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Nguyen Minh TRI

Abstract. We investigate the Gevrey regularity (in particular, the analyticity)
of solutions of semilinear elliptic degenerate equations on the plane. The method is
based on constructing explicit formulas for fundamental solutions and the Friedman
effect near the boundary.

§1. Introduction

In this paper we deal with the Gevrey regularity (in particular, the analyticity)
of solutions of semilinear elliptic degenerate equations of Grushin’s type on R2.
We confine with consideration of a model equation, but it is our belief that the
method can be applied to treat more general equations. Recently we have used this
method to achieve some progress in studying the Gevrey regularity of solutions of
semilinear subelliptic partial differential equations, see [1], [2], [3]. First let us define
a space generalizing the space of analytic functions (see for example [4]). Let L,
and L,, be two sequences of positive numbers, satisfying the monotonicity condition
(M LiLn—i < AL, (i = 1,2..;m=1,2...), where A is a positive constant. A function
F(z,v), defined for x = (1, z2) and for v = (v1, ..., v,) in a p—dimensional open set
E, is said to belong to the class C{L,_q;Q|Ln_q; E} (ais an integer) if and only if
F(xz,v) is infinitely differentiable and to every pair of compact subsets Qo C Q and
FEy C E there correspond constants A; and As such that for x € Q4 and v € F

ITEF(z,v)

J1 9,.d2 9,,k1 ku
O0xy' 0xy’ Ovy'...0v,

S AlAg—l-ij—aEk—aa

I
=1
We use the notation L_; = 1(: = 0,1,2,...). If F(z,v) = f(z), we simply write
f(x) € C{L,_4;Q2}. Note that C{n!;Q}, (C{n!%;Q}) is the space of all analytic
functions (s-Gevrey functions), respectively, in 2. Now we introduce some notations
used in the paper

Ev={(e,B7) €L :a+p<tkt>y>a+ (1+k)B -t}
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[t B8
For a function f(z,y) on R? we write 82 f, 8% f, 810‘7’2ﬂf, O pf for 2 fey) 27/(@y)

oze oy
6a+ﬁf(w7y) Y aa+ﬁf(w7y)

575 0yP D70y respectively. We will consider the following equation

0 0
(1) kaf—l—\I/(a:,y,f,—f,a:k—f) =0 in a domain Q C R?,
’ ox oy
where 52 52
_ 2k k-1 9
Gk,)\ = —8372 +x —ayz + i\x oy

with (z,y) € Q € R2,\ € C,i = v/-1 and k is a positive integer. Since our
consideration is purely local we can assume that €2 is a bounded domain in R2?. Let
us define the following quantities

4 k+1, k+1
R= (.’Ek+1 +Uk+1)2 + (k+ 1)2(y_ v)2,p= %7
Ap =" " ik + 1) (y —v), Al =" M — ik + 1) (y — v),

k+A kE—X\

M = A% A7

7

here we take 27> = e for 21,20 € C and if 21 = e, —1 < ¢ < 7 then
Inz; = Inr 4 ip. Next we rewrite Gg x as XoX1 + i(A + k)ac’“_la% where X; =

% — z'a:ka%, Xy = % + z'a:ka%. We will find the uniform fundamental solution of

Gk,)\, that is
Gk,)\Fk,k('lI;7 Y, u, U) = 5('7’. —u,y— U)7

in the following form
Fk,/\(ma Yy, u, U) = F(p)M

After some computations we arrive at
GraFix = 16(k+ 1) 2 2k+2,2k [(uk+1 _$k+1)2 F(k+1)2(y—v)2| MR™3F" (p)+

+4(k+1)z* TPk (222 4?24 (B+1)2 (y—v)?) — (6k+4) 2" TP MR 2 F (p)+
+ (A2 = )z M M RTIE (p).

Therefore if F(p) satisfies the following hypergeometric equation (see [5], p. 56)

(2) p(L=p)F"(p) +[c— (1 +a+b)p]F'(p) — abF(p) =0
with a = 322 b = =4, ¢ = &5, then formally we will have

Gk’)\Fk)\ =0.



The general solution of (2) is

k+X k- k
2k+2"2k+2"k+1

E+24+X kE+2—-X k+2 )

F(p) = C1F
(p) =01 ( %+2 " 2%+2 'k+1?

,p)+02pk_ilF (

where F'(a, b, c,p) is the Gauss hypergeometric function and C7, Cy are some com-
plex constant (see [5], p. 74). Now we will separately consider the case k is odd
and k is even.

§2. Case k is odd.

Since k is odd we note that 0 < p < 1. Moreover p = 1 if and only if x = +u #
0,y =v. If u =0 then p = 0 therefore from the result of [6] we should choose

k+A k—\
P& )r(43)
e ()

Cr=-
k+1

If w # 0 then the singularities of Fy x(z,y,u,v) will be located at the one of F(p).
On the other hand, F(p) with 0 < p < 1 has singularity only when p=1. Asp — 1
we have the following asymptotic expansions (see [5], p. 74)

E+A k- k Pt
0= F (55 o3 T 1?) r(E2)r(42) og(1=p)+O),

2k+2 2k+2
E+24X k+2- X k+2 (&)
F =F = — log(1— 1).
2(p) ( 2k+2 7 2k+2 ’k+1’p) F(k2-|;€2-|-2)\)r(k2-|;c2—2)\) 0g(1-p)+0(1)
+ +

We expect that Fy, »(z,y, u, v) has singularity only when z = u,y = v. Since pk+r1 —
—1 when (z,y) — (—u,v), we should choose

k+2+X k+2—X\
(520 )r(55)

Cy=— 1
2 +k—+17rI‘(2—ﬁ)
such that F(p) has no singularity at + = —u,y = v. Note that the following
conditions
(3)

A# 2N (k+1)+k], A # £[2N(k+1)+k+2]|, where N is a non-negative integer,

guarantee that Cy,Cy < oo and hence F(p) has a logarithm growth (if u # 0) at
(z,y) = (u,v).
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Definition. The parameter X is called admissible if X satisfies the condition (3).

Remark 1. Comparing with the well-known results (see [7], [8]) we see that A is
admissible if and only if Gy » is hypoelliptic (analytic hypoelliptic).
Therefore if A is admissible then we expect that the function F(p)M, or

k4 k—\ k44X k=X K
F(2k+2>r(2k+2>F<2k+2’ 2k+2° +17p)
E—X -

2—}-# k % 2k+2
2 k41 WF(k—H)A+ A_

k424 k42— E424A k42-) k42
a:uI‘( 2k+2 )F( 2k+2 )F< 2k+2 7 2k+2 7k+1’p>

) k424X E+2—X ?

Fk,A(%y:Uav) = -

AWA 2k+2
+ —

2— 1o k+2
2 k+1 ﬂF(k—_H

will be our desired uniform fundamental solution. Indeed we have

Theorem 1. Assume that \ is admissible. Then

sz,AFk,A(xa Y, u, U) = (S(.CE —u,y— U)'

Proof. We begin by fixing (u,v) € R2. First assume that u # 0. Then AS, AP € ¢
for every o and . Let us introduce the following polar coordinate

T=u-+7rcosp,y=uv-+rsingp

It is easy to see that Fj x(-,-,u,v) € LL (R?) for every 1 < g < oco. Let Be(u,v) =

{(z,9)Ir < e} and RZ(u,v) = R*\B.(u,v) = {(z,y) € R?[r > ¢}. By applying
Green’s formula we have for every w(z,y) € C5°(R?)

@ [ Fa@u oGl p)dedy= [ V(Foyw k) dedy+
R2(u,v) R

2(u,v)
+/ Fk)\Bl(w,k,)\)ds—/ w(z,y)Ba(F,a, k) ds,
where

V(Fixw, b, A) = WGk AFix, Ba(Fix, k) = (v1 + izF10) X1 Fi 2,
Bi(w, k, ) = (v1 — iz®vy) Xow — i(A 4+ k)2 vpw,

and v = (v1,v7) is the unit outward normal to OR? (u,v). The first integral in the
right side of (4) vanishes. We now compute the second and the third integral in



the right side of (4). When (z,y) tends to (u,v) it is easy to check that

M = (205 4 o(1)) 385 (2ubH 4+ o(1)) 355 — 2~ Fruk 4 o(1),
okl — g k+1 (k + 1)uk7' cos ¢ + o(r), zF = uf 4+ kP cos ¢ + o(r),

o7t =t (k- DuP?rcos o + o(r — cos o,

)’ yl‘aBg(u,v) -

i () =~ s +0(1), R = 4u”**2 + o(1),

(k +1)2(cos? pu?* 4 sin® ¢
l—p= ( s )7'2+0(r2),

Xip = (k+ 1)2u_k_2(—;ﬂ“ cos ¢ + i sin @) "+ ofr).

Moreover using the asymptotic expansions (see [5], p. 75)

(BA BA I ()

2k+2’2k—|—2’k+1’p> :F(k+>\>1-x(2kk;+)\2>(1_p)

F,(k+2+>\ k+2—X k+2 ) F(z—ﬁ)

y ; P = + 0((1 _p)_l)
2k + 2 2k +2 "k+1 F(k;;chrBA)F(k;chr—Q,\)(l_p)

we deduce immediately that

w(u,v) [ uFdyp
— By(Fia k) d =
/TZE U)(:L‘, y) 2( ks ) s — 21 /0 u2k cos? o+ Sin2 0 ’LU(’U,, U)a

(5)

and / Fi Bi(w,k,A\)ds -0 as e —0.
Now from (4), (5) we have

(GraFins w(z,y)) = (Fin, G- aw(z,y)) =
(6) = lim Fi G, w(z,y)dzdy = w(u,v).
e—=0 r>e

From (6) we see that
(7) Gk,)\Fk)\:(S(.T—u,y—’U).

Now if u = 0 we can follow the proof in [6], or take the limit in (7) when u — 0.
This completes the proof of Theorem 1. [

Remark 2. A similar expression for Fy, ¢ is also given in [9], [10].
It is obvious that we also have the following
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Theorem 2. Gy » is hypoelliptic if and only if the hypergeometric equation (2) has
no bounded solution on the interval [0, 1].

Let us denote X = 2 — b2 X} = 2 4+ u* 2 and Gra = Xo X1 +i(A+

k)uk_lﬁ. Noting that Fy x(z,y,u,v) = Fi_(u,v,z,y), from Theorem 1 we can
easily deduce the following

Proposition 1 (Representation formula). Assume that Q C R? is a bounded
domain with piece-wise smooth boundary, f € C?(Q) N CY(Q) and X is admissible
then we have

(8)

f($7 y) = / Fk,)\(xa Y, u, ’U)G;c,)\f(u7 ’U)dUd’U—/ Fk7)\($, Yy, u, U)Bi(‘f(u’ U)’ ka —A)d8+
Q (519

+ / £, 0) By(Fin (@, y, u, v), B)ds,
o0
where

Bi(f(u,v),k, =) = (1/1 — iukl/z) X5f(u,v) —i(=XA+ k)uk_ll/gf(u, v),
Bé(Fk,)\(xa Yy, u, ’U), k) = (Vl + iuky2) X{Fk,k(xay3ua ’l)).

and v = (v1, ) is the unit outward normal vector on 0N).

For m € Z™ let us denote by HI™ () the space of all function f € L} () such
that for any compact K of @ we have >_, 5 ez, llv0a,8f|12(k) < 00. Now we
are able to formulate the main theorem of this section

Theorem 3. Assume that m > 2k® + 6k + 5. Let f be a HI".(2) solution of the
equation (1) and ¥ € C{Ly_q_2;QLy_q_2;R3} for every a € [0,2k + 2]. Then
u € C{Lp_2r_4;}. In particular, if ¥ is a G°—function (or analytic) of its
arquments then so is f.

Proof. The proof of Theorem 3 consists of Theorem 4 and Theorem 5.[]

Theorem 4. Let ¥ be a C®°—function of its arguments and m > 2k? + 6k + 5.
Assume that f € HJ.(Q2) is a solution of the equation (1) then f € C*(Q).

Proof. We begin with establishing the following

Proposition 2. Let m > 2k*+6k+5. Assume that f € H" (). Then ‘I’(a:, Y, f, %, xkg—g)
e H» 1 ().

Proof. 1t is sufficient to prove that vﬁa,ﬂlll(m,y, ,%,xkg—;) € L} .(Q) for every
(o, B,7) € E,—1. Denote by wq, wy, ws, respectively, f, %,mkg—;. Since m > 2k? +

6k+5, by a theorem of Sobolev we deduce that wy, wy, ws € C(£2). Using the Faa di
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Bruno formula we see that 0, gV (, y, w1, w2, ws) is a linear combination of terms
of the form

8|19|\I;($ayawlaw2aw3) fyHﬁ(aaq,jaﬂq,j .)Cq,j
0x?¥1 0y 8w’193 8w1294 8w§95 v 1%t ’

q j=1
where ¢ belongs to a finite set, ¥ = (¥1,02,73,74,95), 9| < a+ B,0q; + Bq,; >

0, Zq,j Cqj = U3 + V4 + Vs, Zq,j(aqd,ﬂq,j)c“q,j = (a — Y1, 8 — ¥3), Therefore the
theorem is proved if we can show this general terms are in L2 (). If all {, ; vanish

then it is immediate that 8w|ql(w’y,’;§1 £2,83) o C(Q), since ¥ € C™,&1,&,&3 €
0xV10yY20£,30€,40¢,° ’ T

C(Q). Therefore we can assume that there exists at least one of (, ; that differs
from 0. Choose qq, jo such that (g j, > 1 and

Qgo.j0 T+ (k + 1)BQO7J'0 = max (aq,j + (k + 1)ﬁq,j)'

Consider the following possibilities

I) Cg.jo = 2. We then have ag; + B4 < m —1— (2k + 2) for all ¢,j such that
Cq; > 1. Indeed, if ¢ # qo or j # jo and a4 + B4 > m — 1 — (2k + 2) then
Qqo,50 T Bgojo < k. Therefore

m—1—(2k+2) < agj+ By < agj+ (k+1)B; <
< Qqo,j0 T+ (k + 1)66107j0 < (k + 1)(0"(10,j0 + IBQOJO) < k(k + 1)'

Thus m < k? + 3k + 3, a contradiction.
If ¢ = qo0,J = jo and g, j, + Bgo,jo > M — 1 — (2k + 2) then we have

m—12> Oé+ﬂ > 2(alIO,j0 +ﬂQO,j0) > 2(m— 1- (2k+2))+1'

Therefore m < 4(k + 1), a contradiction.
Next, for ¢, j such that (;; > 1, set

Vq,; = max{0,aq; + (k+1)By; + 1+ (2k +2) — m}.
Since 0 < agj + B4, < m—1— (2k + 2), we have
Vqj < max{0,kfBq,;} < k(m—1—(2k+2)).

From all above arguments we deduce that (ag,j, Bq,5, Yq,j) € Em—1—(2k+2) for all ¢, j
such that (g ; > 1. Next we claim that 3 ;7g,j¢q,; < - Indeed, if - ;vg,¢q,5 > 7
then we deduce that

a+(k+1)B-2(m—1-(2k+2) > 74iC; >7v>a+(k+1)8—(m—1).

q,j
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Therefore m < 4k + 5, a contradiction.
Now we have

_,L.’YHH( aqgaﬂqg )Cq’j:x’YHﬁ( ’quaaqgaﬂqa )Cq’jEC(Q),’N}/ZO,
q

q j=1 Jj=1

since z7#J 85‘“854%03 e H2FF2(Q) c C(Q).

loc

IT) (40,50 = 1 and (4 ; = 0 for g # o or j # jo. We have

Cq.j 4 .
T (00 0hevy) ™ = ape ooy € 17,(@),

q j=1

III) (4,5, = 1 and there exists (g1, 1) # (qo, jo) such that (4, j, # 0. Define
Vao.jo = Max{0, agq,jo + (k +1)Bgo,5o + 1 — m}.

As in part I) we can prove that (aqj,Bq.5,7q,5) € Em_l_(2k+2) for ¢ # qo or
J 7 Jo and (Qgq jos Bao.jes Va0.d0) € Em—1. Therefore z7e, 1‘8%"8 W, € e H2*2(Q) ¢

loc
C(Q) for (¢,7) # (qo,jo) and z7a0.30 ;%7 86"0 w;, € L2 (Q). We also have
Yq0.50 T Z(q 7)#(d0,0) Yq,iCq.j < 7v as in part I). Now the desired result follows from
the decomposition of the general terms. [J

(continuing the proof of Theorem 4) f € H" (Q),m > 2k* +6k+5 — ¥ €

H™~1(Q) (by Proposition 2). Therefore by a theorem of Grushin we deduce that

loc

f € H™(Q). Repeat the argument again and again we finally arrive at f €

loc

H™ 1 (Q) for every positive ¢, i. e. f € C®(Q).00

loc

Now put ro = 2k + 2. For r € Z let I', denote the set of pairs of multi-indices
(o, B) such that T', = '} UT2 where

={(@,8):a<r, 20+ B<r}I7={(a,f) : a2 r0,a+ <710}

For a pair («,3) we denote by («,)* the minimum of r such that («, ) € T',.
Next define the following norm

7,9, = max 0202, Qf + max  max_ 10212098 £,
( er, z,y)EQ

I

where |f, Q| = max, ,yeq [f + af + zF5 af

The next lemma is due to Friedman (see [4])
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Lemma 1. There exists a constant Cs such that if g(z) is a positive monotone
decreasing function, defined in the interval 0 < z < 1 and satisfying

g(z) < m%g(z(l — %)) + Zn_Cﬁ (n>ro+2,C>0),

then g(z) < CCs/z"~ "0~ 1,

Theorem 5. Let f be a C*™ solution of the equation (1) and ¥ € C{Ly,_o_2;QLy_q_2;R3}
for everya € [0,7r0]. Then f € C{Lyp_r,—2;}. In particular, if ¥ is a G*—function
(or analytic) of its arqguments then so is f.

Proof. We begin with the following

Proposition 3. Assume that ¥ € C{Ly_q_2;QLy_q_2;R3} for every a € [0, 7).
Then there exist constants Cy, Cs such that for every Hy > 1, H; > C4H§k+3 if

f,Qa < HoH DLy 5, 0<d<N+1,70+2<N

then

0 0
5oL (s, £.5 5!

max _
(z,y)eQ

)‘ < CsHoHy ™ 'Ln_ry—1

for every (o, B) € T'ny1.

Proof. For reason of convenience from now on we shall use the following notations

{1 if z >0, {z” if n>1,
and 2" =

0 if z <0, 1 if n < 0.

All the constants used in the proof of this Proposition are taken to be greater
than 1. Now it is sufficient to prove the estimate when (o, ) € I'n41\I'y. As
in Proposition 2, 80‘8ﬁ U(z,y, f, aw,x"’ g?’; ) is a linear combination with positive
coefficients of terms of the form

3
(9) 8|19|\IJ(3j y7w17w27w3 HH aq 381811 Jw ng

0?1 9y 2 Gy dwy* dwy® 1L

Substituting w; by one of the terms f, am,xk g;j we obtain

O Oy (wr) = 7 AR, D77y (ws) = By T,

®q,3

Qq.3 q,3 & )

002 90 (wg) = S ( an“?)k oo (b=t 1)0(k = m 4+ 1) (o) Oy 5 —m1 45, o f-
m=0
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Hence, for j = 1,2, 3, we can decompose (x_m)0a, ;—m, 148, ;] 10O (k—m)0a, B, (8?3853]”)

with (a2, B2,k —m) € 1 and (a3, f3) € ['(q, .8, ;) —m- Put S=N+1—-a—p.
Define R = ro — 5. It is easy to see that 0 < R < rg. Since a4,; < o we deduce
that (ag.j, 84,5) € T(ag j+8,,;+5)- Using the inductive assumption we have

U
‘ ( ;;J) k--- (l{: -—m 4+ 1)9(k —-m + 1) (k_m)aaqd—m,l-i-ﬂq,jf‘ <

< Ce (a;;f) koo (k—m+1)0(k —m+ 1) HoHpwo o2 R <
< CrHoH{ i tPes == B2y s Ra
Therefore we deduce that

o3 s (mka—f) <

oy/ | —
> (aﬁij)k---(k —m 4 D)0k =m + 1) (hm)Day;—m, 148y, f | <
m=0

-2

- i—R
< CSHOH;XQ,J_‘_ﬂq,J Laq,j+,3q,j—R—2-

and the general terms can be estimated by

3

agq, j+Bq,;—R—2
1] CsHoHT " ™" La, 48, ,—r—2-
j=1

Since U € C{Ly_q; Q| Lyp_q; R3}, there exist constants Cy, Cyg such that

8|0|‘I’($7 Y, Wi, W2, ws)
D919y P2 dw?? dwl* dw®

d—R 9
< CoCiy "Lj_p_5Crols 4,
(z,y)€EQ

(15:1914-792,5:?93—!-194—!-795)-

Set p=a+ 3. Now for £ € Riv =v(§) : R — R we take Z(§) = Z1(v(§)) - Z2(§)
where

NNz ¢ P (iR, i
Z1(6) = Z1(v(€)) = Co Y Clle—l.%—z’U (S)’ ZE) =Y Cig L?_R_2g |

7! 7!
i=0 i=0

and

p 1—R—2 ]
H Li_ gt
() = CsHp Y —L1— 8 28"

7!
1=1
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By comparing terms of the form (9) with the corresponding terms in dgp 4 7€) it
follows that

8{"8'6\11(3: v, f,—f, kgjyc)‘

(:my)EQ

Next we introduce the following notation (see [4]): v(§) < h(§) if and only if
v@(0) < AU)(0) for 1 < j < p. It is not difficult to check that, there exists a
constant Cy (independent of p ) such that

i—R—3
v*(€) < (CgHp)*Cha Z H G _Lzl)R ¢’
=2 '

And by induction we have

_ Li— '—R—lgi
< (CgHo) Ozt gimi—R-1Z2izi-Ro15
(6) ( 8 O 12 z_; (Z_j_l-l)‘
Next, it is easy to verify that Z;(0) = Co, %5(5) ¢ < CgCyC11Hyp, and
=0
djdzgj(g) —C{O_ j—R—2- We now Compute djggj(g) o when 2 <]<p

f2<y < R + 2 then using that fact that 0 < R < ry we deduce that

& 7, (€) &t (€) gy iien 4!
Tgﬂ‘g 0 OQZZICII i—R—2 "y o ‘dé_J ‘ CQECII(CSHO) C'12 (_]—Z+1)'Z' <
(10)

J
< (R+2)!CyC11CsHy Z(CSCIICI2HO)Z_1 < CizHoH;

=1
provided Hl 2 (C’SCllCleo)’"OH.
If R+3<j<2R+4 then

d17:(8) . ' (€)
- < i R_ -
dgi ‘5:0 —CQEC”L’ R=270dei

VAN

J
. oL L i—R 23!
<c§j02 CsHo)'Cis L, H“Rl—J <
= 9i:1 11(CsHo)'Cy R-2 (j—i+ 1)k —
(11)

<014Z (CsC11C12HoHy M) 1HOHJ =2 L;_r_o <CisHyH _R 2Lj—R—2
=1
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provided H1 2 08011012H0.
If j > 2R + 5, we have

‘ RBA2 i ivi—1 pyj—i—R— .
del.(g) < Oy Z C11(CsHo) C{ZIH{ R 1Lj—i—R—1]!+

LS P ilj —i+1)!

1 —R—2 . . . i R— ‘

1 4y C(GsHO O T i palyionoai!

i=R+3 g —i+ 1)
i z]: Ct1(CsHy)'Ciy ' Li—p—2j!

= TR il(j—i+1)!

The first sum in (12) is estimated by
(13) CrHoHI %L _p_y

provided Hy > Cg(C11C19Hy as for R+ 3 < 57 < 2R+ 4.
By using the monotonicity condition on L,, the second sum in (12) is estimated by

i_R—2 . L i R ]
"N~ Chi(CsHo)'Cly H{™ " 'Li_p_2Lj i r1j!
Cy Z YR | <
M il(j—i+1)!
i_R—2. i—R—2
< 017H0H{ R ZJ!Lj—zR—3 I Z 1 1 <
- (j —2R —3)! i:R_l_si---(i—R—l)(j—i-l—l)---(j—i—R)_

(14)
< C1gHoHI " L;_g_o,

provided Hl Z 08011012H0.
For the third sum we see that

J i Ha)e i_lLi— !
Co Z C1,(CsHy)'C1; R—2]

Y ' <
e T il(j—i+1)!
(15)
< CsCoCh1 HoHI H72j1 J L2 HoHI B2,
< CgCoCr11HoHy J! Z mﬁcwol j—R—2;
i=j—R—1 :

if Hl Z (08011012H0)2.
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By (10)-(15) and taking Hy > (CsCioC11C12Hp)™ ! = CLHZ* 3 we obtain

R—2

< Ca Z (p) H0H1C’fo_j_RLp_j_R_2+
£=0 J=0 J

P Z(E, )
dev

p
+Co Y (P)HOH{_R_2LJ R2CP ™ L, i p_9 < CouHoHP "L, p_s.

j=R+3
Hence
0 _R—
max ( z,y afa fa k f)‘ SC22HOH%D R 2Lp—R—2 S
e ay

< CsHoHY ™ 1Lyn_p 1.0

Remark 3. The constants Cy, C's depend on 2 increasingly in the sense that with
the same Cy, Cs5, Proposition 3 remains valid if we substitute €2 by any € C Q.

Corollary 1. Under the same hypotheses of the Proposition with d < N+1 replaced
by d < N, then

<$ y’f’ f’ kg;{’;

)| < C5(11, Qw1 + HoHY 0 Ly,

max
z€E

for every (o, 8) € 'nta.
Proof. Indeed, as in the proof of the Proposition 3 all typical terms, except

8‘2}‘1’ o ngm can be estimated by | - |y. Replacing w;, by one of f, 3$a$k gg,
we have

OV g = S ogolr, O ggofun) = o alroR

gf 9288 (ws) = 88—‘1; k0o, 148+

g_u‘i i (::L) keo-(k—m+1)0(k—m~+1) (4_m)Oa—m,1+8/

m=1
The terms 6‘1” 005 f, 2L o0y f, 2 e kOa,11pf are estimated by Cs|f, Qw41
The last sum is majorized as in Proposition 3. [

(continuing the proof of Theorem 5) Since Gy is elliptic if 2 # 0 it suffices to
consider the case (0,0) € 2 and € is a small neighborhood of (0,0). Let us define
a distance

p((u,v), (z,y)) = {

max {|zF T — uF | (K + 1)jy —v|}, for zu>0
max {zF T + uF (K +1)|y — o[}, for zu <0.



14

For two sets S1, S the distance between them is defined as

S ”S = inf ’ ’ ’ .
p(S1, S2) et es, p((z,y), (u,v))

Let VT(T < 1) be the cube with edges of size (in the p metric) 27", which are
parallel to the coordinate axes and centered at (0,0). Denote by VI the subcube
which is homothetic with V7 and such that the distance between its boundary and
the boundary of V7 is §. We shall prove by induction that if 7" is small enough
then there exist constants Hy, H; with H, > C4H§k+3 such that

(16) £, Vi |n < Hy for 0<n <6k+4,

and

(17)
FVEL < Ho (P T for > 6k +4, and § sufficient] 1l
y Vs In S 1o 5 n—ro—2 10T T 2> + 4, an sutficiently small.

Hence the desired conclusion follows. (16) follows easily from the C°° smoothness
assumption on f. Assume that (17) holds for n = N. We shall prove it for
n=N+1. Puté =6(1—1/N),6" = §(1 —4/N). Fix (z,y) € V¥ and then
define o = p((z,y),0VT) and 6 = o/N. Let Vz(z,y) denote the cube with center
at (z,y) and edges of length 26 which are parallel to the coordinate axes, and
S (z,y) the boundary of Vz(z,y). Note that o > 4, and Vz(z,y) C V5. Let
Ey, E3(Es, Ey4) be edges of Sz(z,y) which are parallel to Oz(Oy) respectively. We
have to estimate max(m,y)evﬂ +Oa.p (8?182ﬂlf)‘ for all (o, B3,7v) € Eq,(a1,51) €

I'ny1, and max(%y)evﬂ(8f+a18§1f)‘ for all (a1,81) € Tny1,00 > 1,61 > 1. But

when (a1, f1) € 'y we have already the desired estimate. Hence it suffices to obtain
L oats

the estimate only for (ay,81) € I'yv41\['v. Let us abbreviate %, 508> Buagyl a5

02,08 0208, respectively.

urrvrYu v

Lemma 2. Assume that (o, B,7) € 21 and (a1,61) € Tny1. Thenif ay > 1,51 >
1 there exists a constant Ca3 such that

max | ,9q,6 (05" 05 f(z,y)) | <

(z,y)EYGT
Hl N—T‘O—l 1 1
vt H() T I (THR + )>'

<Css (T’#l |fa Vs

Proof. Differentiating the equation (1) a; times in z and 7 times in y then applying
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the representation formula (8) for Q = Vz(x,y) we have

o 0f fla) = | o Bl o) (A ) Bl ) dud-
&\ T,y
_ / Fia (@, 4, v) B} (922 08 £ (u, v), k, —\)ds+
S5 (z,y)

+/ aglaglf(u,U)Bé(Fk,A(J;,y,u, v), k)ds,
S5 (z,y)

where
min{2k,a; } o
A =— "2k (2k + 1 — m)uk oo 2
D I B L R e
min{k—1,a1} o
. 1 k—1-mgai1—m qB1+1
— k—1)---(k— 0 0 ,
D S (A L A
and

B(u,v) = —831851\11(11,,1),]”, %,uk%)

Therefore differentiating ,0, g gives
'yaa,ﬁ (8?182ﬂlf(xa y)) = /V ( ) 78a’§Fk7)\(37, Yy, u, ’U)(A(U, ’U) + B(’U,, U))dUdv_
(.Y
- / o) 0,5 Fx A (T, y, u,v) BL (02102 f (u,v), k, =) ds+
Ss(z,y

+/ 02102 f (u, )4 00 5 By (Fr A (T, y, u, v), k)ds =:
S5 (z,y)

(18) =: I1+I2+I3.
It is not difficult to show that

=

(19) [ 40asFilyr< o[ — b 4 (h+ 12y — o] * = CoaBT*.
Indeed, (19) follows from the set of estimates on Vr

0 <p <1, max{|F(p)],|F3(p)|} < Cas(1 —p)~' < CoeRR;*

max {|Fy(p)], |Fa(p)|} < CorRIRT ¥, 0 < Ry < R < Cs,

M 1
M) = R, wmax {| 2] o S} < oo,
(20)
op & OD 1 k42 Bpﬁl kapk%l 1
- —_— < 2 2k+2 < 2k+2 |
max{‘axHx 8y}_030R1R k+,max{‘ 92 ,‘ 3y }_CglR R+
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Next we estimate A(u,v). Consider three cases
I) oy = 1. We have u?*=1951+2 = 42k=191(9P1+1) with (0,81 +1) € I'y. Therefore
we have
H,\N—-ro—2
|A(u, v)] < 032H0<5—,1) ’
Vb" ($,y)

LN—’I‘()—].'

IT) 2 < oy < 4k 4 4. In this case we have 1 < N — 3. If m = o then

Hi\N—-ro—2
‘u2k_m851+2f|v&(w,y) < 033H0(5—,1> Ln_ry-2,
Hi\N—-r0—2
(21) |uk_m_13{?1+1f|‘,&($,y) < 034H0(5—,1) LN-—ro—2

since (0,81 +2),(0,81 +1) € Ty_1. If 2 < oy < 2k + 2 and m < oy then it is
easy to verify that (a; —m — 1,81 +2),(cy —m — 1,51 + 1) € I'y. Hence by the
inductive assumptions we have on V;(z,y)

N—rog—
ko | < ol (o082 )| < OnoHo ()T L
(22)
N—rg—
g < ok (o 0p )| < Cuntta (51T vy

If2k+3 < a1 <4k +4and 1 < m < «a; we have the same estimates for
u2k—mpor—mgbit2 £ yk—m—lgoai—m-1ghi+l ¢ a5 in (22), since (o —m — 1,81 +
2),(cr—m—1,p1+1)ely.

If 2k +3 < a1 < 4k+4 and m = 1 then oy — m > 4 and (a7 — 3,61 +
2),(an — 3,81 +1) € Ty, with a; —3 > 2,8, +1 > 2. Therefore if we writes
u2k—1831—1651-|-2f7 uk—2831—1851+1f as U2k_185 (831_3651+2f) 7 uk—283 (831—38g1+1f)7
respectively, and use the inductive assumptions we still have the estimate (22) for
u2k_1331_1851+2f, uk_2831_1851+1f.

Therefore combining (21), (22) yields

)N—ro—2

H
A@w)l| < CarHo(S

LN—T‘o—l .
V& ($7y)

III) If ay > 4k + 5 then we can write

u TR ORR f (u,v) = w2 (95 TN f(u,v))

uk_m_lagl_m851+1f(u, U) _ uk—m—laz (831—m—2851+1f(u, U))a
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where (o —m—2,681+2), (a1 —m—2,61+1) € ’ny1_mand o —m—2>1,6; > 1.
Therefore by inductive assumptions we see that
min{2k,a; }

o] Hi\N—-ro—m-—1
S 038 Z (']’I;)HO( 511> LN—’I‘g—m—l S

Ve (2,y) m=1

H N—’r‘o—2
< 039H0(5—,1) Ln_ry—1-

Hence in both cases we have

(23) [A(u, )]

[ A(u, )]

H N—T0—2
< C4OHO< 51> Ly—ry-1.
V& ($7y)

On the other hand, from Proposition 3 and the inductive assumption we have

< C’s(|f’ Vi v + Ho(fSIl)N_ro_lLN—roq)-

(24)  [B(u,v)|

VE($7y)
Combining (19), (23), (24) we obtain

H N—’I‘o—l
] < C41<\f, Vi [ N41 -|-H0( 5,1) LN—ro—l) X

[

(25) x/ [|a:k+1 —uk+1|2+(k+1)2|y—v|2]_§dudv <
Vs (2,y)

Hl N—7rg—1
<C42T’chl (|f Vi | N+1 +H0( 5 ) LN—ro—l)-

A) Let us now estimate the third integral in (18). Consider two cases:
1) |z| < (2&)ﬁ. It is clear that |u| < 357 on Sz(z,y). We have the following
estimate

(26) X Cas

TR
5(z,y)  GR+L

Indeed, (26) results from the following set of estimates on Sz (x,y)
max{|F (p)[, [F'(p)|, [F"(p)|} < Cas if zu <0,
0<p<Cys <1 if zu>0= max{|F(p)|,|F'(p)|,|F"(p)|} < Cy if zu>0,

M M M 1

o[22 2] L) <,
u

op 1 kg2

— — — k=2 < 2 2k+2

max{ 5[4 3 x ay }_C4SR1R k+2,

M| =R~ %7, Cp62<R, 0< Ry <R < Csd2,

0’°M 92 M 92 M oo
§ * xFayP < T 2Ktz
max{ axﬁu‘ ‘ 83:81)‘ ‘ Oydu |’ ayav‘} < Cs1 R,
(27)
Op 9%p _ 1
k kb 9P N\ o pi
max{ &’Uﬁu‘ ‘ dzdv |’ 3y3u ’ dydv }_ 52dv R+
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Since a; > 1 we can write 82205 f(u,v) = 8L (0% 7185 f(u,v)). Therefore we
have

(28) 3] <

CssHy (Hy\N—1-70
<_> LN—T‘(]—l'

H, o

2) |z| > (25)%1. We then have zu > 0, |u| > 27 % |z| > 6%71 on Ss(z,y). In
this case p is not bounded away from 1 as in (27) hence the estimates in (27) for
F(p), F'(p), F"(p) are not necessarily true. But we use the following set of estimates

C54Rﬁ < Jul < CssRﬁ; C566° < Ry < C5762, C586° < R,
(20)  |F(0)| < CsoR¥R;*, [F'(p)| < CooRRTY, |F"(p)] < CorR*R™.

and the estimates in (27) (except the estimates for p, F'(p), F'(p), F"(p)) to deduce
that

0o 3 X F) C
YYa,BA14k,A 62
o ki) G
S&(a:ay)
It implies that
Oy s X F,
‘ (331351 f(u,v)) 'yaa,ﬂX]l_Fk,A ‘ - ‘ uk (331851 f(u’q))) vYa,B kl k,\
S5 (z,y) ¢ S (2,y)

C
< % X ‘ (u*02 08" f (u,v))

S&(mvy)‘
On the other hand w*931 08" f(u, v) = u*0} (805~ f(u,v)). It follows that

Vs
(31) |I3] < 064w‘/ (v1 + iuFvy)ds
o S&(may)

CesHo (E>N—1—ro
0

S N—ro—1-

1

B) We now estimate the second integral in (18).
1) We first estimate the integrals along the edges Fy and Ej. Integrating by parts
gives

‘/ Vﬂa,ﬂFk’,\Bi (83‘1851f, k, —)\)d’l)‘ S
EsUEy,

< 066(‘/ 85(78a,5Fk,,\)Bi (851851—1,]‘., k, —)\)d’l)"i‘
EsUEy,

+ | 00,8 Fu B (05100 f k= A) D <
OFE>;UQE,
£, Vi IN _ CsgHo ( Hy\N—ro—1
<C 6 — LN-ro-1.
>~ L7 (5_(51) = _H]_ ( 6 ) N—-rg—1
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2) We now estimate the integrals along the edges E; and Fj3. Integrating by parts
gives

‘ / O, Fx \B1 (0005 £, K, —)\)du‘ < / IA=E||,Oa,p P ||u" 105 O f|dut
E1UE3 E

1UE3

+ ‘/ 0,5 Fio x (1003 100 f — Uzkafflaflﬂf)d?i‘ <
FE1UE3

< Cgo ‘ / Op (10a,pFk ) (1w 051 05" f — u 03 100 f)du‘+
E1UE3 ’ ’

[ a7 05 00 | 4+ w1010 4 1)t
E1UE3

+ ‘vaa,ﬂFk,A(iukaﬁlaflf —u ool f) ‘) <
OE1UQE3
|f7 VT|N C71H0 H1 N-ro-1
<C o < (—) Ly_p _1.
Therefore we deduce that
CroHe 7 Hi\ N—ro—1
(32) L] < 7}211 0 (71) Lnry 1.

We complete the proof of Lemma 2 by combining the estimates (18), (25), (28),
(31), (32). O

Lemma 3. Assume that (o, B,7y) € E1. Then there exists a constant Cr3 such that

max |78a,g(aév+lf(x,y))| <

(zay)€V5T
Hy\N-ro—1 L 1
N1 T HO(T) LN —ro—1 (THl * E>>

Proof. 1) |z| < (2&)k+r1. Instead of Vj;(x,y) we take the cube Vyz(z,y). As in
Lemma 2 the following formula holds

scm(Tﬁﬂﬂvﬁ

'yaa,,B (8év+1f(.’13,y)) = /V ( ) ’yaa,ﬂFk,)\("Bay7uav)B(ua’U)dUd/U_
45 (%Y

—/ - Vaa,ng,A(a:,y,u,v)B'l((?f,V"'lf(u,U),k,—)\)ds—i-
Sa5(z,y

+ / 81])V+1f(ua v)’yaa,,@Bé(Fk,A(x’ Yy, u, U)’ k)dS =
Sa5(z,y)

(33) = I4+I5+I6,
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where
oN+! ( o f. f’ ké’f)

Blu,v) = ~ QuN+L v

Since Vs (z,y) C VE, as in Lemma 2, we have
,y) CV,

Hl N—’I‘()—].

We now estimate I5, Is in (33). 3 ) o
A) First consider the integrals along Fy and FE4, where Fo, F4 denote the edges of

S4s, which are parallel to Oy. We note that |u| > (2&)#1 on Fy, Ey.
1) To estimate I, as in Lemma 2, we note that

‘S Crs y ‘u’“ay(aj,vf) )

ONtLE) 8, s BLF ~ )
‘ (8,7 f) 10a,8 By Fi o =2 P
EsUEy,

with (0,1,k) € E; and (0, N) € I'y. Therefore

Cr6Hy ( Hy\N—1-70
(—> N—rg—1

‘/ ONHLE 0, 5By (Fix, k dv‘ <
EyUE, 0

1

2) As in Lemma 2, integrating by parts gives the following estimate for I4:

[, s B k)] <
EsUE,4

N‘f, II‘N C7SHO (E)N—T‘o—l
7 5 ~ Hl 5 N—rg—1

B) Consider now integrals along the edges E’1 and E,g, where El,Eg denote the
edges of S45, which are parallel to Ox.
1) To estimate I, as in Lemma 2, we have

Cro
Oy s X! F ‘ < and |u
"Y a,f1 k,)\‘ EyUBs — &_i | |

Hence we get

/ ONTLf 00 pByFy adu| =
E1UE3

[, Vi CsoHy f Hy\N—T0o—1
SQHQ/ du < 52 0(—1> Ly_ry—1.
(6 — 8" yit B uB, Hy \¢

[ _ ukai(aévf) 78a,gX{Fk,>\du S
FE1UE3
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2) To estimate I5, we first note that
WEONTRE L idbTLONTLE = G (9 f) — 0201 f = 0N (Gl f) — 020N f =

of LO0f
— _yN k _ 929N
= —0, \If(u,v,f, 8u’u _81)) 0,0, f.

It implies that
(34)

/ B pFiaBL(ON ULk, N du| <
E1UE3

+

[ ~ uF0L (0N f) 40a,00L Fr adu
E1UE;3

+ |01 (0 ) 2005 Fin [+

O0E1UQE3

/ _ Dy (8;811)\[]0) 7Oa,8F ) 2du|.
EiUE3

/_ _ 8;/\]\1/ ,yaa”ng,)\du
E1UE3

_|_

By Proposition 3 and the inductive assumptions the first three terms in the right
hand side of (34) can be estimated by

Csslf, V57:1|N < CssHy <E)N—ro—1
6_ 6” —_— Hl 6

LN—T'()—].'

To estimate the last integral in the right hand side of (34) we again integrate by
parts:

< +

/_ 04 (040 f) 40a,8Fr rdu / 040N f 400 p0L Fy adu
E1UE3 E1UE3

/ du‘ <
E1UE;

LN—T'()—].'

N N

+|0L0N f 00 Fi A < Css|f, VinIn | = +
ag

1
0'1+ k+1

OEUBE;

< CseH) <H1>N_7"0_1
- Hy )

I0) |z| > (2&)k_i1. We now consider the representation formula for Y+ f(x,y) in
Vs(x,y). As above, the volume integral can be estimated by

H,

1 T N—rg—1
CgrTFHT (|f7 Ve l|ng1 + (T) LN—’T‘()—].)'

For the boundary integral we again split into 2 cases
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A) First we estimate the integral involving Bj. Since |u| > G771, on S5 (z,y), as in
Lemma 2 we obtain the following estimate

CssHy (Hl)N_TO_l
e N—’I“()—].'

[ O 0By B <
Sz (x,y) H, 0
B) Now we estimate the integral involving Bj. Along F3 and E4 we can estimate
exactly as in Lemma 2.

Consider now the boundary integral along E; and Fs. As in this Lemma I) B) 2)
we have

< CsoHy (H1>N_7"°_1 N

= H, \§

/ Oa s Fx \BL (0N f, kb, — ) du
E1UE;3

This completes the proof of Lemma 3.0

Lemma 4. Assume that (o, 8,7) € E1. Then there exists a constant Coy such that

max | 400, (0N f (2,y)| <

(way)EVJT
Hy\N-ro—1 11
N1 T HO(T) LN—ro—1 (THI + E)>

<Cyo (T’“%1 |fa Vyr
Proof. We have the following representation formula for 0, g (8{V “rotlf(g, y)) in
V& (377 y)
Oap (8]1_V_T0+1f($7y)) = /V ) ~vO0a.8Fu (2, Y, u,v)(A(u, v) + B(u,v))dudv—
a\ T,y

- / Waa,ﬂFk,A(l.’ Y, u, U)Bll(aiv_m—i_lf(ua ’U), ka _A)ds+
S;,(w,y)

+ / 81]1,V_T0+1f(ua U) ’Yaa,ﬁBé (Fk,k(wa Yy, u, ’U), k)dé’ =
S& (w,y)

(35) = I7+I8+I9,
where

min{2k,N—ro+1}

N — 1
Alu,v) = — > ( 720 * )2k o (2k 4+ 1 — m)uPEmNrotl-mg2 p_
m=1
min{k—1,N—rg+1}
N — 1
- ( T )(k = 1)+ (b = mpuFTmgN TRl

m=1
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and

0 0
Blu,v) = o) 70 (w0, 1, 549,

Therefore, as in Lemma 2, the first integral in (35) is estimated by
1 H\N—-ro—1
Co T+ (|f7 Vg\NH +H0(Tl) LN—ro—1>-

I) For Iy, as in Lemma 2 A), we have the following estimate

CoaHy ( Hy\N—To—1
S <—) N—rg—1

)

/ ONTHf 0 By (Foa, k)ds
S5 (x,y)

1

IT) Now we estimate Ig.
A) We first estimate the integrals along Fy and E4. Note that

(8 + iu*al) (AN "o+ f) = (8% + iubd}) (9] — iu*a) + iukal) (@M= f) =

35 (Z‘ukaqftv—m-i—l _ u2kai\f—r085)f + G (aN Tof) uk— laN roalf _

~ 81])]_7‘0\11 B rnin{:zi]:\/—"'()} (N — 7“0) 2]{:(2]{3 _ 1) . (2k —m4+ 1)u2k—maiv—ro—m85f_
m

m=1
min{k—1,N—rg}

XY (N;LTO> (k=1)(k—=2)--- (k —m)u*""™" 10 ~o~™9) f+

m=1
o) (iuk(?ftv_”’H — u%ajf—roa;)f - iAuk—laf—roa;f =:
=: O (i)~ — w900, f + Lo
By the inductive assumptions, Proposition 3, and the condition N > 6k + 4, it is

easily seen that

< C
E>sUE, B, _H]_

Therefore integrating by parts gives

HO H]. N—T‘()—l
(6) N—rg—1

Hy / Hy\N-ro—1
< —— Ly_, _
_CQ4H1<5> N—ro—1+

/ 7 Oa,8Fi By (00 T f k, —A)dv
EsUE,

[ (ol (el s) — a0l (0 0L8)) P Fradol
E2UE4

H N—’I‘o—l
c kaN— 1 2k qN — 1 1
‘(lu 0, ro+l_,, 0, roav)f,yaaﬁFk,,\ ) N—rg—1

(5

‘ Cos
OE>UQE,

B) The integrals along F; and E3 now can be estimated in the same manner as in
Lemma 2. [J
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Lemma 5. Assume that (a1,51) € Tny1\I'n, a1 > 1,81 > 1. Then there exists a
constant Cgg such that

max | (05405 (z,)] <

(iI),’y)EV6T
Hl N—To—l 1 1
v+ Ho(5) Lv-ros (T7 + F))'

<Cgs (T’“;“‘f; Vi

Proof. Differentiating 005" the equation (1) we obtain

(36) 02(99 05" f(x,y)) = —0 05 U (x,y, f, O f, 2" Do f)—
min{2k,a1}
> <C:n) 2k(2k = 1) -+ (2k — m + 1)a? OO f(z,y)—
m=0
min{k—1,01}
iAoy (al) (k=1)(k—2) - - - (k—m)2F =™ 190 =M H f (2, y) = — Ty —Jo—J.

m
m=0

By Lemmas 2-4 we see that

+

1 T Hl N—To—]. 1 1
(37) |J1| S 097 Tk+1 |f’ ‘/:sll N41 +H() T LN_,r.O_l(Tk+1 E) .

To estimate J5, J3 we consider two cases

I)O[l S To-

A)For m < a; the typical terms ka_maf‘é_m’BIHf(m, Y), xk_m_laf‘,{m’ﬂﬁlf(x, Y)

in (36) can be rewritten as z2¥~™9] (8f‘,12_m_1’ﬂ1+2f(x, y)), zF~m1ot (Big_m_l’ﬂlﬂf(a:, y))
with (a7 —m — 1,81 + 2),(ag —m — 1,81 + 1) € 'y41. Hence by the inductive
assumptions and Lemmas 2-4 we have

min{2k,a; —1}
> (O;ri)?k(% 1) 2k — o D) OE Tl R f(wy) |+

m=0
min{k—1,a1—1}

S (T 02 o o ) <

m

(38)

1 H H N—To—l
1 T 0 1
098 (Tk+1|f, ‘/5”|N+1+ E (T) LN—rg—l).
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B) m = a;. By Lemma 3 we have

max{|z?*~ "5 f(z, y)|, |z* 05 f(z, y)|} <

HO H1 N—To—lL
va T s N—ro—1

since (0,51 +2), (0,81 + 1) € Iy 4.
Combining (38) and (39) we deduce that

(39) Coo (T’“;“ £, Vi

1 H Hl N—’r‘()—l

1 0

(40) |Ja| + [J3] < C1o0 (T’““ | f, Vin Ny T I, (T) LN—ro—1>-

Moy > 2k + 3. In this case we have a3 — m > 3.

A)m = 0, then x2k8f,12’ﬁ1+2f(:v, Y), a:k_lﬁf’lz’ﬁﬁlf(:v, y) in (36) can be rewritten as
2?07 (075 2 f(2,y)), a0 (075 T f (2, y)) with (@1-2, 1+2) € Tvaa, (01—
2,1+1) e’y and a3 —2>1,5; > 1. Hence

H H N—To—l
— — — 0 1
‘xk: 18111’12,ﬂ1+1f($,y)| — |$k 18%(8111712 2,,31+1f(.’17,’y))‘ < ClOlE <T) LN—ro—la

(41)
TR f ()| < TR |0} (0752 f (2,9) |-

B)m > 1,a; < 4k + 3, then xzk_mﬁf’{m’ﬁlﬂf(x, ), mk_m_lﬁig_m’ﬂlﬂf(m, y) in

(36) can be rewritten as 22F~™9? (8;’,12_m_2”81+2f(x, y)), 2~ m1o7 (8%12_7”_2’61+1f(x, Y))
with (g —m —2,681+2),(ac1 —m—-2,51+1)el’yand a; —m—-2>1,5, > 1.
Hence by the inductive assumptions we obtain

min{2k,a1}

3 (j‘;) 22k — 1) - (2k — m + 1)z "o Ml T2 (g, y)‘-l—
m=1
min{k—1,a1} o
i > (m) (k= 1)k = 2) - (k = m)a* =00 () <
(42)
HO H]_ N—T‘()—].
L et LN 1.
0102H1<(5> N—ro—1

C)m > 1,a; > 4k + 4, then m%_maf‘,g_m’ﬁlﬂf(x, ), xk_m_lﬁf‘é—m’ﬂlﬂf(x, y) in
(36) can be rewritten as 22¥~m9? (af’g_m_2’ﬁl+2f(:v, y)), 2k~ "7 (Bﬁlz_m_2’ﬁ1+lf(m, y))



26

with (o —m—2,81+2), (a1 —m—2,81+1) € ’ny1-mand o —m—2>1,6; > 1.
Hence by the inductive assumptions we have
min{2k,a1}

> (?n) 2K(2k — 1)+ (2k — m + Da RO £ (o, )|+
m=1
min{k—1,a1}

x> (j“;)uf—1)<k—2)---(k—m)xk—m—laﬁl—maﬁl“f(x,y)\s

m=1

0

Combining (41), (42) and (43) we see that
(44)

o o H H N—-rg—1
| Ja2|+ T3] < Croa (Tkil|a§(alj2 PO f () [+ o (—1) (N—ro—l)!>.

N—rg—1
Hy (H ©
Cros = <—1) LN_ry—1-

Hi\ 9
By (36), (37), (40), (44) we deduce that

max max | 82(5* 9P z, <
(alaﬂl)erN-}q\FN (wﬂl})EVaT‘ 1( 1 2 f( y))| ~
a1217ﬂ121

1
< Cro5T*H1 max max | 82(0%88" f(x, +
S Caos (a1,81)El 11\ ($7y)€V5T| 1( 1 92 f( y))‘
CVIZ]-’,BIZ]-

(45)

N—rg—1
1 H 0 1 1
+0106 (T’H_l‘f’ V’(;—Z,: N+1 + Ho (Tl) LN—’I‘o—l (Tk+1 +E>>

k+1
Finally, in (45) choosing T' < ( L ) yields

2C106
max max | 92(9% 9P z, <
(a1,ﬂ1)€I‘N+1\FN (m,y)€V5T| 1( 1 2 f( y))‘ ~
a1217ﬂ121
N—rg—1
w1 5 H, 1 1
< Chor (Tk+1 |f, Vi |N+1 + Hy (T) Ly v, (Tk+1 + E))

This completes the proof of Lemma 5. [J

(Continuing the proof of the Theorem 5) Put |f, Vi |x11 = g(6). Combining Lem-
mas 2-5 gives

o)< Cun 7ok (5(1- 1)) + 10 () b 1))
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Choosing T' < (1/10120108)k+1 then by Lemma 1 we deduce that

H]_ N—’!‘o 1 1 1
< T — ).
((5) Cl()gH() ( 5 ) LN—ro—l (Tk+ + H1>

If T is chosen to be small enough such that T' < (1/26’109)k+1 and choosing H; >
2C109 (in addition to Hy > C4H§k+3 ) we arrive at

H N—rg—1
9(5) < Hy (%) Ln_ry—1-

That means
Hl N To 1
f, Vs |ne1 < Ho | — Ly _ro—1.
0

The proof of Theorem 5 is therefore completed. [J

§3. Case k is even.

In this case we will prove a similar result as in §2 for A = 2N (k + 1), where N
is an integer, by establishing the explicit fundamental solutions of G 2 (k+1)- Let
us maintain the notations used for p, A, A_, M, Fy, , ... from the very beginning
of the paper (now, of course, with an even k). If (u,v) # (0,v) is fixed then the
real parts of A,, A_ change sign when (z,y) passes through (—u,v). Therefore

_k4A k=
= A """ A_"*** may have singularities alone the half-line (z,v) with z < —u

for an arbitrary complex number \. But if A = 2N (k + 1), then it is not difficult to

4+ k—X

see that M = A, **¥ A_**** is smooth alone the half-line (z,v) with < —u, that
is M(-,-,u,v) € C®°(R?*\{(u,v), (—u,v)}). Moreover when k is even and u # 0 we
have —oo < p < 1. More precisely, p — 1 when (z,y) — (u,v), and p - —oo when
(x,y) = (—u,v). If N < 0 and p — —oo then we have the following asymptotic
expansions (see [5], p. 63 )

k k k Mleh Cpy et
Fi(p) =F<2k+2_ FTETRE. k+1’p) - r(2k<+z++)N) {F(:k—i-:ker) i
(2kﬁ2+N+n)F(2k’“122+N+n) —p) + an]+

2k:+2

2N-1 ( N+n)I‘(2N—n)

2k+2

+ (-p) TN Y . p}
(—2k+2 N)F(—2k+2 —i—N—n)n!

angr(m—N)r( +2 _N)n!(n+2N)!p_n[log(

nOF
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i N
F2(p):F<2kk122_N’ 2kk122+N’:ii’p):F( SZ )N){F(13+22TN)><

2k+2

f: F( 2 +N+n)I‘(2kkﬁ+N+n>
X

2N-1 [‘(Zkkig — N+n)I‘(2N —n) _n}
p )

p~"[log(=p) + bn]+

k42 |
+( —2ky2 T E
k+2 k+2
=0 T(22% - V)T (&S + N —n)n!

where

an:w(1+2N+n)+¢(1+n)—w< +2N+n)—¢( k —2N—n),

2% 1 2 2% 1 2
k+2 k+2
bn=¢(1+2N+n)+¢(1+n)—¢(2k+ +2N +n) —¢(2k12—2N—n>

and ¢¥(z) = P( ) is the polygamma function. Therefore if we choose the expressions
for constants Cy, Cs as in the beginning of the paper (with A replaced by 2N (k+1)),
we will have Fy on(k+1) (2, ¥, u,v) € C®(R?*\(u,v)), with Fy on(k41)(—%, v, u,v) =
0. Similar conclusions hold for Fy on(x+1)(2, ¥, u,v) when N > 0. If N = 0, then

__k
ko ok k )_F<kl+1)(—19) i
2k+2'2%+2 k+10) " r2(5k5)
+
St P(%ﬁz"‘")r(zkk-fz +”)

n=0 T ( Qkka2 ) r ( 2k+2) (n!)?

k+2 k+2 k+2 r(52)(-p
2k +2'2k+2" k+1’ ) < )

k+2
(21:5-2 + ”) (2k+2 + ”)

n=0 r ( Qkk_:-22 ) r ( 2k+2 ) (n)?

Fi(p) = F(

X

X

p~"[log(=p) + cnl;

k‘

Fap) = F

p~"[log(=p) + dnl;

where

en =2¢(1+n) _¢(2kk+ +"> _¢(2kli2 _">’

dn =29(1+n) - w(zkktré +”> - ¢(2kk—:—22 - ")

Hence Fy, o(z,y,u,v) € C®(R%\(u,v)), with Fj o(—u,v,u,v) = —

kw
cot k2
4uk
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Theorem 6. Let ¥ € C{L, _, 2;Q|L, 4 2;R3} for every a € [0,79]. Assume
that m > 2k* + 6k + 5, A= 2N (k + 1), and f is a H" (Q) solution of the equation

(1). Then f € C{Lp_r,—2;}. In particular, if ¥ is G°—function (or analytic) of
its arguments then so is f.

Proof. Almost all the arguments used for the case when k is odd can be applied
here. Therefore we only give the sketch of the proof. Instead of the distance p in
§2 we use the following metric

p1((u, v), (z,y)) = max {|*F — "1, (k + 1)y — o]}
To establish (19) we consider 3 cases:

If 0 < p <1 then we use (20) to deduce (19).
If —1 < p < 0 then we have the following set of estimates

zu < 0, |4cF Tk < R, max{|z|, |ul} < Chi1oR7 M| = R =¥,

0 0 1
27'R, < R < Ry, max{‘a—z ﬂfka—z } < Cin R %#+2,
oM oM _1
max{[F(p)|, |F(p) } < Craz, mac{ |50, |55 |} < OnsR2.

If p < —1 then by using asymptotic expansions of F'(p) we have

zu <0, R < [ b 27 ol < Ja| < 2ul, [M| = R,
1 1
CiuaR{* < minf e, [ul} < max{|e], [u]} < Cris BT,

aFk,ZN(k—l—l) ‘:ck 8Fk,2N(k+1) ‘
’ 0

oz

_ k-1
[Fron(k+1)] < Crie k,maX{‘ } < CypprF 1

Next we note that the estimate (26) is still true. Indeed, if 0 < p < 1 then the part
of (27), which relates to the case 0 < zu, can be used to deduce (26). If -1 <p <0
then we use 62 < Ry < 2R < (11852 together with the part of (27), which relates
to the case xu < 0, to obtain (26). If p < —1 then we have

zu < 0, 0119R2k+2 < min{|z|, |u|} < max{|z|, |u|} < 0120R2k+2,

OFk aN(k+1)

ou

max{‘a F, 2N(k+1)‘ ‘ w02 Fy, 0" FraN(k+1)
0zou 0zdv

0% Fy, 2N(k—|—1)‘ ‘ k ka 0" F 2N (k+1)
Oyou 0yov

bl

k 8Fk,2N(k+1) ‘
u -
ov

_ —k—1

[Fronk+1)| < Craiu k,m&X{‘ } < Crau™* 1,
—k—2 2 ~2
} < Crasu , Cr1246° < Ry < Cr567,

max{‘x } < Choeu F72.
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Finally the set of estimates (29) and therefore the estimate (30) remain unchanged
since we have 0 < zu (or 0 < p < 1.)0
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