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Abstract

We first give conditions for a univariate square integrable function

to be a scaling function of a frame multiresolution analysis (FMRA) by

generalizing the corresponding conditions for a scaling function of a mul-

tiresolution analysis (MRA). We also characterize the spectrum of the

‘central space’ of an FMRA, and then give a new condition for an FMRA

to admit a single frame wavelet solely in terms of the spectrum of the

central space of an FMRA. This improves the results previously obtained

by Benedetto and Treiber and by some of the authors. Our methods and

results are applied to the problem of the ‘containments’ of FMRAs in

MRAs. We first prove that an FMRA is always contained in an MRA,

and then we characterize those MRAs that contain ‘genuine’ FMRAs in

terms of the unique low-pass filters of the MRAs and the spectrums of

the central spaces of the FMRAs to be contained. This characterization

shows, in particular, that if the low-pass filter of an MRA is almost ev-

erywhere zero-free, as is the case of the MRAs of Daubechies, then the

MRA contains no FMRAs other than itself.

1 Introduction

A multiresolution analysis (MRA) was introduced by Mallat [22] and Meyer [23]
primarily as a tool to construct and analyze the orthonormal wavelets. Ever
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since its introduction it has been applied in such diverse fields as subband cod-
ing, image compression, mathematical tomography, and the numerical solution
of the partial differential equations [10]. In particular, Daubechies’ celebrated
constructions of compactly supported orthonormal wavelets with arbitrary reg-
ularity used the full structures of MRAs [9]. Then, its generalization, a frame
multiresolution analysis (FMRA), was considered and applied in the analysis of
narrow band signals with more freedom in the constructions of wavelets with fast
iterative structures by Benedetto and Li [1]. This paper is the continuation of
our previous works in which various characterizations of the entities comprising
an MRA or an FMRA were given [15, 16, 17, 19, 20]. We first characterize the
scaling functions and the spectrums of the ‘central’ space of an FMRA. Then,
we give a new condition for an FMRA to admit a single frame wavelet solely in
terms of the spectrum of the central space of the FMRA. Other such character-
izations in terms of the zero sets of the low-pass filters of an FMRA were given
by Benedetto and Treiber [2] and by some of the authors [20], independently,
and their generalizations were considered in another article of ours [17]. Our
characterizations of the scaling functions of an FMRA and the spectrum of the
central space of an FMRA are applied to the problem of the containments of
FMRAs in MRAs. In particular, we show that an FMRA is always contained
in an MRA. Then the MRAs containing ‘genuine’ FMRAs are also character-
ized in terms of the unique low-pass filters of the MRAs and the spectrums of
the central spaces of the FMRAs to be contained. The latter characterization
shows, in particular, that if the low-pass filter of an MRA is almost everywhere
zero-free, as is the case of the MRAs of Daubechies, then the MRA contains no
FMRAs other than itself.

Before we go into the details we introduce some notations which will be used
throughout this article. Let D : L2(R) → L2(R) be the unitary dyadic dilation
operator such that, for f ∈ L2(R),

Df(x) := 21/2f(2x),

and let, for each t ∈ R, Tt : L2(R) → L2(R) be the unitary translation operator
such that, for f ∈ L2(R),

Ttf(x) := f(x− t).

We now state the definition of the MRA of Mallat and Meyer and that of the
FMRA of Benedetto and Li.

Definition 1.1 A family {Vj : j ∈ Z} of closed subspaces of L2(R) is said to
be an MRA if

(i) Vj ⊂ Vj+1 for each j ∈ Z;

(ii) D(Vj) = Vj+1 for each j ∈ Z;
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(iii)
⋃

j∈Z Vj = L2(R) and
⋂

j∈Z Vj = {0};

(iv) There exists a scaling function ϕ ∈ V0 such that {Tkϕ : k ∈ Z} is an
orthonormal basis for V0.

On the other hand, {Vj : j ∈ Z} is said to be an FMRA if Condition (iv) is
replaced by

(v) There exists a scaling function ϕ ∈ V0 such that {Tkϕ : k ∈ Z} is a tight
frame with a frame bound one for V0.

We refer to [8, 10, 11, 31] for the definitions and the basic properties of frames
and Riesz bases of L2(R). Note that even though an FMRA is more general
than an MRA, a modifier is attached to it. The normalizations in Conditions
(iv) and (v) are not restrictive. It is well-known that if the integer shifts of a
square integrable function form a Riesz basis (frame) of its closed linear span,
then there is another element of the closed linear span such that its integer shifts
form an orthonormal basis (tight frame with frame bound one, respectively) for
the same closed linear span [4, 10, 23].

Suppose we are given an MRA with a scaling function ϕ. Since ϕ ∈ V0 ⊂ V1

and since {DTkϕ : k ∈ Z} is an orthonormal basis of V1, there exists unique
a ∈ `2(Z) such that

ϕ =
∑
k∈Z

a(k)DTkϕ.

Taking the Fourier transform of the both sides yields a unique m ∈ L2(T) such
that

ϕ̂(x) = m(x/2)ϕ̂(x/2) for a.e. x ∈ R, (1.1)

where
T := [−π, π].

This m is called the low-pass filter of the MRA with the given scaling function
ϕ.

On the other hand, suppose that we are given an FMRA, and that ϕ is a
scaling function of the FMRA. Then (1.1) still holds, and the low-pass filter m
is still an element of L2(T). The low-pass filter, however, is not unique since the
integer shifts of the scaling function are assumed to be a frame, not necessarily
a Riesz basis, of its closed linear span [31]. In some situations, the low-pass
filter, rather than the scaling function, plays the central role in the theory and
the applications of FMRAs [1, 2, 20]. In this article we are going to elaborate
that this non-uniqueness of the low-pass filter does not, in any way, matter in
characterizing various aspects of FMRAs since it is the ‘spectrum’ of the central
space of an FMRA, rather than the low-pass filter, that determines the structure
of the FMRA.
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The article is organized in the following manner: In Section 2, after a brief
introduction of notations and conventions, we characterize the scaling functions
of an FMRA (Theorem 2.3) and the spectrum of the central space of an FMRA
(Theorem 2.5). Then we give another condition for an FMRA to admit a single
frame wavelet solely in terms of the spectrum of the central space of an FMRA
(Theorem 2.7). Examples illustrating our results are also given. In Section 3,
we first show that an FMRA is always contained in an MRA (Theorem 3.2).
Then we find the conditions for an MRA to contain an FMRA in terms of the
spectrum of the central space of the FMRA to be contained and the unique
low-pass filter of the MRA (Theorem 3.3). As a corollary we show that if the
unique low-pass filter of an MRA is almost everywhere zero-free, as is the case
of the Daubechies’ MRAs, then no FMRAs other than itself is contained in the
MRA (Corollary 3.4).

2 Scaling functions and spectrums of FMRAs

In this section we characterize the scaling functions of FMRAs (Theorem 2.3)
and the spectrums of the central spaces of FMRAs (Theorem 2.5). We then
give a new condition for an FMRA to admit a single frame wavelet ([2, 19, 20])
in Theorem 2.7. We first fix the notations and introduce some concepts that
will be used later.

A closed subspace S of L2(R) is said to be shift-invariant if Tkf ∈ S for any
k ∈ Z and f ∈ S. We refer to [4, 5, 14, 12, 26, 30] for the details about the
shift-invariant spaces. Let Φ ⊂ L2(R). Then

S := S(Φ) := span{Tkϕ : ϕ ∈ Φ, k ∈ Z}

is clearly a shift-invariant subspace of L2(R). In this case we say that S is
the shift-invariant space generated by Φ. The following form of the Fourier
transform is used in this paper: for f ∈ L1(R) ∩ L2(R) and x ∈ R, let

f̂(x) :=
∫

R
f(t)e−ixt dt.

Of course, the Plancherel theorem extends the Fourier transform to a
√

2π times
a unitary operator of L2(R). For f ∈ L2(R), let

f̂||x := (f̂(x+ 2πk))k∈Z,

which is in `2(Z) for a.e. x ∈ T and, for A ⊂ L2(R), let

Â||x := {f̂||x : f ∈ A}.

For a shift-invariant subspace S ⊂ L2(R), the spectrum σ(S) of S is defined
to be

σ(S) := {x ∈ T : Ŝ||x 6= {0}}.
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We use the following notational conventions throughout the paper. For
E ⊂ T, we let

Ẽ := E + 2πZ.

If E is a Lebesgue measurable subset of R, then |E| denotes the Lebesgue
measure of E. All subsets of R in this paper, with some exceptions which
are clear from the context, are defined modulo Lebesgue null sets, and the
containments and equalities among subsets of R are also in the sense of modulo
Lebesgue null sets. We also use the convention that the multiplication of a
function f defined on the real line with a function p defined on T means the
multiplication of f with the 2π-periodic extension of p.

The first statement of the following proposition is an almost folklore result.
See [4, 10]. The proof of the second statement, using different techniques, can
be found, for example, in [1, 4, 6, 7, 19, 26].

Proposition 2.1 For f ∈ L2(R), {Tkf : k ∈ Z} is an orthonormal basis of its
closed linear span if and only if∑

k∈Z
|f̂(x+ 2πk)|2 = 1 for a.e. x ∈ T;

It is a tight frame with frame bound one for its closed linear span if and only if∑
k∈Z

|f̂(x+ 2πk)|2 = 1 for a.e. x ∈ T \N,

where N := {x ∈ T : f̂||x = 0}.

We need the following proposition which is Theorem 4.3 in [3].

Proposition 2.2 ([3]) For ϕ ∈ L2(R) and j ∈ Z, let Vj := span{DjTkϕ : k ∈
Z}. Then

⋃
j∈Z Vj is dense in L2(R) if and only if⋃

j∈Z
2j supp(ϕ̂) =

⋃
j∈Z

supp(ϕ̂(2j ·)) = R. (2.1)

The following is a generalization of Theorem 5.2 in Chapter 7 of [13]. See
also [29]. We present a quick proof of this generalization by using Proposition
2.2.

Theorem 2.3 For ϕ ∈ L2(R) and j ∈ Z, let Vj := span{DjTkϕ : k ∈ Z}.
Then {Vj : j ∈ Z} is an FMRA with a scaling function ϕ if and only if:

(1)
∑

k∈Z |ϕ̂(x+ 2πk)|2 = 0 or 1 for a.e. x ∈ T;

(2) There exists m ∈ L2(T), called a low-pass filter, such that ϕ̂(2x) = m(x)ϕ̂(x)
for a.e. x ∈ R;
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(3) limj→∞ |ϕ̂(2−jx)| = 1 for a.e. x ∈ R.

Proof. (⇒): (1) follows from Proposition 2.1. Since ϕ ∈ V0 ⊂ V1 and since
{DTkϕ : k ∈ Z} is a tight frame for V1 with frame bound one,

ϕ =
∑
k∈Z

〈ϕ,DTkϕ〉DTkϕ.

(2) follows by taking the Fourier transform of the both sides of the above equa-
tion. By Proposition 2.2, for almost every x ∈ R, there exists lx ∈ Z such that
ϕ̂(2lxx) 6= 0. For any −j < lx, we have, by a repeated application of Condition
(2) of Theorem 2.3,

0 < |ϕ̂(2lxx)| =

( −j∏
k=lx−1

|m(2kx)|

)
|ϕ̂(2−jx)|. (2.2)

Conditions (1) and (2) imply that, for a.e. x ∈ σ(V0),

1 ≥
∑
k∈Z

|ϕ̂(2x+ 4πk)|2

= |m(x)|2
∑
k∈Z

|ϕ̂(x+ 2πk)|2

= |m(x)|2. (2.3)

Therefore |m(x)| ≤ 1 for a.e. x ∈ σ(V0)∼. (2.2) implies that 2kx ∈ σ(V0)∼

for each k ≤ lx. Consequently, it implies that |ϕ̂(2−jx)| is non-decreasing,
and, hence, converges to a positive number, say, αx as j → ∞. We have, by
Condition (1), αx ≤ 1. We now follow the line of argument in the proof of
Theorem 1.7 in Chapter 2 of [13]. Since {DjTkϕ : k ∈ Z} is a tight frame with
frame bound one, Pjf :=

∑
k∈Z〈f,DjTkϕ〉DjTkϕ is an orthogonal projection

onto Vj . Let f := χ̌[−1,1], where ∨ denotes the inverse Fourier transform. Then
||Pjf ||2 → ||f ||2 = 1/π by Condition (iii) of Definition 1.1. Let j ≥ 1. Since
Pjf ∈ Vj and since {DjTkϕ : k ∈ Z} is a tight frame with frame bound one for
Vj ,

||Pjf ||2 =
∑
k∈Z

|〈f,DjTkϕ〉|2

=
1

4π2

∑
k∈Z

|
∫ 1

−1

2−j/2ϕ̂(2−jx)e−i2−jkx dx|2

= 2j
∑
k∈Z

| 1
2π

∫ π

−π

χ[−2−j ,2−j ](x)ϕ̂(x)e−ikx dx|2

=
2j

2π

∫ 2−j

−2−j

|ϕ̂(x)|2 dx =
1
2π

∫ 1

−1

|ϕ̂(2−jx)|2 dx,
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where the Parseval’s theorem is used in the next-to-last equality. Now the
dominated convergence theorem implies that αx = 1 for a.e. x ∈ R.
(⇐): (1) and (2) imply Conditions (i), (ii) and (v) of Definition 1.1.

⋂
j∈Z Vj =

{0} by Corollary 4.14 of [3]. Considering Proposition 2.2 we only need to show
that

⋃
j∈Z 2j supp(ϕ̂) = R, which follows by (3). �

Suppose that {Vj : j ∈ Z} is an FMRA with a scaling function ϕ. Then
there exists a low-pass filter m ∈ L2(T) satisfying

ϕ̂(2x) = m(x)ϕ̂(x) for a.e. x ∈ R. (2.4)

We now characterize the spectrum of V0 (Theorems 2.5). We first derive some
characterizing properties of A := σ(V0) ⊂ T. Notice that (2.4) is equivalent to:

(ϕ̂(2x+ 4πk))k∈Z = m(x)(ϕ̂(x+ 2πk))k∈Z for a.e. x ∈ T.

Recall that |m(x)| ≤ 1 for a.e. x ∈ Ã by (2.3).
Now, let B ⊂ R be the support of ϕ̂, and define

BT := {x (mod 2π) : x ∈ B} ⊂ T = [−π, π].

Then the following should hold:

B ⊂ Ã; (2.5)

BT = A; (2.6)
1
2
B ⊂ B. (2.7)

Notice that (2.6) implies (2.5). Note that the support of m contains (1/2)B =
supp(ϕ̂(2·)) by (2.4). Since m is 2π-periodic, ((1/2)B)∼ ⊂ supp(m). Hence((

1
2
B

)∼
∩B

)
⊂ (supp(m) ∩ supp(ϕ̂)) ⊂ supp(ϕ̂(2·)) =

1
2
B,

again, by (2.4). Combining this fact with (2.7) we have

1
2
B =

(
1
2
B

)∼
∩B. (2.8)

Obviously, (2.8) implies (2.7). These facts lead us to:

Theorem 2.4 Let A ⊂ [−π, π]. Then there exist ϕ ∈ L2(R),m ∈ L2(T) satis-
fying (2.4) with ∑

k∈Z
|ϕ̂(x+ 2πk)|2 = χÃ(x) for a.e. x ∈ T (2.9)

if and only if there exists B ⊂ R satisfying Conditions (2.6) and (2.8). In this
case, (2.5) and (2.7) hold.
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Proof. We only need to show that Conditions (2.6) and (2.8) imply the existence
of such ϕ and m. Let f ∈ L2(R) be a compactly supported function such that

f̂(2x) = n(x)f̂(x)

holds for any real x for some trigonometric polynomial n. We may choose, for
example, f := χ[0,1]. Then f̂ has, being a restriction of an entire function by a
well-known theorem of Paley and Wiener [27], at most a countable number of
zeros. Note also that n has finite number of zeros. If we define g and p by

ĝ(x) := f̂(x)χB(x),

p(x) := n(x)χ((1/2)B)∼(x),

then, obviously, g ∈ L2(R) and p is 2π-periodic. Moreover,

ĝ(2x) = f̂(2x)χ(1/2)B(x) = n(x)χ((1/2)B)∼(x)f̂(x)χB(x) = p(x)ĝ(x)

by (2.8). Since f̂ has at most a countable number of zeros, the support of the
periodic function∑

k∈Z
|ĝ(x+ 2πk)|2 =

∑
k∈Z

|f̂(x+ 2πk)|2χB(x+ 2πk)

is equal to B̃ except possibly for a countable number of points. Note that B̃ = Ã

by Condition (2.6).
We define a 2π-periodic function

q(x) :=
χB̃(x)

(
∑

k∈Z |ĝ(x+ 2πk)|2)1/2
.

By our convention of identifying measurable sets which are different modulo
Lebesgue null sets, we have supp(q) = B̃. Also define ϕ by

ϕ̂(x) := q(x)ĝ(x).

Notice that (q(x)/q(x))χB̃(x) = χB̃(x). Hence (q(x)/q(x))χB̃(x)ĝ(x) = ĝ(x)
since supp(ĝ) = B ⊂ B̃. Therefore, we can check that

ϕ̂(2x) = q(2x)ĝ(2x)

= q(2x)p(x)ĝ(x)

= p(x)q(2x)
q(x)
q(x)

χB̃(x)ĝ(x)

= p(x)
q(2x)
q(x)

χB̃(x)q(x)ĝ(x)

= p(x)
q(2x)
q(x)

χB̃(x)ϕ̂(x).
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(2.4) is satisfied since p(x)q(2x)χB̃(x)/q(x) is 2π-periodic. Moreover, (2.9) im-
plies that it is essentially bounded. �

Since the integer translates of ϕ are assumed to be a tight frame with frame
bound one, we have, by Proposition 2.1, for a.e. x ∈ R,∑

k∈Z
|ϕ̂(x+ 2πk)|2 = χÃ(x).

Let x ∈ R. Then 2−jx ∈ T for sufficiently large j > 0. We have

|ϕ̂(2−jx)|2 +
∑
k 6=0

|ϕ̂(2−jx+ 2πk)|2 = χA(2−jx).

Since the limit-superior of the left-hand side of the above equation is greater
than or equal to 1 as j goes to infinity, the right-hand side is greater than 1/2
for any sufficiently large j. Hence, for a.e. real x,

χA(2−jx) → 1 as j →∞, (2.10)

since χA(2−jx) is 0 or 1 for any j.
Notice that if B = supp(ϕ̂), then (2.1) can be rephrased as the following

condition: ⋃
j∈Z

2jB = R. (2.11)

Combined with Proposition 2.2, Theorem 2.4 implies:

Theorem 2.5 A ⊂ T is the spectrum of the central space V0 of an FMRA
{Vj}j∈Z if and only if there exists B ⊂ R satisfying Conditions (2.6), (2.8) and
(2.11). In this case, (2.5), (2.7) and (2.10) hold.

Examples: Any interval of the form [−a, a](a ≤ π) is easily seen to be the
spectrum of the central space of an FMRA. On the other hand, one may check
that [3π/4, π] cannot be the spectrum of the central space of an FMRA. If a
subset B ⊂ torus satisfies (2.5), then B ⊂ [3π/4, π]+2πZ. A direct calculation,
however, shows that [3π/4, π] + 2πZ and [3π/8, π/2] + πZ are disjoint. Hence
(2.7) cannot be satisfied.

For a non-trivial set which is the spectrum of an FMRA, we borrow the
following example from [17]. We use this example again when we illustrate
Theorem 2.7 below. For 2π/3 < b < π, let A := A−1 ]A0 ]A1, where

A−1 :=
[
−π,−2π

3

]
,

A0 :=
[
b

2
− π,

2π
3

]
,

A1 := [b, π].
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Here ] denotes the disjoint union. We also let B := A ⊂ T. Then (2.6) is
trivially satisfied. Since A0 contains a neighborhood of the origin, (2.11) is
satisfied. Since b < π, (1/2)T ⊂ A0 ⊂ T. Hence (1/2)B ⊂ B. Therefore (2.8) is
also satisfied.

The choice of B is not unique. The set C := C−1 ] C0 ] C1 with

C−1 :=
[
b− 2π,−2π

3

]
,

C0 :=
[
b

2
− π,

2π
3

]
,

C1 :=
[
b,

4π
3

]
,

then C may play the role of B above. This can be verified as follows: Since [b−
2π,−π]+2π = A1 and [π, (4π)/3]−2π = A−1, CT = A. Hence (2.6) is satisfied.
(2.8) is also satisfied since (1/2)C ⊂ C0 ⊂ T and ((1/2)C+2πk)∩C = ∅ for any
nonzero integer k. Finally, C satisfies (2.11) since it contains a neighborhood of
0.

It is shown in [17] that χ̌A and χ̌C are the scaling functions of two ‘quasi-
biorthogonal’ FMRAs. Therefore, it is not any wonder that A = AT = CT is
the spectrum of an FMRA. �

Given an FMRA {Vj : j ∈ Z}, it may or may not admit a single frame
wavelet ψ ∈ V1	V0 such that {DjTkψ : j, k ∈ Z} is a frame for L2(R) [1, 2, 19].
The existence and construction of such a single frame wavelet are addressed in
[2, 19]. It is proved in [19] that there always exist two functions ψ1, ψ2 ∈ V1	V0

such that {DjTkψi : j, k ∈ Z, i = 1, 2} is a frame for L2(R). The following
necessary and sufficient condition for an FMRA to admit a single frame wavelet
is obtained in [2, 19].

Proposition 2.6 ([2, 19]) Suppose that {Vj : j ∈ Z} is an FMRA with a
scaling function ϕ. Let m be its low-pass filter. Then there exists a frame
wavelet ψ ∈ W0 := V1 	 V0 such that {DjTkψ : j, k ∈ Z} is a frame for L2(R)
if and only if m(x/2) and m(x/2− π) are not simultaneously zero a.e. x ∈ ∆2,
where

∆2 := {x ∈ T :
∑
k∈Z

∣∣∣ϕ̂(x
2

+ 2πk
)∣∣∣2 6= 0 and

∑
k∈Z

∣∣∣ϕ̂(x
2

+ π + 2πk
)∣∣∣2 6= 0}.

In the above characterization, the condition is given in terms of the non-
unique low-pass filter m associated with the given scaling function. Interestingly
enough, we are now able to give a new characterization solely in terms of the
spectrum of the central space of an FMRA.
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Theorem 2.7 Suppose that {Vj : j ∈ Z} is an FMRA with A := σ(V0). Then
there exists a single frame wavelet in V1 	 V0 such that {DjTkψ : j, k ∈ Z} is a
frame for L2(R) if and only if the set

(T \A) ∩ (2A) ∩ [(2A− 2π) ∪ (2A+ 2π)]

is a Lebesgue null set.

Proof. Let ϕ be a scaling function and m be a low-pass filter. Recall that∑
k∈Z |ϕ̂(x+ 2πk)|2 = χÃ(x), for a.e. x ∈ R. Notice that the set ∆2 in Proposi-

tion 2.6 can be given as

∆2 = T ∩ (2A) ∩ {(2A− 2π) ∪ (2A+ 2π)}.

By (2.4), we have

χÃ(x) =
∑
k∈Z

|ϕ̂(x+ 2πk)|2

=
∣∣∣m(x

2

)∣∣∣2∑
k∈Z

∣∣∣ϕ̂(x
2

+ 2πk
)∣∣∣2

+
∣∣∣m(x

2
+ π

)∣∣∣2∑
k∈Z

∣∣∣ϕ̂(x
2

+ π + 2πk
)∣∣∣2 .

It is now easy to see that

{x ∈ ∆2 : m(x/2) = 0 = m(x/2 + π)} = (T \A) ∩∆2.

The corollary now follows by noting that

(T \A) ∩∆2 = (T \A) ∩ (2A) ∩ [(2A− 2π) ∪ (2A+ 2π)].

�
We illustrate the above theorem by an example. Now let A be as in the

example following Theorem 2.5. Direct calculations show that:

T \A =
[
−2π

3
,
b

2
− π

]
]
[
2π
3
, b

]
;

T ∩ (2A) = T;

T ∩ (2A− 2π) =
[
−π,−2π

3

]
] [2b− 2π, 0];

T ∩ (2A+ 2π) =
[
0,

2π
3

]
] [b, π].

Since (2π)/3 < b, b/2−π < 2b−2π. Hence (T\A)∩(2A)∩[(2A−2π)∪(2A+2π)] is
a Lebesgue null set. Hence the FMRA admits a single frame wavelet by Theorem
2.7.
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Similar calculations show that if the central spectrum of an FMRA is [−a, a]
with 0 < a ≤ π/2, then it admits a single frame wavelet. On the other hand,
if π/2 < a ≤ π, then the FMRA does not admit a single frame wavelet. This
recovers the previous results contained in [2, 19, 20].

3 Containments of FMRAs in MRAs

In this section we show that an FMRA is always contained in an MRA (Theorem
3.2) and characterize the spectrums of the central spaces of FMRAs contained
in an MRA (Theorem 3.3). As a corollary we show that if the unique low-pass
filter of an MRA with a given scaling function is almost everywhere zero-free,
then the MRA contains no FMRAs other than itself. For the precise meaning
of containment, we refer to the corresponding theorems. We first state the
following straight-forward lemma.

Lemma 3.1 For η, ϕ ∈ L2(R), let V0 = span{Tkη : k ∈ Z} and let V0 :=
span{Tkϕ : k ∈ Z}. Suppose that {Tkη : k ∈ Z} is an orthonormal basis for V0.
Then V0 ⊂ V0 and {Tkϕ : k ∈ Z} is a tight frame with frame bound one for V0

if and only if
ϕ̂(x) = λ(x)η̂(x) for a.e. x ∈ R,

for some λ ∈ L2(T) such that |λ(x)| = χσ(V0)∼(x) for a.e. x ∈ R.

We now show that an FMRA is always contained in an MRA in the following
sense. The construction techniques similar to ours in the following proof are
found in [13, 15, 24, 25, 29].

Theorem 3.2 Suppose that {Vj : j ∈ Z} is an FMRA. Then there exists an
MRA {Vj , j ∈ Z} such that Vj ⊂ Vj for each j ∈ Z.

Proof. Assume that {Vj : j ∈ Z} is an FMRA with a scaling function ϕ. Note
that ϕ̂||x = 0 for x /∈ σ(V0). For j ≥ 0, let

Ej := {x ∈ T : ϕ̂||2−jx 6= 0 and ϕ̂||2−mx = 0, 0 ≤ m < j}.

By Theorem 2.3 (3), we have T = ]j≥0Ej . Hence, for a.e. x ∈ T, there exists a
unique j(x) ∈ N∪{0} such that x ∈ Ej(x). For n ≥ 0, define Pn : `2(Z) → `2(Z)
via

(Pna)(k) :=
{
a(k), if k ∈ nZ,
0, otherwise.

(3.1)

Define

η̂||x := P2j(x)

((
ϕ̂

(
x+ 2πk

2j(x)

))
k∈Z

)
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for a.e. x ∈ T. This defines η ∈ L2(R). Let Vj := span{DjTkη : k ∈ Z} for
j ∈ Z. Notice that η̂||x is the ‘up-sampled’ version of ϕ̂||2−j(x)x, i.e.,

η̂||x(2j(x)k) = ϕ̂||2−j(x)x(k), k ∈ Z,
η̂||x(k) = 0, k /∈ 2j(x)Z.

(3.2)

Therefore, ‖η̂||x‖2`2(Z) = ‖ϕ̂||2−j(x)x‖2`2(Z) = 1 for a.e. x ∈ T. By Proposition 2.1,
{Tkη : k ∈ Z} is an orthonormal basis for V0. Notice that

ϕ̂||x = χσ(V0)∼(x)η̂||x. (3.3)

Hence V0 ⊂ V0 by Lemma 3.1. Since Vj = Dj(V0) and Vj = Dj(V0), we have
Vj ⊂ Vj for j ∈ Z. To show that {Vj : j ∈ Z} is an MRA with a scaling function
η, we only need to check that η satisfies Conditions (2) and (3) of Theorem 2.3
in view of Theorem 5.2 in Chapter 7 of [13].

(3.3) implies that |ϕ̂(x)| ≤ |η̂(x)| for a.e. x ∈ R. Condition (3) of Theorem
2.3 implies that

1 ≥ |η̂(2−jx)| ≥ |ϕ̂(2−jx)| → 1,

as j tends to infinity for a.e. x ∈ R. Hence η satisfies Condition (3) of Theorem
2.3.

Now we find m ∈ L2(T) such that η̂(2x) = m(x)η̂(x) for a.e. x ∈ R, which
is equivalent to:

(η̂(2x+ 4πk))k∈Z = m(x)η̂||x, (3.4)

for a.e. x ∈ T. Let mF be a low-pass filter for ϕ such that

(ϕ(2x+ 4πk))k∈Z = mF (x)ϕ̂||x

for a.e. x ∈ T. It is rather technical to check Condition (2) of Theorem 2.3.
Notice that

T =
(
σ(V0) ∩

1
2
(σ(V0))∼

)
]
(
σ(V0) ∩

1
2
(T \ σ(V0))∼

)
]
(

(T \ σ(V0)) ∩
1
2
(σ(V0))∼

)
]
(

(T \ σ(V0)) ∩
1
2
(T \ σ(V0))∼

)
.

First, suppose x ∈ σ(V0) and 2x ∈ (σ(V0))∼. Since x ∈ σ(V0), j(x) = 0.
Hence η̂||x = ϕ̂||x. If x ∈ σ(V0) ⊂ T and 2x ∈ σ(V0)∼, Then either 2x ∈ σ(V0)
or one of 2x + 2π and 2x − 2π is in σ(V0). Suppose that 2x ∈ σ(V0). Then,
obviously, η̂(2x+ 2πk) = ϕ̂(2x+ 2πk) for each integer k. Hence,

η̂(2x+ 4πk) = ϕ̂(2x+ 4πk)

= mF (x)ϕ̂(x+ 2πk)

= mF (x)η̂(x+ 2πk)
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for each integer k. Suppose, on the other hand, that 2x + 2π ∈ σ(V0). Then
j(2x+ 2π) = 0. Therefore, for each integer k,

η̂(2x+ 4πk) = η̂(2x+ 2π + 2π(2k − 1))

= ϕ̂(2x+ 2π + 2π(2k − 1))

= ϕ̂(2x+ 4πk)

= mF (x)ϕ̂(x+ 2πk)

= mF (x)η̂(x+ 2πk).

The last equality holds since x ∈ σ(V0). The case that 2x− 2π ∈ σ(V0) can be
handled similarly. We define m(x) := mF (x) for a.e. x ∈ σ(V0)∩ (1/2)(σ(V0))∼.
Then we have (η̂(2x+ 4πk))k∈Z = m(x)η̂||x for a.e. x ∈ σ(V0) ∩ (1/2)(σ(V0))∼.

Secondly, suppose x ∈ σ(V0) and 2x ∈ (T \ σ(V0))∼, i.e., x ∈ σ(V0) and
2x /∈ (σ(V0))∼. Then η̂||x = ϕ̂||x. If |x| ≤ π/2, then 2x /∈ σ(V0) ⊂ T. Thus
j(2x) = 1. By (3.2), for k ∈ Z,

η̂(2x+ 4πk) = η̂||2x(2k) = ϕ̂||2−12x(k) = ϕ̂(x+ 2πk) = η̂(x+ 2πk).

We define m(x) := 1 for a.e. x ∈ σ(V0)∩ (1/2)(T \ σ(V0))∼ ∩ [−π/2, π/2]. Then
(η̂(2x+4πk))k∈Z = m(x)η̂||x for a.e. x ∈ σ(V0)∩(1/2)(T \ σ(V0))∼∩[−π/2, π/2].

If x ∈ [−π,−π/2], then 2x + 2π /∈ σ(V0) ⊂ T. Thus j(2x + 2π) ≥ 1. Hence
2k − 1 /∈ 2j(2x+2kπ)Z for k ∈ Z. For k ∈ Z, we have, by (3.2),

η̂(2x+ 4πk) = η̂(2x+ 2π + 2π(2k − 1)) = η̂||2x+2π(2k − 1) = 0.

Similarly, if x ∈ [π/2, π], then (η̂(2x + 4πk))k∈Z = 0. Hence, for x ∈ σ(V0) ∩
(1/2)(T \ σ(V0))∼∩(T\[−π/2, π/2]), we define m(x) := 0, which implies (η̂(2x+
4πk))k∈Z = 0 = m(x)η̂||x.

Thirdly, suppose x ∈ T \ σ(V0) and 2x ∈ (σ(V0))∼. Then, either 2x ∈ σ(V0)
or one of 2x + 2π and 2x − 2π is in σ(V0). Suppose that 2x ∈ σ(V0). Then,
η̂(2x+ 4πk) = ϕ̂(2x+ 4πk) for each integer k. Hence,

η̂(2x+ 4πk) = ϕ̂(2x+ 4πk)

= mF (x)ϕ̂(x+ 2πk)

= 0

for each integer k. Suppose, on the other hand, that 2x+ 2π ∈ σ(V0). We now
have

η̂(2x+ 4πk) = η̂(2x+ 2π + 2π(2k − 1))

= ϕ̂(2x+ 2π + 2π(2k − 1))

= ϕ̂(2x+ 4πk)

= mF (x)ϕ̂(x+ 2πk)

= 0
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for each integer k since x ∈ T \ σ(V0). Similarly, if 2x − 2π ∈ σ(V0), then
η̂(2x + 4πk) = 0 for each integer k. So we define m(x) := 0 for a.e. x ∈
(T \σ(V0))∩ (1/2)(σ(V0))∼. Then we have (η̂(2x+4πk))k∈Z = m(x)η̂||x for a.e.
x ∈ (T \ σ(V0)) ∩ (1/2)(σ(V0))∼.

Finally, let x ∈ T \ σ(V0) and 2x /∈ (σ(V0))∼. Notice that if x ∈ [−π/2, π/2],
then we have j(2x) = j(x) + 1. Hence, for each integer k,

η̂(2x+ 2 · 2π2j(x)k) = η̂(2x+ 2π2j(2x)k) = η̂||2x(2j(2x)k)

= ϕ̂||2−j(2x)2x(k) = ϕ̂||2−j(x)x(k)

= η̂||x(2j(x)k) = η̂(x+ 2π2j(x)k).

Note that, for k /∈ 2j(x)Z = 2j(2x)(1/2)Z, 2k /∈ 2j(2x)Z. Hence

η̂(2x+ 2π2k) = 0 = η(x+ 2πk).

If we define m(x) := 1 in this case, then we have, for a.e. x ∈ (T \ σ(V0)) ∩
(1/2)(T \ σ(V0))∼ ∩ [−π/2, π/2], (η̂(2x+ 4πk))k∈Z = m(x)η̂||x.

If x ∈ [−π,−π/2], then j(2x + 2π) ≥ 1. Thus 2k − 1 /∈ 2j(2x+2π)Z for each
integer k. Hence we have, for k ∈ Z,

η̂(2x+ 4πk) = η̂(2x+ 2π + 2π(2k − 1)) = η̂||2x+2π(2k − 1) = 0

by (3.2). Similarly, if x ∈ [π/2, π], then (η̂(2x + 4πk))k∈Z = 0. Hence, for a.e.
x ∈ (T \ σ(V0)) ∩ (1/2)(T \ σ(V0))∼ ∩ (T \ [−π/2, π/2]), we take m(x) := 0 in
this case, which implies (η̂(2x+ 4πk))k∈Z = 0 = m(x)η̂||x.

To summarize all these, we define 2π-periodic function m via

m(x) :=


mF (x), if x ∈ σ(V0) ∩ 1

2 (σ(V0))∼,

1,
if x ∈

(
σ(V0) ∩ 1

2 (T \ σ(V0))∼ ∩ [−π
2
,
π

2
]
)

]
(
T \ σ(V0)) ∩ 1

2 ((σ(V0))∼
)
,

0, otherwise.

Then we have (η̂(2x+ 4πk))k∈Z = m(x)η̂||x for a.e. x ∈ T. Hence Condition (2)
of Theorem 2.3 is satisfied. �

We have seen that an FMRA is always contained in an MRA. It is natural
to ask: Does an MRA always contain a ‘genuine’ FMRA? The corollary to
the following theorem (Corollary 3.4) shows that it does not. The following
theorem characterizes the spectrums of the central spaces of FMRAs contained
in an MRA.

Theorem 3.3 Let A ⊂ T. Suppose that {Vj : j ∈ Z} is an MRA with a scaling
function η. Let m be its unique low-pass filter and Nm := {x ∈ R : m(x) = 0}.
Then there exists an FMRA {Vj : j ∈ Z} with A = σ(V0) such that Vj ⊂ Vj for
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each j ∈ Z if and only if

(R \ Ã) ⊂
(

R \ 1
2
Ã

)
∪Nm; (3.5)

lim
j→∞

χA(2−jx) = 1 for a.e. x ∈ R. (3.6)

Proof. (⇒) Since {Vj : j ∈ Z} is an FMRA, there exist a low-pass filter mF ∈
L2(T) and a scaling function ϕ such that

ϕ̂(2x) = mF (x)ϕ̂(x). (3.7)

Since V0 ⊂ V0, Lemma 3.1 implies that

ϕ̂(x) = λ(x)η̂(x) for a.e. x ∈ T,

for some λ ∈ L2(T) such that |λ(x)| = χÃ(x) for a.e. x ∈ T. Combining this
with (3.7), we have, for a.e. x ∈ R,

ϕ̂(2x) = λ(2x)η(2x) = λ(2x)m(x)η̂(x) and

ϕ̂(2x) = mF (x)ϕ̂(x) = mF (x)λ(x)η̂(x).

Notice that λ(2x) is π-periodic. Therefore, we have

χ 1
2 Ã(x)|m(x)|2 = |λ(2x)m(x)|2

∑
k∈Z

|η̂(x+ 2πk)|2

= |λ(x)mF (x)|2
∑
k∈Z

|η̂(x+ 2πk)|2

= χÃ(x)|mF (x)|2,

where we have used Proposition 2.1. This implies Condition (3.5). Condition
(3.6) follows by Theorem 2.5.
(⇐) Define ϕ via ϕ̂(x) := χÃ(x)η̂(x) and let Vj := span{DjTkϕ : k ∈ Z} for
j ∈ Z. It follows from Lemma 3.1 that V0 ⊂ V0. Hence Vj ⊂ Vj for j ⊂ Z. To
show that {Vj : j ∈ Z} is an FMRA, we only need to check Conditions (1) ∼
(3) of Theorem 2.3. Proposition 2.1 implies that∑

k∈Z
|ϕ̂(x+ 2πk)|2 = χÃ(x).

This shows that Condition (1) of Theorem 2.3 holds; and also shows that
σ(V0) = A. Since {Vj : j ∈ Z} is an MRA, we have limj→∞ |η̂(2−jx)| = 1
for a.e. x ∈ R by Theorem 2.3. Combing this with (3.6) yields Condition (3) of
Theorem 2.3. Notice that, for a.e. x ∈ R,

ϕ̂(2x) = χÃ(2x)η(2x) = χÃ(2x)m(x)η̂(x). (3.8)
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Define

mF (x) :=
{
χÃ(2x)m(x), x ∈ Ã
0, otherwise.

If x ∈ Ã, then ϕ̂(x) = η̂(x); and hence ϕ̂(2x) = mF (x)ϕ̂(x). If x /∈ Ã, then

ϕ̂(2x) = χÃ(2x)m(x)η̂(x) = χ(1/2)Ã(x)m(x)η̂(x) = 0

by (3.5). Recall that mF (x) = 0 for x /∈ Ã. Hence we have

ϕ̂(2x) = 0 = mF (x)ϕ̂(x).

This shows that Condition (2) of Theorem 2.3 holds. �
It is interesting to note that Conditions (3.5) and (3.6) imply the existence

of such a set B as in Theorem 2.5. Actually, we could have proved the ‘if’ part
of the above theorem by resorting to Theorem 2.5 in the following way: Suppose
we are given an MRA {Vj : j ∈ Z} with a scaling function η. Let m,Nm, A be
as in Theorem 3.3. Suppose that they satisfy (3.5) and (3.6). A scrutiny of the
proof of the ‘if’ part of the theorem shows that

B := Ã ∩ supp(η̂)

is a candidate. We now show that B satisfy (2.6), (2.8) and (2.11). Since
(supp(η̂))T = T, (2.6) is satisfied. Now suppose that x ∈ (1/2)B. Then 2x ∈
B = Ã ∩ supp(η̂). Since 0 6= η̂(2x) = m(x)η̂(x), x /∈ Nm and x ∈ supp(η̂).
Suppose that x /∈ Ã. Then by (3.5) 2x /∈ Ã since x /∈ Nm. Since 2x is assumed to
be inB = Ã∩supp(η̂), the contradiction shows that x ∈ Ã. Therefore x ∈ B. We
have shown that (1/2)B ⊂ B, thereby showing that (1/2)B ⊂ ((1/2)B)∼ ∩ B.
Suppose, on the other hand, that x ∈ ((1/2)B)∼ ∩B. Then there exists kx ∈ Z
such that

2x+ 4πkx ∈ B = Ã ∩ supp(η̂) (3.9)

x ∈ B = Ã ∩ supp(η̂). (3.10)

(3.9) implies that 0 6= η̂(2x + 4πkx) = m(x)η̂(x + 2πkx). This shows that
m(x) 6= 0. Since η̂(x) 6= 0 by (3.10), η̂(2x) = m(x)η̂(x) 6= 0. (3.9) also implies
that 2x ∈ Ã. Therefore 2x ∈ B. This establishes (2.8). (3.6) and Condition (3)
of Theorem 2.3 imply that (2.11) is satisfied. This completes the proof of the
‘if’ part of Theorem 3.3 by Theorem 2.5. �

The ergodicity argument used in the following corollary may also be seen in
[15, 18, 21].

Corollary 3.4 Suppose that {Vj : j ∈ Z} is an MRA and η its scaling function.
Let m be its unique low-pass filter and let Nm := {x ∈ R : m(x) = 0} be its zero
set. Suppose also that

|Nm| = 0. (3.11)

Then the MRA contains no FMRAs other than itself.
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Proof. Suppose that an FMRA {Vj : j ∈ Z} with a scaling function ϕ is
contained in the MRA. We first show that the FMRA is actually an MRA.
Let A := σ(V0). Note that (Nm)T = {x ∈ T : m(x) = 0}. A is clearly
not an empty set. It suffices to show that A = T by Proposition 2.1. If we
suppose otherwise, then |T \ A| > 0. Suppose also that |(Nm)T \ A| = 0. Then
(T \ A) ⊂ (T \ (Nm)T). Recall our convention that all inclusions are modulo
measure zero sets. Condition (3.5) implies that

T \A ⊂ 1
2
(T \A)∼. (3.12)

Let T : T → T be the Baker’s map defined via Tx := 2x (mod 2π). This map is
well-known to be measure-preserving, i.e., |T−1(B)| = |B| for any measurable
subset B of T, and ergodic [28, Theorem 1.15]. Let C := T \ A ⊂ T. (3.12)
implies that T (C) ⊂ C. Hence we have

C ⊂ T−1(T (C)) ⊂ T−1(C). (3.13)

Since T is measure-preserving, the Lebesgue measure of T−1(C) equals that of
C. Hence T−1(C) = C. Since T is ergodic, C = ∅ or T [28, Theorem 1.5].
However, C 6= ∅ since it is assumed to have positive measure. Hence, C = T
and, therefore, A = ∅, which is a contradiction. Thus we have |(Nm)T \A| > 0.
If |(Nm)T \A| > 0, then obviously |(Nm)T| > 0, contradicting (3.11).

Now ϕ ∈ V0 ⊂ V0. Since {Tkη : k ∈ Z} is an orthonormal basis of V0, there
exists a 2π-periodic function a such that

ϕ̂(x) = a(x)η̂(x) for a.e. x ∈ R.

Since {Tkϕ : k ∈ Z} is also an orthonormal basis for V0, we have, by Proposition
2.1,

1 =
∑
k∈Z

|ϕ̂(x+ 2πk)|2 = |a(x)|2
∑
k∈Z

|η̂(x+ 2πk)|2 = |a(x)|2

for a.e. x ∈ R. This shows that a and 1/a are in L∞(T). Hence η̂(x) =
(1/a(x))ϕ̂(x) for a.e. x ∈ R. This implies that η ∈ V0. Therefore V0 = V0,
whence Vj = Vj for each integer j by dilation. �

Recall that the low-pass filter of any compactly supported refinable function
satisfies Condition (3.11). In particular, the MRAs of Daubechies in [9, 10]
contain no FMRAs other than themselves.
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