

∥∥∥T |FT Rd

p

∥∥∥.

P r o o f. We only prove (1) and the cased = 1, because (2) is implied by (1) and Theorem 3.7. For generald,
we can apply Lemma 3.9. Suppose thatT hasZ-Fourier typep. In order to check thatT hasR-Fourier typep,
we have to consider uniform boundedness of

ISn
p′
⊗ (FR ⊗ T ) : Sn

p′(Lp(R, E)) → Sn
p′(Lp′(R, F )).

Let fij(t) =
∑

m∈Z 1[mδ,(m+1)δ)(t)xij
m wherexij

m ∈ E andδ > 0. Then we have

f̂ij

R
(s) =

∑

m∈Z
e−2πimδs 1− e−2πiδs

2πis
xij

m

and

∥∥∥(T f̂ij

R
)
∥∥∥

p′

Lp′ (R,Sn
p′ (F ))

= δp′−1

∫

R

∣∣∣∣
sinπs

πs

∣∣∣∣
p′

∥∥∥∥∥
∑

m∈Z
(Txij

m)e−2πims

∥∥∥∥∥

p′

Sn
p′ (F )

ds

= δp′−1

∫ 1

0

∑

k∈Z

∣∣∣∣
sin πs

π(s + k)

∣∣∣∣
p′

∥∥∥∥∥
∑

m∈Z
(Txij

m)e−2πim(s+k)

∥∥∥∥∥

p′

Sn
p′ (F )

ds

≤ δp′−1

∫ 1

0

∥∥∥∥∥
∑

m∈Z
(Txij

m)e−2πims

∥∥∥∥∥

p′

Sn
p′ (F )

ds

≤ δp′−1
∥∥T |FT Zp

∥∥p′ ∥∥(xij
m)

∥∥p′

Sn
p′ (Lp(Z,E))

.

Thus we get
∥∥∥(T f̂ij

R
)
∥∥∥

Lp′ (R,Sn
p′ (E))

≤
∥∥T |FT Zp

∥∥ ‖(fij)‖Sn
p′ (Lp(R,E)) if we prove

‖(fij)‖Sn
p′ (Lp(R,E)) = δ

1
p

∥∥(xij
m)

∥∥
Sn

p′ (Lp(Z,E))
. (4.1)

Since functions like(fij) is dense inSn
p′(Lp(R, E)) we get the left inequality of the theorem.

Now we prove(4.1). ConsiderΦr : Lr(Z) → Lr(R) andΨr : Lr(R) → Lr(Z) given byΦr((an)n∈Z) =∑
n∈Z 1[nδ,(n+1)δ)an andΨr(f)n = 1

δ

∫ (n+1)δ

nδ
f(t)dt for all 1 ≤ r ≤ ∞. It is easy to see that‖Φ∞‖ =
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‖Ψ∞‖ = 1, ‖Φ1‖ ≤ δ and‖Ψ1‖ ≤ 1
δ so that they are completely bounded with the same c.b. norm since source

and target spaces areL∞ andL1. Thus we have thatΦ∞ ⊗ IE , Ψ∞ ⊗ IE , Φ1 ⊗ IE andΨ1 ⊗ IE are completely
bounded with the same c.b. norm so that by the interpolation we get completely bounded mapΦp ⊗ IE and

Ψp ⊗ IE with ‖Φp ⊗ IE‖cb ≤ δ
1
p and‖Ψp ⊗ IE‖cb ≤ δ−

1
p . This proves(4.1).

For the right inequality, we consider

ISn
p′
⊗ (FZ ⊗ T ) : Sn

p′(Lp(Z, E)) → Sn
p′(Lp′(T, F )).

Let fij(t) =
∑

m∈Z 1[m,(m+1))(t)xij
m. Then we have

f̂ij

R
(s) =

∑

m∈Z
e−2πims 1− e−2πis

2πis
xij

m

and

∥∥∥(T f̂ij

R
)
∥∥∥

p′

Lp′ (R,Sn
p′ (F ))

=
∫

R

∣∣∣∣
sin πs

πs

∣∣∣∣
p′

∥∥∥∥∥
∑

m∈Z
(Txij

m)e−2πims

∥∥∥∥∥

p′

Sn
p′ (F )

ds

=
∫ 1

0

∑

k∈Z

∣∣∣∣
sin πs

π(s + k)

∣∣∣∣
p′

∥∥∥∥∥
∑

m∈Z
(Txij

m)e−2πim(s+k)

∥∥∥∥∥

p′

Sn
p′ (F )

ds

≥ Bp′

p′

∫ 1

0

∥∥∥∥∥
∑

m∈Z
(Txij

m)e−2πims

∥∥∥∥∥

p′

Sn
p′ (F )

ds.

Thus we have that∥∥∥∥(̂Txij
m)
Z∥∥∥∥

Lp′ (R,Sn
p′ (F ))

≤ B−1
p′

∥∥∥(T f̂ij

R
)
∥∥∥

p′

Lp′ (R,Sn
p′ (F ))

≤ B−1
p′

∥∥T |FT Rp
∥∥ ‖(fij)‖Sn

p′ (Lp(R,E))

= B−1
p′

∥∥T |FT Rp
∥∥∥∥(xij

m)
∥∥

Sn
p′ (Lp(Z,E))

,

where the last inequality is by(4.1) with δ = 1. This proves the second inequality.

There is another equivalence relationship about classical groups.

Theorem 4.2 Let T : E → F be a linear map between operator spaces. Letp be1 ≤ p ≤ 2 andp′ is the
conjugate exponent ofp. Then we have ford ∈ N,

(1)
∥∥∥T |FT Zd

p

∥∥∥ =
∥∥T |FT Zp

∥∥.

(2)
∥∥∥T |FT Td

p

∥∥∥ =
∥∥T |FT Tp

∥∥.

P r o o f. We only consider (1) andd = 2 case for the same reason as in the previous theorem. SinceZ2 =
Z× Z we have

∥∥T |FT Zp
∥∥ ≤

∥∥∥T |FT Z2

p

∥∥∥ by Theorem 3.10. For the converse inequality, consider

ISn
p′
⊗ (FZ2 ⊗ T ) : Sn

p′(Lp(Z2, E)) → Sn
p′(Lp′(T2, F )).

Then for any(xlm
ij ) ∈ Sn

p′(Lp(Z2, E)) where1 ≤ i, j ≤ n and1 ≤ |l| , |m| ≤ N for N ∈ N we have

∥∥∥∥ ̂(Txlm
ij )

Z2∥∥∥∥
p′

Lp′ (T2,Sn
p′ (F ))

=
∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤|l|,|m|≤N

(Txlm
ij )e−2πi(ls+mt)

∥∥∥∥∥∥

p′

Sn
p′ (F )

dtds
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If we setM = 2N + 1, thenl + mM are distinct for all1 ≤ |l| , |m| ≤ N and(e−2πimt)|m|≤N has the same
distribution with(e−2πimMt)|m|≤N . Thus by the translation invariance and the previous observation we get

∥∥∥∥ ̂(Txlm
ij )

Z2∥∥∥∥
p′

Lp′ (T2,Sn
p′ (F ))

=
∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤|l|,|m|≤N

(Txlm
ij )e−2πi(ls+mMt)

∥∥∥∥∥∥

p′

Sn
p′ (F )

dtds

=
∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤|l|,|m|≤N

(Txlm
ij )e−2πilse−2πi(l+mM)t

∥∥∥∥∥∥

p′

Sn
p′ (F )

dtds

≤
∫ 1

0

∥∥T |FT Zp
∥∥p′ ∥∥(xlm

ij e−2πils)
∥∥p′

Sn
p′ (Lp(Z,E))

ds

=
∥∥T |FT Zp

∥∥p′ ∥∥(xlm
ij )

∥∥p′

Sn
p′ (Lp(Z2,E))

.

The last line holds since we have complete isometryLp(Z2, E) ' Lp(Z, E); (xlm) 7→ (yk) whereyk = xρ(k)

for a bijectionρ : Z→ Z2. This complete isometry is obtained as in the proof of(4.1) in Theorem 4.1. Since we
takeN arbitrarily we get the desired result.

Now we compare two Fourier types with respect to a locally compact abelian groupG, the first one is Fourier
type of Banach space and the second one is Fourier type of operator space. LetE be a operator space which has
G-Fourier typep in operator space sense. If we denoteE(1) as the first matrix level ofE, then

L(1)
∞ (G, E) = (L∞(G)⊗min E)(1) ∼= L∞(G)⊗λ E(1) = L∞(G,E(1))

and
L

(1)
1 (G,E) = (L1(G)⊗̂E)(1) ∼= L1(G)⊗γ E(1) = L1(G,E(1))

isometrically(chapter 8 of [6]), and consequentlyL
(1)
p (G, E) ∼= Lp(G,E(1)) isometrically by interpolation. Thus

we have thatE(1) hasG-Fourier typep in Banach space sense. This naturally leads us to the question that whether
the converse can be obtained or not.

Problem Let G be a locally compact abelian group andX be a Banach space which hasG-Fourier typep
in Banach space sense. Can we give an operator space structure onX which hasG-Fourier typep in operator
space sense?

We have trivial answer forp = 2 case. If we give an operator space structure onX by (min X, max X) 1
2
, then

for X, G-Fourier type2 in Banach space sense meansG-Fourier type2 in operator space sense. This is by the
fact thatX hasG-Fourier type2 in Banach space sense if and only ifX is isomorphic to a Hilbert space and for
a Hilbert spaceH, we have a complete isometry(minH,maxH) 1

2
' OHH whereOHH is the operator Hilbert

space([19]). In the case thatp < 2, we could not answer at the time of this writing.

5 Fourier type and cotype with respect to the Heisenberg group

In this section, we concentrate on the Heisenberg group as an example of nonabelian and noncompact group.
Since the Heisenberg group is unimodular and connected Lie group, we have the definition of Fourier type and
cotype given in Definition 3.1. However representations of the Heisenberg group are well-known and easy to
describe, so that we can present another equivalent definition of Fourier type and cotype using representation
theory. The materials about the Heisenberg group which you will see in this section are mainly adopted from
[22], andSr(1 ≤ r ≤ ∞) means the Schatten-von Neumann class defined onL2(Rn) from now on.

We define the Heisenberg groupHn onRn × Rn × R with the group law given by

(x, y, t)(v, w, s) = (x + v, y + w, t + s +
1
2
(x · w − y · v)),
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where· means the usual inner product inRn andn ∈ N. It is easily seen that the Lebesgue measuredxdydt on
Rn×Rn×R is both left and right translation invariant. This makesHn unimodular. By the Stone-von Neumann
theorem, we have a complete list of all irreducible unitary representations ofHn, but we need only a part of it
here. For each nonzero realλ, we define a unitary representation onHn by

πλ(x, y, t)ϕ(ξ) = eiλteiλ(x·ξ+ 1
2 x·y)ϕ(ξ + y)

for ϕ ∈ L2(Rn).
Now we define Fourier transform onHn as follows: for each nonzero realλ andf ∈ L1(Hn), f̂Hn(λ) is the

operator acting onL2(Rn) by

f̂Hn(λ)ϕ =
∫

Hn

f(z, t)πλ(z, t)ϕdzdt,

wherez = (x, y) ∈ Cn.
The followings are Plancherel’s theorem and the Hausdorff-Young inequality for the Heisenberg group.

Theorem 5.1 (1) The Fourier transform on the Heisenberg group is a complete isometry fromL2(Hn) onto
L2(dµ, S2) wheredµ(λ) = (2π)−n−1 |λ|n dλ on the set of nonzero realsR∗.

(2) The Fourier transform on the Heisenberg group is a complete contraction fromLp(Hn) into Lp′(dµ, Sp′),
and the inverse Fourier transform is a complete contraction fromLp(dµ, Sp) into Lp′(Hn).

P r o o f. Note that it is already known that the Fourier transform on the Heisenberg group is an isometry
from L2(Hn) ontoL2(dµ, S2) in [22, 13]. For the extension to the operator space setting, we follow the same
procedure as in Theorem 2.8.

One of the usual technic in analysis on the Heisenberg group is taking Fourier transform with respect to the
last variablet. Then we get the following integral transform:

If we denotefλ(z) =
∫
R eiλtf(z, t)dt, then we have

f̂Hn(λ)ϕ =
∫

Cn

fλ(z)πλ(z)ϕdz,

whereπλ(x, y)ϕ(ξ) = eiλ(x·ξ+ 1
2 x·y)ϕ(ξ + y), and this leads for us to consider another operator of the form

Wλ(g) =
∫

Cn

g(z)πλ(z) dz

for functions onCn.
Whenλ = 1, we call this the Weyl transform and denote it byW (g). We have the Plancherel theorem for the

Weyl transform as follows:
‖W (g)‖S2

= (2π)
n
2 ‖g‖L2(Cn) .

Then by the change of variables, we get

‖Wλ(g)‖S2
= (2π)

n
2 |λ|−n

2 ‖g‖2 . (5.1)

Furthermore, we have forϕ,ψ ∈ L2(Rn),

〈Wλ(g)ϕ,ψ〉 =
∫

Cn

g(z)〈πλ(z, t)ϕ,ψ〉 dz.

Sinceπλ(z) is unitary, it follows that

|〈πλ(z)ϕ,ψ〉| ≤ ‖ϕ‖2 ‖ψ‖2 ,

so that we have
|〈Wλ(g)ϕ, ψ〉| ≤ ‖ϕ‖2 ‖ψ‖2 ‖g‖1 .

This means that

‖Wλ(g)‖S∞ ≤ ‖g‖1 . (5.2)

Combining (5.1) and (5.2) by interpolation with the parameterθ = 2
p′ , we get the following lemma.
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Lemma 5.2 For any nonzero realλ andg ∈ Lp(Cn), we have

‖Wλ(g)‖Sp′
≤ (2π)

n
p′ |λ|− n

p′ ‖g‖p .

Now we give another definition for Fourier type and cotype on the Heisenberg group.

Definition 5.3 Let T : E → F be a linear map between operator spaces andFHn
be the Fourier transform

mappingf to f̂Hn .

(1) T is said to haveHn-Fourier typep if

FHn ⊗ T : Lp(Hn)⊗ E → Lp′(dµ, Sp′)⊗ F

extends to a completely bounded map fromLp(Hn, E) into Lp′(dµ, Sp′(F )) and in this case we denote∥∥T |FT Hn
p

∥∥ := ‖FHn
⊗ T‖cb.

(2) T is said to haveHn-Fourier cotypep′ if

F−1
Hn

⊗ T : Lp(dµ, Sp)⊗ E → Lp′(Hn)⊗ F

extends to a completely bounded map fromLp(dµ, Sp(E)) into Lp′(Hn, F ) and in this case we denote∥∥∥T |FCHn

p′

∥∥∥ :=
∥∥FHn

−1 ⊗ T
∥∥

cb
.

The definition for spaces is straightforward.

Remark 5.4 The Fourier transform onHn takes convolution into products as in the commutative case, that is

(̂f ∗ g)
Hn

(λ) = f̂Hn(λ)ĝHn(λ).

Sincef 7→ f̂Hn is a complete isometry, we have complete isometryL0
∞(ϕHn) ∼= L∞(dµ, S∞); Lf 7→ f̂Hn .

Then by the same observation in Remark 3.2, we have complete isometriesLr(ϕHn , E) ∼= Lr(dµ, Sr(E))(1 ≤
r ≤ ∞); Lf ⊗ x 7→ f̂Hn ⊗ x for any operator spaceE andx ∈ E. This implies that the definition of Fourier
type and cotype on the Heisenberg group in this section is equivalent to those in Definition 3.1.

The above Fourier properties are related with classical Fourier type. The following transference theorem
provides an example of partial connection between commutative and noncommutative case.

Theorem 5.5 Let T : E → F be a linear map between operator spaces which hasHn-Fourier typep or
Hn-Fourier cotypep′. ThenT hasZ-Fourier typep.

P r o o f. Consider(xk
ij)k=1,2,··· ∈ Lp(Z,Mn(E)), where1 ≤ i, j ≤ n and definefij(t) =

∑
k∈Z 1[2πk,2π(k+1))(t)xk

ij .

We extendfij to wholeHn by f̃ij(x, y, t) = g(x, y)fij(t), whereg(x, y) = 1[0,1]2n(x, y) means characteristic
function on[0, 1]2n ⊆ Cn. Then we have

̂̃
fij

Hn

(λ) = Wλ(g)
∫

R
eiλtfij(t)dt = ϕ(λ)Wλ(g)

∑

k∈Z
e2πiλkxk

ij ,

where

ϕ(λ) =
e2πiλ − 1

iλ
.

Thus we get ∥∥∥∥(T ̂̃
fij

Hn

(λ))
∥∥∥∥

Sn
p′ (Sp′ (F ))

= |ϕ(λ)| ‖Wλ(g)‖Sp′

∥∥∥∥∥(
∑

k∈Z
e2πiλkTxk

ij)

∥∥∥∥∥
Sn

p′ (F )

and consequently
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∥∥∥∥(T ̂̃
fij

Hn

)
∥∥∥∥

p′

Lp′ (dµ,Sn
p′ (Sp′ (F )))

=
∫

R
Φ(λ)

∥∥∥∥∥(
∑

k∈Z
e2πiλkTxk

ij)

∥∥∥∥∥

p′

Sn
p′ (F )

dλ

=
∫ 1

0

∑

l∈Z
Φ(λ + l)

∥∥∥∥∥(
∑

k∈Z
e2πiλkTxk

ij)

∥∥∥∥∥

p′

Sn
p′ (F )

dλ,

whereΦ(λ) = (2π)−n−1 |λ|n |ϕ(λ)|p′ ‖Wλ(g)‖p′

Sp′
.

We want to show that there is a constantC such that0 < C ≤ ∑
l∈Z Φ(λ + l) < ∞ for almost allλ ∈ [0, 1].

Now we claim thatλ 7→ ∑
|l|>1 Φ(λ + l) is continuous on a compact interval[0, 1]. For each|l| > 1, it is trivial

thatλ 7→ Φ(λ + l) is continuous on[0, 1]. Furthermore, since

|ϕ(λ)| ≤
∣∣∣∣
2
λ

∣∣∣∣ ,

we have by Lemma 5.2

|Φ(λ)| ≤ (2π)−1

∣∣∣∣
2
λ

∣∣∣∣
p′

‖g‖p′

Lp(Cn) = (2π)−1

∣∣∣∣
2
λ

∣∣∣∣
p′

for anyλ ∈ R. Thus we get

∑

|l|≥N

|Φ(λ + l)| ≤ 2p′

2π

∑

|l|≥N

1

|(λ + l)|p′
≤ 2p′

2π

∑

|l|≥N−1

1

|l|p′

for anyN ≥ 2 andλ ∈ [0, 1]. Sincep′ ≥ 2,
∑
|l|>1 |Φ(λ + l)| converges uniformly and this proves our claim.

By the continuity ofλ 7→ ∑
|l|>1 Φ(λ + l), we haveλ0 ∈ [0, 1] such that

C :=
∑

|l|>1

Φ(λ0 + l) = inf
λ∈[0,1]

∑

|l|>1

Φ(λ + l).

If we suppose thatC = 0, then we have‖Wλ0+l(g)‖Sp′
= 0, which means

‖Wλ0+l(g)‖S2
= (2π)

n
2 |λ0 + l|−n

2 ‖g‖L2(Cn) = 0,

and this is contradictory, so that
∑

l∈Z
Φ(λ + l) ≥ C > 0

for almost allλ ∈ [0, 1]. Sinceϕ is bounded on[0, 1], we have by Lemma 5.2 again that|Φ(λ)| is uniformly
bounded onR− {0}, so that

∑

l∈Z
Φ(λ + l) =

∑

|l|>1

Φ(λ + l) +
∑

|l|≤1

Φ(λ + l)

is finite almost allλ ∈ [0, 1].

Copyright line will be provided by the publisher



mn header will be provided by the publisher 21

Now we have
∥∥∥∥∥(

∑

k∈Z
e2πiλkTxk

ij)

∥∥∥∥∥
Sn

p′ (Lp′ (T,F ))

=
[ ∫ 1

0

∥∥∥∥∥(
∑

k∈Z
e2πiλkTxk

ij)

∥∥∥∥∥

p′

Sn
p′ (F )

dλ
] 1

p′

≤ C
− 1

p′

∥∥∥∥(T ̂̃
fij

Hn

)
∥∥∥∥

Lp′ (dµ,Sn
p′ (Sp′ (F )))

≤ C
− 1

p′
∥∥T |FT Hn

p

∥∥
∥∥∥(f̃ij)

∥∥∥
Sn

p′ (Lp(Hn,E))

≤ C
− 1

p′
∥∥T |FT Hn

p

∥∥ ‖(fij)‖Sn
p′ (Lp(R,E))

= C
− 1

p′ (2π)
1
p

∥∥T |FT Hn
p

∥∥ ‖(xij)‖Sn
p′ (Lp(Z,E)) .

Last two lines are by the fact that the extensionf 7→ f̃ = 1[0,1]2n ⊗ f is a complete contraction fromLp(R, E)
into Lp(Hn, E) and(4.1) with δ = 2π. Now we get the desired result with the following inequality:

∥∥T |FT Zp
∥∥ ≤ C

− 1
p′ (2π)

1
p

∥∥T |FT Hn
p

∥∥ .

For the case thatT hasHn-Fourier cotypep′, we have thatT ∗ hasHn-Fourier typep by the duality(Theorem
3.7). Then by the previous result,T ∗ hasZ-Fourier typep. By the duality again,T hasZ-Fourier cotypep′

which is equivalent toT-Fourier typep, and consequentlyT hasZ-Fourier typep by the equivalence of classical
groups(Theorem 4.1).

Remark 5.6 By the previous theorem, Kwapien’s theorem for the Heisenberg group follows; an operator
space withHn-Fourier type2 or Hn-Fourier cotype2 is completely isomorphic to an operator Hilbert space.
This is by the fact thatZ-Fourier type2 is equivalent toT-Fourier type2 andT is an infinite compact group.
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