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The possibility of representing many statistical models graphically is of special value when
large numbers of variables are involved. Restrictions upon experiments and other forms of
data collection may result in our being able to estimate only parts of a large graphical model.
Confined to graphical log-linear models, Fienberg and Kim (1999) derived a theory to the effect
that parts of a large model given in the form of conditional log-linear model can be combined
into a larger one adding the conditional variable to the conditional model. In this paper, it is
shown how we apply, in the model-combining process, the concept of prediction-refinement and
pieces of information on the relationship among a subset of variables involved in a given model.
An artificial example is used for a detailed description of the application and an example from

real data supports the main result of the paper.
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1 Introduction

During the last two decades, much psychological research has been focused on tasks that better
approximate the meaningful learning and problem-solving activities that engage people in
everyday life. There has been increasing attention to the fine structure of abilities underlying
task performance (see, for example, Haertel and Wiley (1992) and Mislevy (1994)). One
approach to characterize the fine structure uses graphical models to represent relationships
among abilities and test items, where abilities include problem-solving strategies (Mislevy et
al., 1999)

Problem-solving strategies may vary across a group of individuals. For example, in dealing
with mixtures of whole numbers and fractions, a student may prefer dealing with those numbers
in a fraction form, while another in a mixed form (Tatsuoka, 1987, 1990). Skills used in solving
a problem may vary according to the strategies selected by test-takers, with some skills used
in one strategy not being of use in another. Thus it may be desirable to build models in two
steps when there are multiple strategies available. First we build separate models for each
problem-solving strategy, then we combine them into a graphical model where the categorical

variable for the problem-solving strategies is included as a new variable.

We can find a variety of instances of such a two-step modelling in Al, where the Bayesian
network (Pearl, 1986, 1988) is one of the most popular forms of graphical models. The relative
efficiency of computational techniques for performing inference over the network makes the
graphical model an extremely powerful tool for dealing with uncertainty in AI. Generating
a Bayesian network from a knowledge base or a database has been an important issue in
the AI research (Cooper and Herskovits, 1991; Poole, 1993; Goldman and Charniak, 1993;
Bacchus, 1993; Haddawy, 1994), and there has been growing interest in learning Bayesian
networks from statistical data (Chickering and Heckerman, 1999; Friedman and Goldszmidst,
1998; Heckerman, Geiger, and Chickering, 1995; Neil, Wallace, and Korb, 1999). A key feature
of the network-learning method is that we assume a prior over the set of network structures
and apply a Bayesian scheme in search of the most probable model structure. In particular,
Thiesson, Meek, Chickering, and Heckerman (1999) consider a method for Bayesian model
selection among graphical models that are given in a form of mixtures of directed acyclic
graphical models. In the mixture model, the model of each mixture component is defined
conditional on some discrete random variable, which is regarded as latent in Thiesson et al.
(1999).



While there has been remarkable improvements in learning Bayesian networks from data,
the learning is mainly instrumented by heuristic searching algorithms since the model searching
is usually NP-hard except some simple model structures (Chickering, 1996). A good review is

given in Cooper(1999) on structural discovery of Bayesian or causal networks from data.

As for model representation, D’Ambrosio (1995), Geiger and Heckerman (1996), and Ma-
honey and Laskey (1999) consider a problem of representing Bayesian networks, using condi-
tional probability models and conditioning variables, which are capable of explicitly capturing
much of lower-level structural details. But they do not address an issue of combining condi-

tional models.

Consider a graphical model of the n random variables, Xy, ---, X,,. The lower-level model-
structures (or local structures) for a subset of the variables are defined conditional on some of
the X variables. The local structures may vary across the values of the conditioning variable.
This detailed representation helps in model searching and inference making since it reduces
the number of parameters of the model and thus prevents the model from being overly large.
A set of graphical models in the aforementioned problem-solving example is an instance of
the local structures in a model corresponding to a given conditioning variable. Although such
a model with lower-level local structures is beneficial to inference-making, it does not let us
read the independence/dependence relationships among the X variables right off the model
representation. For the structural interpretation of the whole model, Fienberg and Kim (1999)
(FK hereafter) propose a theory to the effect that the graphical models can be combined in
a consistent manner provided that the models are convertible into log-linear models. We will
address in this paper an approach for the structural interpretation of a whole model through

structure combination.

Suppose that the log-linear model (LLM) of X = (X, -, X,;) is graphical and that X7 is
multinomial with category levels 1,-- -, I and let X(;) be the (n—1)-vector obtained by deleting
X; from X. Consider a conditional LLM of X(1) given that X; = z; and denote its log-linear
structure by C'S,,. Since X takes on I different values, we can think of I such C'S’s, whose
collection actually makes the LLM of X. In other words, the collection is another form of
model representation for X. The conditional log-linear structures (CLLSs) are analogous to
the local structures in the preceding paragraphs. We will depict the collection in a tree shape,

with a node for X; and I arrows from it to the I nodes of C'S’s. Since this tree shape is a



hybrid of tree and log-linear structures, we will call it a hybrid, represent it as
Hyb(Xy; CSy,---,C8), (1)

and call it a one-node hybrid.

As is well known, a log-linear model of X is used to represent the logarithm of the joint
probability distribution of X as a linear combination of non-negative terms, where each term
is defined on a subset of Xi,---, X,,. When the model is hierarchical, the model structure of
X is determined by the terms whose domain subsets are maximal, i.e., each of the maximal
domain subsets is not contained in any other domain subset in the model. This is why we can
represent the model structure of a hierarchical log-linear model by a set of maximal domain
subsets. Adapting our notation from Bishop, Fienberg, and Holland (1975), we will represent
a log-linear structure by {61, --, 60y}, where 6;’s are maximal domain subsets. For notational

convenience, we use the indexes of the X variables to represent the log-linear structure.

We will call a log-linear structure corresponding to a one-node hybrid h a hypermodel
corresponding to h. If all the CLLSs of a one-node hybrid are the same, we will say that the
hybrid is homogeneous; if the hybrid is not homogeneous but there is a set, 6’ say, which is
shared by all the CLLSs of the hybrid, we will call the hybrid as partially homogeneous with

respect to €'; if there is no such common set at all, we will say that the hybrid is heterogeneous.

Suppose that a hybrid is obtained from a graphical log-linear model, m. FK show that m
is contained in the set of the hypermodels each of which corresponds to the hybrid (Theorem
5 of FK).

According to FK, the number of hypermodels corresponding to a hybrid depends upon the
level of homogeneity of the hybrid and the number of variables involved. When the hybrid
is heterogeneous, only one hypermodel corresponds to it. If n + 1 variables are involved in
a graphical hypermodel and the corresponding one-node hybrid as in (1) is homogeneous,
then there are 2" graphical hypermodels each of which is obtained by either connecting or
disconnecting the Xy node with some of the other n variables. But if we want to find a LLM
for X based on a given hybrid of X, it is desirable to have the size of the set of the hypermodels
as small as possible. With this in mind, we will explore methods of reducing the set size of the
hypermodels for a given hybrid. In this paper, we will consider hybrids that serve the purposes
of prediction and structure interpretation and so the conditional variable of each one-node
hybrid is the most informative for the predicted variable among a set of predictor variables.

We will apply, for the reduction of the set size of the hypermodels, the notions of calibration



and refinement (DeGroot and Fienberg, 1982) in addition to pieces of information on subsets

of the variables of a given log-linear model.

This paper consists of 6 sections. Section 2 describes the relationship between a log-
linear structure and its conditionals and carries the relationship over to the relation between
hypermodel and hybrid, which is then summarized into the hypermodelling process. Section
3 describes the concepts of calibration and refinement and shows how the refinement concept
serves in the hypermodelling process. Section 4 then illustrates how the refinement concept
and pieces of information on subsets of the variables involved in a hybrid contribute to reducing
the set size of the hypermodels. Section 5 is parallel to section 4 in spirit, differing in that
we use real data and focus more on the use and interpretation of a hybrid and on how pieces
of information are obtained and contribute to the hypermodelling. This paper concludes in

section 6 with some remarks on possible applications of the main idea of the paper.

2 Hypermodelling Process

In this section, we briefly review, through three examples, a LLM and its conditionals and
carry their relationship over to the relation between hybrid and hypermodel. The first two
examples are about how CLLSs are related with a given log-linear structure (LLS for short),
and the third example demonstrates searching for the set of the hypermodels that correspond

to a given one-node hybrid.

Example 2.1 Consider a LLS for 5 variables, X1, -, X5, as given by

{{1,2,3},{1,3,4},{3,4,5}}. (2)

If we denote the three component sets in (2), respectively by {61,62,603}, we can write the

corresponding LLM as
logp12345($17 e 7$5) = Uy, + Ug, + Ug, + Ra (3)

where R includes a constant u-term plus the summation of the ug-terms, each of whose subscript

set is a strict subset of ; for some i € {1,2,3}.

Let

Wy = up + Ugu{1},

w(ml) — u+u1—10gp1($1),



Then the logarithm of the conditional probability of Xo = x9, -+, X5 = x5 given X; = 1z is
given by

log pasus)1 (T2, - -+ T5;71)

— @) 4 wg’fl) + wg‘“) + wffl) + us + w%l) + wgﬁl) + u3s + uas + Uzas. (4)

Note in (4) that the CLLS is determined by the terms w%l) and wusgs if neither of them equals
zero. Also note that the index sets of these terms, {2,3} and {3,4,5}, are included in the set

{00\ {1}, 02\ {1}, 63 \ {1}} = {{2,3}, {3,4}, {3,4,5}}. O

As connoted in the last equation, we need know when to expect to see the full set of u— or
w—terms for a successful trip back to a LLM from a specific version of its conditional model
(that depends on the value 7). The lemma below plays an important role in searching for the
set of the CLLSs that appear at the same time in a hybrid. Although the proof of the lemma
is simple and appears in FK, it is presented here because it gives us an insight into the relation

between hybrid and hypermodel.

Lemma 2.1 Let 0N {1} = 0. Then, ugp = ugiyug = 0, iff ngl) =0 forallxzy=1,---,1.

Proof: Suppose that wé"f%e) = 0, for all possible realizations zg, and for all ;1 = 1,---, .

Then it follows that, for z; =1,---,1,
Uf13Ub(z1, Tg) = —U0( T4)s V¥ To- (5)

Since me:l U{Ue(zy, 14) = 0, equation (5) implies that ug = 0. The proof for the other

direction is straightforward. O

(z1)

According to Lemma 2.1, it is possible that ws, * = 0 for some value z1 of X1 when uy34 # 0.
If wgﬁl) in (4) equals 0 for all values of z1, then the full LLM is not hierarchical since ugys # 0;
similarly, it is also possible that wgml) = 0 while wéﬁl) # 0. These “non-hierarchical” situations
are difficult to interpret. We shall assume, throughout the remainder of the paper, that the
hierarchy principle holds for both the CLLM and the LLM to avoid such situations. We refer

to this as the strong hierarchy principle or the SH P for short.

Under the SHP, the CLLS is subject to whether a particular w-term is zero or not. For

instance, the CLLS of the model represented by expression (4) is determined by us4s and



Table 1: The possible hybrids for the 5 random variables of Example 2.1. () indicates that the
corresponding pair of CLLSs make a hybrid; x indicates that the pair does not make it.

X1 = 1 X1 = 2
{{2,3},{3.4,5}} {{2}.{3,4,5}} {{3.4,5}}
{{2,3},{3.4,5}} O O O
{{2},{3,4,5}} O X X
{{31475}} O X X
wgl) when wgl) # 0, determined by ugss and wéml) when wgl) = 0 and wéml) # 0, and

(z1) (z1)

determined by u345 only when both wy;"’ and wy ' are non-zero. We refer to such situations

where w() = 0 as zero-w phenomena.

Taking the zero-w phenomena into consideration in (4), we come up with the possible
CLLSs for X5,---, X5 given X as

{{2,3}1, {3,451}, {{2},{3,4,5}}, {{3,4,5}}. (6)

We can also have the same result directly from the LLS as in (2). Once we condition on X in
the model given in (2), {1,3,4}\ {1} = {3,4} is a subset of {3,4, 5} while {1,2,3}\{1} = {2,3}
is not. Applying the zero-w phenomenon to {2,3} leads us to the list in (6).

By applying Lemma 2.1 to the list in (6), we can obtain hybrids for the 5 random variables
in Example 2.1. The possible hybrids are indicated in Table 1 under the assumption that
I = 2. The table says that the CLLS {{2,3},{3,4,5}} appears in every possible hybrid that
corresponds to the LLM in expression (2), but not for the other CLLSs in (6). For example, if
the model Hyb(X1;{{3,4,5}},{{2}, {3,4,5}}) holds true, then by Lemma 2.1 the set {1,2, 3}
can not show up in (2). Note that {3,4,5} appears in all the structures in (6), but this is not
guaranteed when a set in a LLS contains “1”. To make it clearer, we consider a simple LLS

which consists of the sets only that contains “1” each.

Example 2.2 Consider a submodel of the model in (2):

{{1,2,3}, {1,3,4}}. (7)

Since “1”7 is contained in both of the sets in expression (7), we represent the C LLMs in terms

of w-terms only. Thus, as in Example 2.1, considering all the possible zero-w phenomena



concerning both {1,2,3} and {1,3,4} gives rise to possible CLLSSs of the form:

{e1, 02}, where @1 C {2,3}, @2 C {3,4}. (8)

According to Lemma 2.1, the sets {2,3} and {3,4} must show up in every hybrid that
corresponds to the model in (7). It is worthwhile to note in both of the examples that for each
set 6 in a given LLS, 6\ {1} shows up in at least one of the CLLSs unless 6\ {1} is a subset of
any other in LLS. Thus we may claim that for every set 6 that is maximal in UiI:1 C'S;, either
6 or O U {1} must show up in the corresponding LLS. This relationship between the hybrid
and the LLS is a useful tool for finding the set of the LLMs corresponding to a given hybrid
model. While we assumed a LLS in each of the preceding examples, we will assume a hybrid,

in the next example, which is possible with respect to the model in (2).

We will say that a collection C consists of maximal sets if there is no non-empty compo-
nent set in C that is a proper subset of others in C. We will denote by (C) the collection

which is obtained by removing all the sets in C that are not maximal therein. For example,

({1,2},{2,3},{2,3,4}) = {{1,2},{2,3,4}}.

Example 2.3 Let I =2 and consider the hybrid Hyb(Xy; CS1,CSs) of Xy, -+, X5 where
S = {{2}7 {3a47 5}} and CSy = {{2a3}a {3a47 5}} (9)

We see both u- and w-terms appear in expression (4). It is important to note that a ug-term

in a CLLM means that ugy9 = 0 while a wg-term in a CLLM implies, by Lemma 2.1, that
ug1yug 7 0.

When a set is contained in all the CLLSs of a hybrid, we need to keep in mind that the
corresponding term may be either a u-term or a w-term in the CLLMs. For instance, the set
{3,4,5} shows up in both of the CLLSs. This implies that the LLS H of Xy, -, X5 contains
either {3,4,5} or {1,3,4,5}. In the former situation, usss appears in both of the CLLMs,
while ws45 appears in both of the CLLMs in the latter situation. As for {2, 3}, it is obvious
that w193 # 0, since {2,3} ¢ CS;. That is, {1,2,3} € H. Thus, {{1,2,3},{3,4,5}} and
{{1,2,3},{1,3.4,5}} are candidates for H.

We can obtain the full list of the candidates for H by carefully counting in the sets, {1} U¢



for ) C ¢ C {3,4,5}. If we assume a graphical hypermodel, the full list is as follows:

{{1,2,3}, {1,3,4,5}} and {({1,2,3}, {3,4,5}, {1} Up); 0 C o C {3,4,5}}. (10)

According to the property of a graphical LLM (Fienberg, 1980; Darroch, Lauritzen, and
Speed, 1980), it is apparent that at most one ¢ can show up in (-) in (10). For example, let
¢ = {3} and ¢' = {5}. Then, the LLS ({1,2,3}, {3,4,5}, {1} U, {1} U¢') is the same as
({1,2,3}, {3,4,5}, {1,3}, {1,5}) = {{1,2,3}, {1,5}, {3,4,5}}, which is not graphical for the
same reason that {{1,3}, {1,5}, {3,5}} is not.

Note that Hyb(X1; CS1,CS3) matches to any model in (10). For example, if the LLS is
({1,2,3},{3,4,5},{1,5}) = {{1,2,3},{3,4,5},{1,5}}, we can easily see that the hybrid with
the CS’s in (9) is possible. In the CLLS, the terms for {2} and {2,3} are w-terms and the
term for {3,4,5} is either a u-term or a w-term. When the first model in (10) is true, we need

a w-term for {3,4,5} in the CLLS; otherwise, we need a u-term there. O

Although our argument is through examples, we have discussed the relationship between
the LLS and the hybrid in the context of a log-linear model. The relationship is recapitulated

as follows:

(i) If a set in a LLS does not contain {1}, the set shows up in every of its CLLSs.

(ii) If a set @ in a LLS contains {1} and #\ {1} is maximal in the LLS, then 6\ {1} must show
up in a corresponding hybrid; but if 8 \ {1} is a subset of some other set in the LLS, it
does not show up in any of its CLLSs.

(iii) If a set @ shows up in every CLLS of a hybrid, then either # or § U {1} must be in a
corresponding LLS.

(iv) If a set 6 shows up in some but not all CLLSs of a hybrid, then # U {1} must be in a
corresponding LLS.

(v) In (iii), {1} U is possible for at most one ¢ C 6 in case that 6 is in the LLS in stead of
U {1}.

We will refrain from describing in detail the relationship in general terms in this section
but interested readers are referred to Appendix A. However, we will state more formally, for

later use, (iii) and (v) into a theorem and (iv) into another.



Theorem 2.1 (Theorem 8 of FK) Consider a hybrid Hyb(Xy; CSy,---,CSy), and suppose
that the hybrid is partially homogeneous with respect to a set 0 and that the corresponding
hypermodel is graphical. Then, under the SHP and the condition that there is a main effect
of X1 in the hypermodel, the graphical hypermodel corresponding to Hyb(Xy; CSy,---,CSy)

contains one of

{0, {1} U ), @gwge}.

Theorem 2.2 (Theorem J of FK) Consider a hybrid Hyb(Xy; CSy,---,CSr) and suppose
that 0 is an element set of some CLLS but not common to all CLLSs, and that there is no
set in UL _,CS,, \ 0 that contains . Then, {1} U0 is a set in the corresponding hypermodel.

Example 2.3 illustrates what to consider, under the assumption that the corresponding
hypermodel is graphical, to find the set of the hypermodels corresponding to a given hybrid.

We will elaborate more on this searching process for a general situation of one-node hybrids.

Assuming the SH P, we have only to concern ourselves with those element sets that satisfy
the conditions of either Theorem 2.1 or Theorem 2.2. As a matter of fact, the set of such
element sets can be expressed as (|J! =1 CSz,). This point is well observed in the process

described below.

Suppose that (Uilzl CSy,) consists of K element sets, 91, ---,¢r. If 1; satisfies the

condition of Theorem 2.1, then we let

and if v; satisfies the condition of Theorem 2.2, we let

T = {{1} Ui}

Then we can obtain a collection C of the sets, where each set is composed of the element sets
from the T;’s, one element set from each T;. For each set C' in the collection C, if there is an
element set ¢ in C' which is a subset of another element set in C, then we remove ¢ from C.
Removing all such ¢’s yields (C). Note that we do not need such an element set ¢ under the
hierarchy principle. This is similar to the general approach to minimal sufficient statistics and
generating classes for LLMs (e.g., see Bishop, Fienberg, and Holland (1975) and Whittaker
(1990)). When we remove element subsets from all the sets in C, we denote the resulting

collection by C*. We refer to the process of moving from a hybrid to C* as the hypermodelling



process. The hypermodelling process leads us to the set of the hypermodels corresponding to

a given hybrid.

3 Conditional Variable and Prediction Refinement

In this section, we will briefly review the concepts of calibration and refinement and discuss
how we can make use of them in hypermodelling from a one-node hybrid. Consider a set of
variables X1, .-, X,,, Y, where predictions are to be made on Y, and suppose that we construct
a one-node hybrid of the variables where the conditional variable is the most informative for
Y among the X variables. Such a hybrid is dualpurpose in that it shows the most informative
variable for Y and the interrelationship among the rest n—1 X variables and Y. In other words,
the hybrid serves dual purposes of prediction and interpretation. In subsequent two sections,
we deal with a general form of hybids that are tuned to these purposes. The hypermodelling
process is a main tool for interpretation of the interrelationship among the variables in a hybrid
and the concept of refinement would help the tool work better. The concept is rooted in the

concept of calibration.

The concept of calibration is initially introduced in evaluating probability forecasters (Mur-
phy and Epstein, 1967). Consider a long sequence of weather forecasts (rain/dry), look at those
days for which the forecast probability of rain equals z and determine the long run proportion,
p(z), of such days on which the forecast event (rain) in fact occurred. The plot of p(x) against
x is the forecaster’s empirical calibration curve. If the curve is diagonal, i.e. if p(z) = z, we
say that the forecaster is empirically well-calibrated. In a more general sense, we may view
p(z) as our conditional probability of the event (e.g. rain tomorrow) to which the forecaster

assigns the value . Then the forecaster is well-calibrated if

p(z) = z, for each value z the forecaster used. (11)

In comparing forecasters, calibration alone is not suitable as a criterion. To address the
evaluation problem, DeGroot and Fienberg (1982) introduced the concept of refinement which
is linked to the notion of Blackwell sufficiency in the comparison of experiments and can be
used to induce a partial ordering on the class of all well-calibrated forecasters for the same

sequence of events.

For two random variables, X and Y, whose support sets are 2x and 2y respectively, we

10



define a stochastic transformation f(y|z) on Qy x Qx as follows:
flylz) >0 for z € Qx and y € Qy,

Z flylz) =1 for z € Qx.
yeQy

Let X 4 be a random variable representing the probability predictions by forecastor A, x4
the support set of X4, and v, the distribution function over y 4. Similarly, let xp be the set
of forecasts by B and let vp be the distribution function over yp. Assuming that forecasters A
and B are well-calibrated, we say that A is at least as refined as B if there exists a stochastic

transformation f such that the following relations are satisfied:

> flyle)va(z) = va(y) for y € x5, (12)
TEXA
> fWlz)zva(z) = yvp(y) for y € x5 (13)
TEXA

A multivariate version of this definition is the same except that z and y in these expressions

are in vector (DeGroot and Fienberg, 1986).

The function f determines the auxiliary randomization that is to be carried out. If A
makes a prediction z for a particular case, then we can generate a prediction y by means of
an auxiliary randomization in accordance with the conditional probability distribution f(y|z).
The relation (12) guarantees that in this way we will make each prediction y with the same
frequency vg(y) that B does, and the relation (13) guarantees that our predictions will again
be well calibrated. If A is at least as refined as B and v4 and vp are not identically equal (i.e,
the predictions by A and B are not the same in distribution), then A is said to be more refined
than B (DeGroot and Fienberg, 1986, p. 250). Two explicative statements of refinement are

given below.

Theorem 3.1 (Theorem 1 of DeGroot and Eriksson (1985)) Suppose that A and B are well-
calibrated predictors. Then the relationship that A is at least as refined as B is equivalent to

that there exist disrete random variables X 4 and Xp such that

E(X4|X5) = X3,

Theorem 3.2 (Theorem 15 of DeGroot and Fienberg (1986)) Suppose that both forecasters A

and B are well-calibrated for the forecasting of events with k > 2 outcomes. Then, the condition

11



that A is at least as refined as B is equivalent to the condition that, for every continuous convex

function g(x) defined on the (k — 1)-dimensional simplez,

E(9(Xa)) > E(g(XB)).

A common feature in the definition of refinement and the above two theorems is that more
refined predictions {z4} are spread over a larger domain than their counterpart {zp} while
centered at the same point of average. We can see from Theorem 3.2 that a more refined
probability forecaster gives predictions that are closer to actual outcomes than the predictions
made by a less refined forecaster. Note that the actual outcomes correspond to the vertices of
the (k—1)-dimensional simplex and the probability predictions all the points on the simplex. A
formal description of this follows. Let X denote the actual outcomes. Then the mean squared
error of X4 is MSE(X4) = E(X4 — X)%

MSE(X4) - MSE(Xp) = BE(X3-Xp)—2E((Xa— Xp)X)
= E(Xj) - E(X3) (14)
< 0,
where equality (14) follows from that E(X4X) = E(X3) and E(XpX) = E(X%) which is
possible by the well-calibratedness of the predictors and the inequality is from Theorem 3.2.

So, if A is at least as refined as B, then MSE(X4) < MSE(Xp). This result holds whether

the predictions are given in scalar or in vector.

Theorem 3.3 is immediate from Theorem 3.1.
Theorem 3.3 Suppose that Y, X1, and Xo are discrete random wvariables taking on a finite
number of values. Then the set of predictions made in terms of E(Y|X1, X2) is at least as
refined as that made in terms of E(Y|X1).
Proof: In Theorem 3.1, we replace X4 and X by E(Y|X;, X3) and E(Y|X;). Then

E(XalXp) = E(E(Y|X1,X2)|E(Y|X1))



where the second and the third equalities are possible by Theorem 6.5.10 of Ash (1972). O

If A makes predictions in terms of E(Y|X;, X3) and B in terms of E(Y|X;), then A is
more refined than B when v4 # vg. The corollary below is immediate from Theorem 3.3, and

so its proof is omitted.

Corollary 3.4 If the LLM of X1, Xs, and Y is given by {{1,2},{2,Y }}, and predictions are
made in terms of E(Y|X), then the set of predictions by E(Y|X2) is at least as refined as that
by E(Y|X1).

In multivariate prediction problems, suppose that probability predictions are made for k
events at a time. In the theorem below a “partition” refers to a partition of the k events into

some number of non-empty, mutually exclusive, and exhaustive subsets of the k events.

Theorem 3.5 (Theorem 13 of DeGroot and Fienberg (1986)). If A and B are well-calibrated
multivariate predictors, and A is at least as refined as B, then A is also marginally at least as

refined as B with respect to all possible partitions of the predicted events.

The following corollary is a generalized version of Corollary 3.4.

Corollary 3.6 Suppose that the LLM of X1, Xo,---, Xy, and Y is graphical with the graph
where X1 is connected to Xo by an edge and X1 is conditionally independent of X3,---, Xy, Y
given Xo. Then the set of predictions by E(Y|Xs) is at least as refined as that by E(Y|X1).

Proof: Regard the conjunction of X3, ---, X,, and Y as a new random vector Y*. Then, it
follows from the condition of the corollary and by Theorem 3.3 that E(Y*|X2) is at least as
refined as E(Y*|X1). So, by Theorem 3.5, we have the desired result. O

If predictions are made on Y of Corollary 3.4, then the prediction by E(Y|X3) is more
refined than the prediction by E(Y|X;) when E(Y|X;) is different from E(Y|X5) in distribu-
tion. According to the structure {{1,2},{2,Y }} in Corollary 3.4, X5 is more informative for
Y unless X7 is a one-to-one function of Xs5. Thus, if we build a hybrid by selecting a more
informative X variable for Y as a conditional variable, then the resulting hybrid is as in Figure
1.

Fienberg and Kim (1998) proved a theorem that branching at a node of a probability

classification tree improves the prediction refinement of the tree. In other words, a probability
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Figure 1: The hybrid of 3 random variables, X1, Xo, and Y, whose LLS is as in Corollary 3.4.

2
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Figure 2: The hypermodels corresponding to the hybrid in Figure 1

2

classification tree that is obtained by branching a tree 7 using informative predictor variables
gives more refined predictions than 7. Note that the convex function g in Theorem 3.2 has little
thing to do with the selection of predictor variables. The z in g(z) is a prediction value, not the
value of a predictor variable X. When we build a probability classification tree, we usually use
the squared error loss function in such a way that the expected prediction error is minimized.
The squared error loss gives both the prediction value (in the form of conditional mean) and
the expected error (in the form of mean squared error). Furthermore, it is worthwhile to note
in (14) that the difference in the mean squared errors of a pair of predictions is the same as

the negative of the difference in the means of the corresponding squared predictions.
Let Yx, = E(Y|X;), i = 1,2. Then
MSE(YXQ) < MSE(YXI) (15)

implies, by (14) and Theorem 3.2, that the prediction by Yy, is not as refined as the prediction
by Yy,. In particular, when we use the squared error loss in building a probability classification
tree, the inequality (15) implies, by the theorem in Fienberg and Kim (1998), that Yy, is more
refined than Yyx,. This point is well observed in the hypermodelling process in the subsequent
sections. The hybrid in Figure 1 is homogeneous. So by applying Theorem 2.1, we obtain the
corresponding hypermodels as in Figure 2. In this figure, graphs a and b are negligible from

the viewpoint of a prediction tree. Note that graph d is the structure considered in Corollary
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3.4.

4 An Illustration: Reduction of the Number of the
Hypermodels

In this section we will use an artificial example to show explicitly how the set-size of the hyper-
models is reduced and how much. Those who are more interested in the use and interpretation
of the hybrid and in obtaining information about a subset of variables such as in (16) may
skip this section right after Theorem 4.1. Although both this and next sections do illustrate
reduction of the set-size, each is different from the other in that this section focuses, by using
a relatively simple hybrid, more on the hypermodelling process and a detailed description of
the set-size reduction, while the next section focuses more on the use and interpretation of a
hybrid, how pieces of information on subsets of variables are obtained, and on how the pieces

of information alleviate our working load during the hypermodelling process.

Definition 4.1 Suppose that a LLS S of X1, Xs, -+, X, is given by
S ={61,6a,---,0}.

Let ¢ be a subset of the index set of X1, Xo,---, X,. Then, the LLS represented by
(1N, 0N )

is called the submodel structure of S confined to ¢ and is denoted by S,,.

Theorem 4.1 Consider a hybrid Hyb(Xy; CS1,CSsy,---,CS1) and let
D=(CSy,---,CSy).
Then, if D is not graphical, neither is any hypermodel corresponding to the hybrid.
Proof: Let H be a hypermodel from the hybrid of the theorem. According to the hypermod-

elling process, it is obvious that D = H,, where ¢ is the index set of the variables that are

involved in at least one of the CLLSs of the hybrid of the theorem.

The hypermodel is obtained by connecting the node of X to a subset of the variables that

are indexed in D. Hence, the result of the theorem follows. O
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Figure 3: A hybrid of X1, -+, X5, and Y. The number on each arrow represents the value of
the random wvariable at the arrow-tail.

This theorem states that if any submodel structure is not graphical, neither is the LLS. We
will call this the graphicality condition.

We will assume that all the hypermodels are graphical in the rest of the paper. The
graphicality condition, the nature of a probability prediction tree that a more informative
variable comes before a less informative one in any path of a tree, and experts’ partial knowledge
concerning the interrelationship among the variables will be employed together as useful criteria

in the set-size reduction process toward the set of the hypermodels.

Suppose that we are given a hybrid as in Figure 3 where 6 variables Xi,---, X5,Y are
involved and that all the X variables are binary. Also suppose that the hybrid is constructed
as a statistical decision-aid for making predictions about Y. Observing X; first and when
X1 = 0, continue observing Xo, otherwise stop observation and look into structure S4; when
X9 = 0, continue observing X3, otherwise stop observation and look into structure Ss; variable
X3 is the last observation; when X3 = 0, look into S7, otherwise Sy. The squared error
loss function is used in tree construction and the variables are selected from the set of the
predictor variables one at each node so that the prediction refinement may be improved the
most (Breiman et al., 1984; Kim, 1994). In this regard, we may interpret the hybrid as that
X1 is the most informative for Y among Xy, --, X5, X5 is the most informative for Y among

the X variables given that X; = 0, and that X3 is the most informative for ¥ among the X
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Figure 4: The possible hypermodels corresponding to Hyb(X3; S1,.52).

variables given that X; = 0, X5 = 0.

Suppose that we have the following information about the interrelationship among the

variables:

Y L Xs|(X3, X4), (16)

that is, Y and X5 are conditionally independent given the outcome of (X3, X4). This kind of
information about the relationship structure would often play a crucial role in reducing the
set-size of the hypermodels unless the given hybrid consists of heterogeneous one-node hybrids
only. Such information can be obtained through consulting relevant experts. Actually, in
building a LLM by applying a stepwise procedure (e.g., Ch. 5 of Fienberg (1980)), we often
resort to our common sense on the intrinsic relationship among a set of variables. We will see

in next section how such information is obtained when working with real data.

Note that Hyb(X3;S1,S2) is partially homogeneous, the same structure for X, and Y but
not for X4 and X5. Thus applying Theorems 2.1 and 2.2 respectively to the pair of X4y and Y
and the pair of X4 and X5 yields the hypermodels {H3 1, H3 2} which are depicted in Figure
4. But, in H31, Y L {3,5}|4, meaning that X, is more informative for ¥ than X3 and X3,
which is incompatible with the hybrid in Figure 3 by Corollary 3.6. Hence, H3 > is the only
hypermodel corresponding to Hyb(X3;S1,S52). We denote by H; ; the jth of the hypermodels
that correspond to Hyb(X;; -, ) and by S; the [th CLLS of a given hybrid.

Proceeding to Hyb(X2; H3 2, S3), we have the following collection C of the hypermodels:
C ={H1,Ha3, -+, Hy6}-

The 16 graphs of the set C are in Figure B.1 in Appendix B.

By Corollary 3.6, we can remove Ha3, Hs4, and Hys from the set C since X is less
informative for Y than X3, X4, and X5, respectively in Ho 3, Ho 4, and Hy 5. And in Hs 1, Xo
is independent of Y, while it is selected as informative for Y in the hybrid in Figure 3. Thus

Hs ; is also removed.
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Table 2: A summary of the final hypermodelling process with the hybrid in Figure 3. The second
column lists the submodel structures, confined to the set {2,3,4,5,Y '}, of the hypermodels in
the third column.

Hybrid Submodel structure Hypermodels
Hyb(X1;Ha5,S1)  {{2,3.4,5},{3,4,Y},{2,Y}} The submodel structures are not graphical.
Hyb(Xl;H2,6754) {{2731475}1{3741Y}1{2731Y}} Hl,l = {{1a273a475}1{173a4ay}1

{1,2,3,Y}}

Hyb(X1;Hs7,54) {{2,3,4,5},{3,4,Y},{2,4,Y}} The submodel structures are not graphical.
Hyb(X1;Ho9,54)  {{2,3,4,5},{3,4,Y}} H»=1{{1,2,3,4,5},{3,4,Y}}

HI,S - {{11 27 31 47 5}’ {]—7 31 41 Y}}
Hyb(X1;H2,1o,54) {{273%4;5}, {3741Y}} Hi 2, Hy 3
Hyb(X1;H2,11,54) {{273%4;5}, {3741Y}} Hi 2, Hy 3
Hyb(X1;Hs12,51) {{2,3,4,5}.{2,3,4,Y}} H,={{1,2,3.4,5},{1,2,3,4,Y}}
Hyb(X1;Hs15,54) {{2,3,4,5},{3,4,Y}} As in the note below.

NOTE: There are 32 corresponding hypermodels which are obtained by connecting X; to
Xo,-+, X5, and Y in 32 different ways.

According to Lemma 2.1, once a graph in C is taken as a possible hypermodel, its graph-
ical feature is retained in the follow-up hypermodelling process. For example, if Hsg is
taken, then in the follow-up hypermodels, Hs ¢ is embedded in the graphical feature among
{X9, X3, X4, X5,Y}. Hence, by condition (16) and the refinement condition, the collection C’
of the possible hypermodels is given by

/
C'={Hypo,Hy¢,Hy7,Hyg, Hy 10, Hy 11, Ho 12, Ho 15}

None of Hyg, Hs 13, Ho 14, Ho 16 satisfy condition (16). Condition (16) and the refinement

concept have cut down the size of C into half.

Now from Hyb(X1; H', S4) for each H' € C', we can get the set of the final possible hyper-
models. The last hypermodelling process is summarized in Table 2. In the table, when the sub-
model structures are not graphical, the corresponding hypermodels are ignored. Hypermodel
Hj ; is not graphical, and neither hypermodel H; 3 nor H; 4 does satisfy condition (16). As for
the submodel structure in the last row of the table, note that the hybrid Hyb(Xj; Hs 15, S4)
is homogeneous. And so by applying Theorem 2.1, we obtain 32 (= 2°) graphical hypermodels
by connecting the X; node to 32 different subsets of Xs,---, X5, and Y including the empty
subset. Since hypermodel H; o is one of the 32 models, we may ignore it, and so there are
32 possible graphical hypermodels. Note in Table 2 that the submodel structure is given by
{{2,3,4,5}, {3,4,Y}}, where condition (3) is satisfied and that the corresponding hypermodels

are obtained by putting edges between X; and the other 5 variables in the submodel structure.
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Figure 5: The hypermodels obtained from the hybrid in Figure 3 under condition (16).

Therefore, the hypermodels where both X5 and Y are connected to X; must be removed from
the 32 models since they violate condition (3). Further removals take place in light of Corollary
3.6. The hypermodels where X is connected only to one of Xs,---, X5 are incompatible with
the hybrid in Figure 3 by Corollary 3.6. After these removals, we come up with the four graphs
in Figure 5. Note that condition (16) and the refinement concept have served to reduce the
number of the possible hypermodels from 34 (the 32 models plus Hy 3 and Hy4) down to only
4 at the last hypermodelling.

If we look back at the whole hypermodelling process for the hybrid in Figure 3, we can
see that, as for the X3-hybrid, condition (16) and the refinement concept have reduced the
number of the hypermodels down to half of the number of all the possible hypermodels that
would be obtained without considering condition (3) and the refinement concept, the same for
the X5-hybrid, and down to nearly one eighth for the X-hybrid. In other words, condition
(16) and the refinement concept have reduced the number of the hypermodels corresponding
to the hybrid in Figure 3 down to about 1/32 of the number of all the possible hypermodels
from the hybrid in Figure 3.

5 Reduction of the Number of the Hypermodels with Real
Data

In this section a real data set of size 10,025 that is collected for lecture evaluation at the
end of the spring semester of 1998 at a university in South Korea is used. The survey items
that are selected for use are 7 out of 25. The selected 7 items are about lecture and teaching

assistance(TA)’s performance. We will label the random variables for the 7 items by A, H, F,
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Table 3: The 7 labels of items and their meanings

label key words item contents
A Aim of lecture Has the lecture been carried out with a clear aim of lecture
and a profound knowledge of the course?
H Homework Was the homework assignments helpful in understanding
the lecture and related subjects?
F Feedback Did you get a satisfactory feedback from the comments on

your homeworks?

R Recommendation ~ Would you recommend this course to your friends?

0) Organization Was the lecture well organized throughout the course?

S Sincerity Was the lecture given with full sincerity with regard to
lecture preparation, response to students’ questions in class,
and the likes?

T Teaching assistance  Are you satisfied with the TAs’ performance?

R, O, S, and T, which are explained in Table 3. Each item has three options, negative, half-
and-half, positive, and so the random variables are all ternary taking on values 1 (for negative),
2 (for half-and-half), or 3 (for positive). The frequency table of the data is of 37 = 2187 cells
and is displayed in Appendix C.

The faculty of the university is in general interested in the response to item R and so they
want to see what affects R. To see this, I ran a computer algorithm CART (Classification And
Regression Trees) (see Breiman et al., 1984) to construct a regession-tree with R as a response
variable and the others explanatory. CART is a computer program for a non-parametric
regression analysis. It selects explanatory variables one after another in such a way that each
selection improves the prediction accuracy mostly among the explanatory variables conditional
on the outcomes of the already selected explanatory variables. A final tree is determined by a
test-set method or a cross-validation method so that the sum of the prediction accuracy and

a penalty of tree-size is minimized.

Figure 6 shows the regression result by CART, which is obtained via a test-set method so
that the tree size may be minimized while keeping the prediction error as small as possible.
The meanings of arrows in the figure and the numbers on them are the same as those in Figure
3. An arrow connecting a pair of circles represents a sequence of variable selection, from the
variable at its tail to the variable at its head, provided that the variable at the tail of the arrow
takes on one of the values on the arrow; and an arrow from a circle to a CLLS means that when
the variable at the arrow-tail takes on the value on the arrow, no more variable selection is

made and a CLLS is tagged for the variables that are not selected yet. Actually, CART yields
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Figure 6: Hybrid of regression tree and CLLSs. The structures at the terminal nodes of the
tree are labelled Sy, - - -, S5 from left to right. The number on each arrow represents the value
of the random variable at the tail of the arrow.

prediction probabilities instead of the CLLSs, which were obtained by a separate job using
SAS. The prediction probabilities for R are listed in Table 4, which shows that the strength of
recommendation increases as we move from left to right of the terminal nodes (actually ovals)
of the tree in Figure 6, which are labeled as Si,---,S5. The goodness-of-fit levels of these 5
structures are given in Table 5. S! in the table is a proper submodel of S5 but is not graphical,
and so in the hybrid we use S5 instead which is the smallest of the graphical models that
contain S% as a submodel although S looks better than S5 with regard to goodness-of-fit.

According to the hybrid in Figure 6, variable O is selected first as the most informative for
R among the rest 6 variables; when O takes on 1 or 2, variable H is then selected as the most
informative for R among the rest 5 variables, A, H, F. S, and T, and when O takes on 3, no

further variable-selection improves the prediction accuracy enough and the CLLS among the
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Table 4: Probabilities of recommendation (P(R=1), P(R=2), P(R=3)) at the terminal nodes
of the hybrid in Figure 6

Si Ss S3 S,y Ss
(0.6,0.3,0.1) (0.22,0.5,0.28) (0.12,0.37,0.51) (0.1, 0.33,0.57) (0.03, 0.16, 0.81)

Table 5: Goodness-of-fit levels by SAS of the five structures Sy, -, S5 in Figure 6. n stands
for sample size and G? is the likelihood ratio chi-squared statistic.

Structure n G? df p-value
S1 364 37.11 45 0.792
Sa 1314 19.37 12 0.080
S3 799 10.46 12 0.575
Sy 2170 189.18 175  0.220
Sy 5378 273.86 239 0.060
st 27671 250 0.118"

hs, 10025 142121 1015  0.000

hoa 10025 814.34 914 0.992

hos 10025  643.09 810 1.000
*: For a submodel S§ of S5 represented by
{{H,R,S},{A,R,S},{A,H,S},{A,H,R},{F,H,R},{F,R,T}}.
**. See Figure 8.

remaining variables is as in Ss; similar stories for H and A; as for variable S, no subsequent

variable-selection is recommended and the corresponding CLLSs, S5 and S3, are the same.

It is worthwhile to note in the CLLSs except S5 that F is not informative for R when T
is known. It reflects the fact that TAs of the school grade homework and assist students in
experiments or problem solving, and so F may be subordinate to T from the perspectives of
students. Another thing to note is that R separates lecture-related variables from TA-related
variables in Sy and S; and H and R do the same thing in S5. Whether O takes on 3 or not we
can read in the log-linear structures of the hybrid that lecture-related variables are separated
from their counter part by R and H or by R only. Having noticed this, a group of three

psychometricians agreed on that
(T, F) L (A, S)|(H, O, R). (17)

Item O refers to whether the whole course is well scheduled including a homework list and
score weights over examinations and homeworks. The score weights can be a reflection of
the types and uses of examinations and homeworks. This may possibly explain why O is

the most informative variable for R among the 6 explanatory variables. Considering this, the
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Figure 7: The hypermodels corresponding to Hyb(S; Ss, S3)

psychometricians argued that once students have made up their minds about O, the information
about what they think about F and T must be contained in H and R only. It is obvious that
F has much to do with homework grading by TAs. The psychometricians made another point
that in general TAs do their job according to the course schedule which pertains to O and
that a poor performance of TAs may affect R negatively. Following this line of reasoning, they
concluded that A and S might not be informative for T and F given that the values of H, R,

and O are known.

Turning to the hypermodelling using the hybrid in Figure 6, the process begins with the
bottom-most one-node hybrid, Hyb(S; Si,S3). That S is selected for predicting about R
implies that S is connected to at least one of R, T, and F, resulting into 7 possible connections

as in Figure 7, where graphs 2, 3, and 6 are impossible by Corollary 3.6.

Next, we move up to Hyb(A; hg;, S1), where hg;,i = 1,---,4, are given in Figure 7. The
corresponding hypermodels are displayed in Figure B.2 in Appendix B. In this figure, the four
graphs, graphs 1, 3, 4, and 10, are impossible by Corollary 3.6. For instance, in graphs 3, 4,
and 10, A is not informative for R provided that the value of T is known, but according to the
hybrid in Figure 6, S is more informative for R than T is. If graph 1 were true, then A should
not show up in the hybrid as an informative variable for R. Graphs 1 through 15 correspond
to Hyb(A; hg1,S1); graphs 16 and 17 correspond to Hyb(A; hgs, S1); graphs 18 through 21
correspond to Hyb(A; hgs,S1); and graph 22 corresponds to Hyb(A; hgg, S1).

Note in Figure B.2 that the actual hypermodel corresponding to the hybrid in Figure 6

which satisfies condition (17) must be found in the collection that stems from one of the two
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one-node hybrids,

Hyb(H; hAl,S4) and Hyb(H; hAQ,S4). (18)

This is because A is connected to T or F in graphs h43 through h 413 and Lemma 2.1 implies
that any edge appearing in a CLLS also appears in the corresponding hypermodel and so that

the hypermodel stemming from one of h 43 through h 415 violates condition (17).

Hypermodelling with respect to the hybrids in (18) ends up with the hypermodels in Figure
B.3. The first four graphs therein correspond to both of the hybrids in (18), and the others
correspond to Hyb(H; hao,Sy4) only. As for Hyb(H; hay,S4), it is partially homogeneous; the
same LLS for the set {F, R, T} but not for the set {A, R, S} between h4; and Ss. Thus we
apply, in hypermodelling, Theorem 2.2 to the set {4, S, R} and apply Theorem 2.1 to the set
{R,T,F}. As for Hyb(H; haa,S4), hao = Si. So, by Theorem 2.1, Hyb(H; has,S4) gives

rise to a number of hypermodels, hgy through hgs;.

While there are as many as 31 hybrids, Hyb(O; hy;, S5), i =1,---,31, hypermodelling for
these results into only 8 new hypermodels as displayed in Figure 8. None of hy;, i =1,---,31,
shares the same structure with S5 as far as the subset of variables, F. H, R, and T are concerned.
That is why O must be connected to all of them by Theorem 2.2. As for the subset of variables,
A, H, R, and S, the same structure of them appears in hzy through A4 and Ss. So, by Theorem
2.1, O is connected to none or at least one of A and S. Note that O must be connected to
H and R as mentioned above. The eight graphs in the figure satisfies condition (17), and the

largest of them is hos.

Table 5 displays the goodness-of-fit levels of 3 structures, hos, ho4, and hpg in Figure 8. Out
of the three graphical models, hp4 looks most appropriate in the context of parsimoniousness
and goodness-of-fit. Actually it was found that the four-way interaction effect of the variables
S, A, O, and H, is apparent in the LLM for the seven variables of Table 3. And so the six
graphs, ho;, 1 = 1,2,3,5,6,7, are inappropriate for the data. Much smaller submodels of hpy
were found appropriate but none of them were graphical. Hence, if we confine ourselves to
graphical models only, we end up with hps4 as a most recommended model for the lecture

evaluation data.

In addition to (17), we can see from ho4 that (i) 7' L (A, H,S)|(F,0,R) and that (ii)
S,A,O,R, and H are fully interactive. Statement (i) means that students’ opinions on TA’s
performance are directly associated with F (feedback from homework), O(course organization),

and R(course recommendation) only. It is interesting to see that H(homework contents) does
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Figure 8: The hypermodels corresponding to Hyb(O; hy;, S5)

not affect T directly. We have already noted that S, A, O, and H are fully interactive. All of
them concern the lecturer. And statement (ii) implies that they may represent distinct features

of a lecturer and be associated with R in different dimensions.

6 Discussion

Under the assumption that the hypermodel is graphical, we can search for it by focusing on the
maximal sets in the union of the CLLSs as illustrated in the description of the hypermodelling
process. When hybrid h consists of at least one one-node hybrid which is partially homoge-
neous, there can be multiple hypermodels corresponding to the hybrid h. To make the set-size
of the hypermodels as small as possible, we applied the concept of prediction refinement and
pieces of extraneous information (e.g., conditions (16) and (17)), if any, on a subset of the
variables of a given model and illustrated how the extraneous information reduces the size of
the set of the hypermodels. The refinement concept plays an important role for the set-size
reduction when we deal with a hybrid of prediction tree and CLLSs. By applying the concept
and the extraneous information, we may see a more reduction in the set-size than when ap-
plying only one of them. As long as the hybrid model is concerned, the contribution level for
the set-size reduction may vary between the two according to the situations that hybrids are
applied to. For instance, in hypermodelling with the hybrid in Figure 6, we could reduce the
number of the possible hypermodels corresponding to Hyb(.S; S, S3) down to 4/7 by apply-
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ing the refinement concept, while the contribution was smaller at the next one-node hybrid
Hyb(A; hs,,S1) compared with the extraneous information. The number of possible hyper-
models may increase exponentially during the hypermodelling. In this respect, it is important
to note that a contribution to the set-size reduction at an earlier stage of the hypermodelling
process is in general more effective for reduction of the set-size of the hypermodels than a later

contribution.

In the hybrid of section 5, all the variables involved are ternary. So, it is possible that
the same predictor variable appear more than once in the tree part. To avoid this multiple
appearance, it is desirable to split the data at the node of the predictor variable (X say) into
as many subsets as the number of the levels of X. Such multiple appearances did not show up

in the hybrids of this paper.

The hypermodelling method can be applied sequentially for such hybrids as in Figures 3
and 6. We can construct a tree-structured prediction system (or tree for short) using CART.
But the structure of the tree is sensitive to the random variation in data (Breiman et al., 1984;
Kim, 1992), and experts may not agree with some sequences of variables embodied in the tree.
For example, medical doctors may have their preferences regarding the sequence of symptom
examination. Thus they may wish to construct a tree up to a certain tree-size in order to
minimize the effect of the noise in data, and then attach CLLSs at the end of the tree. Hybrids
of this kind may serve the dual purposes of prediction and interpretation well. Prediction with
a LLS can be easily handled by the method described in Lauritzen and Spiegelhalter (1988).
The interpretation of the model structure is via a sequential application of the hypermodelling
method to each one-node hybrid. Of course, if we have enough data, then we can fit a LLM to
data. But when we select a LLM from a set of good looking, candidate LLMs for a data set, it
may be desirable to check whether the structure of the selected one is in the set of the possible
hypermodels which is obtained from the complex hybrid. If we can not have enough data for
all the interested variables but can collect data for subsets of the variables conditional on the
outcomes of some other variables, then the hypermodelling approach may be very useful in

formulating a LLS for all the interested variables.

In the previous section, we dealt with 7 ternary variables. It may take about a month with
an IBM pc with a 200MHz CPU to build a LLM for these variables by a stepwise procedure
using SAS. For instance, it took 8 days and 2 hours for fitting hpg and 7 days and 2 hours for
fitting ho4. On the other hand, the whole process of obtaining from data the regression tree

and the CLLSs as in Figure 6 and then hypermodelling up to the graphs in Figure 8 took less
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than half a day. In this respect, we may safely recommend that hybrids such as in Figures
3 and 6 be used when searching for a relatively large LLS suitable to data. Another useful
feature of such a hybrid is that it serves both the purposes of prediction and interpretation of
the structural relationship among variables. As was the case in the example of the preceeding
section, the CLLSs of a hybrid themselves may sometimes be a clue to pieces of information

about the relationship among variables.

The hybrid such as in Figures 3 and 6 may also be constructed based on experts’ opinions
when data are sparse or not evenly dispersed across the paths of the tree-part. When data
are sparse along a particular path, the corresponding CLLS may have to be obtained from an
expert. This implies that some of the CLLSs of a hybrid may be based on real data and the
others on experts’ opinions. It is possible that more than half of the CLLSs of a hybrid are
expert-based and the others data-based. When data are hard to collect and we need to consult
experts, it is desirable that we restrict the problem domain as much as possible so that experts
could give unambiguous opinions over a certain knowledge domain. For instance, in case that
the structures S and S5 are not provided in Figure 6, experts may feel more comfortable in
giving opinions on the corresponding set of variables than when they are consulted for one
of 51,854, and S5. There may be cases that experts are consulted for some paths of the tree
part of a hybrid in addition to some CLLSs of a hybrid. We can also do hypermodelling, by
applying the theorems and corollaries of sections 2 and 3 and some pieces of information about
the interrrelationship among the variables, with such hybrids as are half expert-based and half
data-based in search of the hypermodel that reflects both the data and the experts’ opinions.

The hypermodel can then be updated or modified as data accumulate.

Finally, whether it is data-based, expert-based, or inbetween, a hybrid h gives birth to
hypermodels, and the number of the hypermodels is determined subject to the states of ho-
mogeneity of the element one-node hybrids of h and pieces of information about the inter-
relationship among variables. If we have good pieces of such information, the number of the
hypermodels will be reduced as we have seen in sections 4 and 5. When building a model based
on data, we impose some stochastic or mathematical restrictions on the model or pick some
mathematical formula and see how it fits data. The pieces of information on local relationships
play the same role as the restrictions on modelling. The quality of such information is up to

the experts being consulted.
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Appendix A: Relationship between LLS and CLLS

Let X1, X9, -+, X, be categorical variables. We consider CLLSs of X5, X3, -, X, conditional
on the outcomes of X, and assume that X7 takes on I values 1,---, I and that it is effective
for the LLM of X1, Xo,---, X,,. Thus we may restrict ourselves to the LLMs that include the
up term, i.e.,

Consider a LLS given by
{915927"'70]6}7 (20)

where 61,0y, ---, 0 are distinct subsets of {1,2,---,n}. Under the assumption in (19), there
must exist at least one set in expression (20) which contains “1”7. Suppose that there are r of
these, 61,65, --,6,. In Example 2.1 we saw that a component set (e.g., {3,4,5}) in the LLS
which does not contain “1” appears in every conditional of the LLS but not for the component

sets (e.g., {1,2,3}, {1,3,4}) that contain “1”.

When a LLM is conditioned by X, the “1” disappears into the w®)_terms in the CLLM
and the terms affect the CLLS under the SHP. If the index set of a w-term (e.g., wgﬁ}) is
a subset of the index set of some u-term, the w-term does not affect the CLLS; otherwise
(e.g., wgg}), the w-term affect the CLLS. We call a set such as {1,3,4} in Example 2.1 as
a disappearing set, a set such as {1,2,3} as a remaining set, and a set such as {3,4,5} as a
settled set. If a set of a LLS is free of “17, it is settled; otherwise, it is either remaining or

disappearing.

We may suppose, without loss of generality, that there are d disappearing sets, 01, ---,80,,
0 <d < r, in expression (20). Thus the sets, 0411, -, 0,, are the remaining sets in (20). After
appropriate rearrangements, we haved = 1, r = 2, k = 3 in Example 2.1, andd =0, r =k =2

in Example 2.2. When all the sets in a LLS contain “1”, r = k and d = 0.

Many of the C'LLS’s associated with a LLS are the results of zero-w phenomena involving
the remaining sets in the LLS. When the LLS is given by (20), the generic form of the CLLSs
for Xs,---, X, given X; = x is given, under the SHP, by

(‘pd+17§0d+27"'7()07"797"+13"'79k>3 for ©j EC]', j:d+1,"',’)", (21)

where C; is a collection of subsets of the remaining set, §; \ {1} for d+1 < j <r. The largest
of the CLLSs is given by {6441 \ {1},---,0; \ {1},6,41,-- .0k}, and the smallest is given by
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{6r41,---,0r}. The settled sets show up in each of the CLLSs.

Appendix B: Some hypermodels referred to in sections 4 and 5

24 Y 3 24 Y 3 Y, 3 )
i 0 i 0 45
Hy H> 5 H> 3
2. %3 Yo 3, . Y 3
A 5 4 5 2 1 5
H 4 H> 5 Hs
2 Y 3 2 Y 3 Y, 3 .9
g 0 i 0 455
H 7 Hy 5 Hs g
2. % 3 e 3 Y 3
5 2/ 5 2 5
4 4 4
Hs 10 Hs 1y Hs 15
Y, 3 D G Y, 3 9
4 5 2 A 5 4 5
H2713 H2’14 H2,15
Y 3
2
1 5
H2,16

Figure B.1: Hypermodels from the hybrid Hyb(Xs; Hs 2, S3)
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R, T F T F T F T F
S . SI : SI I SI :
A A A A
(1) (2) hax (3) (4)
N N
A A A A
(5) has (6) has (7) haa (8) has
S S S 8.27
A A A A
(9) hag (10) (11) har (12) hag
S S S S
A A A A
(13) hoao (14) haso (15) han (16) has
R, T F R, T, F R, 1, F R, T F
S SZ S.E S
A A A A
(17) hais (18) ha14 (19) hais (20) haie
R T oF R T »F
S S
A A
(21) hair (22) hais

Figure B.2: The hypermodels corresponding to Hyb(A; hg;, S1)
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. o o' . F F
H H H H
(1) hg (2) hyo (3) hus (4) hpq
S R T oF Se R T «F S R T F S R T F
N WX ] N
H H H H
(5) hus (6) hie (7) hgr (8) hus
S R rl: F S R 'I: oF g R 'I: oF g R T F
N \ N
H H H
(9) hio (10) h#1o (11) han (12) hmio
S R r‘[: F Se R 1: oF S R T F S R T F
AM M
H H H H
(13) hms (14) hpa (15) hmis (16) hmie
S R T oF S, R T F S R T F S, R T F
N N
H H H H
(17) hir (18) hms (19) hig (20) haao
Se B T g s, B T g s, B T o s B T
Al A A Al
H H H H
(21) hpoy (22) hp2e (23) hpos (24) hgr2a
H H H H
(25) hpas (26) hmae (27) hmor (28) hpas
S, R T F S R T F S. R T F
N Z |
H H H
(29) hpae (30) huso (31) hps:

Figure B.3: The hypermodels corresponding to Hyb(H; ha;, S1)
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Appendix C: The frequency table of the data used in section 5

The table consists of 20 columns. The 7-digit columns list the configurations of the 7 random

variables, S, O, A, H, F, T, R, in the same order. Each random variable has levels, 1, 2, and

3. The 7-digit column is followed by an integer column which lists the cell frequencies at the

cells indicated in the 7-digit column. For example, the

cell frequency at (1,1,1,1,1,1,1) is 29.

1111111 29 1111112 6 1111113 2 1111121 10 1111122 2 1111123 1 1111131 14 1111132 3 1111133 1 1111211 7
1111212 1 1111213 0 1111221 13 1111222 2 1111223 1 1111231 5 1111232 2 1111233 1 1111311 2 1111312 0
1111313 0 1111321 2 1111322 0 1111323 11111331 4 1111332 0 1111333 1 1112111 6 1112112 2 1112113 1
1112121 5 1112122 8 1112123 0 1112131 5 1112132 11112133 0 1112211 3 1112212 2 1112213 0 1112221 7
1112222 3 1112223 1 1112231 5 1112232 4 1112233 0 1112311 2 1112312 0 1112313 0 1112321 6 1112322 0
1112323 1 1112331 10 1112332 1 1112333 0 1113111 6 1113112 0 1113113 4 1113121 1 1113122 3 1113123 2
1113131 2 1113132 3 1113133 0 1113211 3 1113212 1 1113213 0 1113221 2 1113222 3 1113223 2 1113231 1
1113232 2 1113233 2 1113311 0 1113312 0 1113313 1 1113321 4 1113322 2 1113323 2 1113331 8 1113332 1
1113333 4 1121111 5 1121112 4 1121113 1 1121121 1 1121122 6 1121123 2 1121131 4 1121132 1 1121133 0
1121211 1 1121212 0 1121213 0 1121221 4 1121222 0 1121223 0 1121231 3 1121232 0 1121233 0 1121311 1
1121312 0 1121313 0 1121321 1 1121322 0 1121323 1 1121331 1 1121332 0 1121333 0 1122111 5 1122112 2
1122113 0 1122121 2 1122122 6 1122123 1 1122131 2 1122132 1 1122133 1 1122211 2 1122212 3 1122213 0
1122221 3 1122222 7 1122223 1 1122231 3 1122232 5 1122233 1 1122311 2 1122312 1 1122313 0 1122321 5
1122322 2 1122323 0 1122331 3 1122332 3 1122333 1 1123111 2 1123112 5 1123113 1 1123121 2 1123122 2
1123123 3 1123131 1 1123132 1 1123133 0 1123211 1 1123212 1 1123213 2 1123221 2 1123222 3 1123223 1
1123231 0 1123232 2 1123233 2 1123311 1 1123312 0 1123313 0 1123321 2 1123322 3 1123323 2 1123331 3
1123332 4 1123333 1 1131111 0 1131112 0 1131113 1 1131121 2 1131122 1 1131123 2 1131131 1 1131132 0
1131133 0 1131211 0 1131212 0 1131213 0 1131221 0 1131222 0 1131223 0 1131231 0 1131232 0 1131233 1
1131311 0 1131312 0 1131313 1 1131321 0 1131322 0 1131323 0 1131331 0 1131332 0 1131333 0 1132111 5
1132112 0 1132113 0 1132121 0 1132122 1 1132123 0 1132131 0 1132132 0 1132133 0 1132211 0 1132212 1
1132213 0 1132221 1 1132222 1 1132223 0 1132231 1 1132232 2 1132233 1 1132311 0 1132312 0 1132313 1
1132321 0 1132322 1 1132323 0 1132331 0 1132332 0 1132333 0 1133111 0 1133112 1 1133113 1 1133121 1
1133122 0 1133123 2 1133131 1 1133132 1 1133133 1 1133211 1 1133212 0 1133213 0 1133221 0 1133222 0
1133223 0 1133231 0 1133232 1 1133233 0 1133311 0 1133312 0 1133313 2 1133321 0 1133322 0 1133323 0
1133331 0 1133332 3 1133333 3 1211111 1 1211112 1 1211113 0 1211121 0 1211122 0 1211123 1 1211131 0
1211132 1 1211133 0 1211211 0 1211212 0 1211213 0 1211221 1 1211222 1 1211223 0 1211231 2 1211232 0
1211233 0 1211311 0 1211312 0 1211313 0 1211321 0 1211322 0 1211323 0 1211331 0 1211332 0 1211333 0
1212111 1 1212112 1 1212113 0 1212121 0 1212122 2 1212123 0 1212131 3 1212132 1 1212133 0 1212211 2
1212212 2 1212213 0 1212221 0 1212222 4 1212223 2 1212231 0 1212232 0 1212233 0 1212311 0 1212312 1
1212313 0 1212321 2 1212322 1 1212323 1 1212331 0 1212332 1 1212333 0 1213111 0 1213112 0 1213113 0
1213121 1 1213122 3 1213123 1 1213131 0 1213132 2 1213133 1 1213211 0 1213212 2 1213213 2 1213221 4
1213222 0 1213223 2 1213231 0 1213232 0 1213233 1 1213311 1 1213312 0 1213313 1 1213321 0 1213322 1
1213323 1 1213331 0 1213332 3 1213333 2 1221111 1 1221112 2 1221113 1 1221121 1 1221122 1 1221123 0
1221131 0 1221132 1 1221133 1 1221211 0 1221212 0 1221213 0 1221221 0 1221222 0 1221223 0 1221231 1
1221232 3 1221233 0 1221311 0 1221312 1 1221313 0 1221321 1 1221322 0 1221323 0 1221331 0 1221332 1
1221333 0 1222111 2 1222112 1 1222113 0 1222121 2 1222122 5 1222123 2 1222131 2 1222132 1 1222133 1
1222211 5 1222212 1 1222213 0 1222221 6 1 81 3 5 1222231 3 1222232 4 1222233 3 1222311 1
1222312 0 1222313 0 1222321 1 1222322 2 1222323 2 1222331 0 1222332 3 1222333 0 1223111 4 1223112 3
1223113 0 1223121 3 1223122 2 1223123 3 1223131 0 1223132 2 1223133 4 1223211 0 1223212 1 1223213 0
1223221 2 1223222 6 1223223 3 1223231 1 1223232 2 1223233 0 1223311 0 1223312 0 1223313 1 1223321 1
1223322 4 1223323 5 1223331 0 1223332 7 1223333 3 1231111 0 1231112 0 1231113 0 1231121 0 1231122 1
1231123 0 1231131 0 1231132 1 1231133 0 1231211 1 1231212 0 1231213 1 1231221 0 1231222 0 1231223 2
1231231 0 1231232 0 1231233 0 1231311 0 1231312 0 1231313 0 1231321 0 1231322 0 1231323 0 1231331 0
1231332 0 1231333 0 1232111 0 1232112 0 1232113 1 1232121 0 1232122 0 1232123 2 1232131 1 1232132 1
1232133 0 1232211 0 1232212 0 1232213 0 1232221 1123 3 1232223 0 1232231 0 1232232 1 1232233 0
1232311 0 1232312 0 1232313 0 1232321 2 1232322 1 1232323 0 1232331 1 1232332 1 1232333 0 1233111 0
1233112 0 1233113 2 1233121 2 1233122 2 1233123 5 1233131 0 1233132 0 1233133 0 1233211 0 1233212 2
1233213 0 1233221 1 1233222 1 1233223 3 1233231 0 1233232 0 1233233 0 1233311 0 1233312 1 1233313 0
1233321 0 1233322 0 1233323 3 1233331 0 1233332 2 1233333 3 1311111 1 1311112 0 1311113 0 1311121 0
1311122 0 1311123 0 1311131 0 1311132 0 1311133 0 1311211 0 1311212 0 1311213 0 1311221 0 1311222 0
1311223 0 1311231 0 1311232 0 1311233 0 1311311 0 1311312 0 1311313 0 1311321 0 1311322 0 1311323 0
1311331 0 1311332 0 1311333 0 1312111 1 1312112 0 1312113 0 1312121 0 1312122 0 1312123 0 1312131 0
1312132 0 1312133 0 1312211 0 1312212 0 1312213 0 1312221 0 1312222 1 1312223 1 1312231 0 1312232 0
1312233 0 1312311 0 1312312 0 1312313 0 1312321 0 1312322 1 1312323 0 1312331 0 1312332 0 1312333 0
1313111 0 1313112 0 1313113 0 1313121 1 1313122 0 1313123 0 1313131 0 1313132 0 1313133 0 1313211 0
1313212 0 1313213 0 1313221 0 1313222 0 1313223 1 1313231 0 1313232 0 1313233 1 1313311 0 1313312 0
1313313 2 1313321 0 1313322 0 1313323 0 1313331 0 1313332 0 1313333 0 1321111 0 1321112 0 1321113 0
1321121 1 1321122 0 1321123 0 1321131 0 1321132 1 1321133 0 1321211 0 1321212 0 1321213 0 1321221 0
1321222 0 1321223 1 1321231 0 1321232 0 1321233 0 1321311 1 1321312 0 1321313 0 1321321 0 1321322 0
1321323 0 1321331 0 1321332 0 1321333 0 1322111 0 1322112 0 1322113 0 1322121 2 1322122 1 1322123 0
1322131 1 1322132 0 1322133 0 1322211 0 1322212 0 1322213 0 1322221 0 1322222 1 1322223 0 1322231 0
1322232 2 1322233 2 1322311 1 1322312 0 1322313 0 1322321 0 1322322 2 1322323 0 1322331 0 1322332 1
1322333 1 1323111 0 1323112 1 1323113 1 1323121 1 1323122 1 1323123 1 1323131 0 1323132 0 1323133 2
1323211 0 1323212 0 1323213 0 1323221 0 1323222 1 1323223 1 1323231 0 1323232 1 1323233 0 1323311 0
1323312 0 1323313 0 1323321 1 1323322 1 1323323 3 1323331 0 1323332 1 1323333 2 1331111 0 1331112 0
1331113 1 1331121 1 1331122 0 1331123 0 1331131 0 1331132 0 1331133 0 1331211 0 1331212 0 1331213 1
1331221 0 1331222 1 1331223 0 1331231 0 1331232 0 1331233 0 1331311 0 1331312 0 1331313 0 1331321 0
1331322 0 1331323 0 1331331 0 1331332 0 1331333 1 1332111 0 1332112 0 1332113 0 1332121 0 1332122 0
1332123 0 1332131 0 1332132 0 1332133 0 1332211 0 1332212 0 1332213 0 1332221 1 1332222 0 1332223 1
1332231 2 1332232 0 1332233 0 1332311 0 1332312 0 1332313 0 1332321 0 1332322 0 1332323 1 1332331 1
1332332 1 1332333 0 1333111 0 1333112 1 1333113 2 1333121 0 1333122 0 1333123 1 1333131 0 1333132 0
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1333133 0 1333211 0 1333212 0 1333213 1 1333221 0 1333 1 1333223 0 1333231 0 1333232 1 1333233
1333311 0 1333312 0 1333313 1 1333321 0 1333322 0 1333323 1 1333331 1 1333332 1 1333333 9 2111111
2111112 3 2111113 0 2111121 1 2111122 0 2111123 0 2111131 2 2111132 1 2111133 0 2111211 1 2111212
2111213 1 2111221 1 2111222 0 2111223 0 2111231 2 2111232 0 2111233 0 2111311 2 2111312 0 2111313
2111321 0 2111322 0 2111323 0 2111331 1 2111332 12111333 0 2112111 6 2112112 1 2112113 1 2112121
2112122 4 2112123 3 2112131 2 2112132 0 2112133 1 2112211 6 2112212 0 2112213 1 2112221 7 2112222
2112223 0 2112231 6 2112232 0 2112233 0 2112311 1 2112312 1 2112313 0 2112321 2 2112322 0 2112323
2112331 3 2112332 2 2112333 0 2113111 2 2113112 1 2113113 1 2113121 2 2113122 0 2113123 0 2113131
2113132 0 2113133 0 2113211 2 2113212 1 2113213 1 2113221 2 2113222 3 2113223 0 2113231 2 2113232
2113233 4 2113311 0 2113312 0 2113313 0 2113321 0 2113322 1 2113323 4 2113331 1 2113332 3 2113333
2121111 3 2121112 2 2121113 1 2121121 4 2121122 6 2121123 0 2121131 3 2121132 0 2121133 0 2121211
2121212 1 2121213 0 2121221 2 2121222 4 2121223 1 2121231 0 2121232 1 2121233 0 2121311 0 2121312
2121313 0 2121321 2 2121322 1 2121323 2 2121331 1 2121332 0 2121333 1 2122111 9 2122112 5 2122113
2122121 5 2122122 8 2122123 1 2122131 1 2122132 5 2122133 0 2122211 2 2122212 0 2122213 5 2122221
2122222 15 2122223 4 2122231 3 2122232 4 2122233 0 2122311 0 2122312 1 2122313 1 2122321 3 2122322
2122323 3 2122331 7 2122332 1 2122333 3 2123111 0 2123112 9 2123113 2 2123121 2 2123122 3 2123123
2123131 1 2123132 5 2123133 4 2123211 3 2123212 1 2123213 0 2123221 2 2123222 1 2123223 6 2123231
2123232 2 2123233 3 2123311 2 2123312 2 2123313 2 2123321 2 2123322 5 2123323 6 2123331 4 2123332
2123333 4 2131111 3 2131112 4 2131113 0 2131121 2 2131122 1 2131123 0 2131131 2 2131132 0 2131133
2131211 0 2131212 0 2131213 0 2131221 1 2131222 1 2131223 0 2131231 0 2131232 1 2131233 0 2131311
2131312 0 2131313 0 2131321 0 2131322 0 2131323 1 2131331 1 2131332 0 2131333 0 2132111 1 2132112
2132113 1 2132121 1 2132122 7 2132123 1 2132131 1 2132132 0 2132133 1 2132211 1 2132212 2 2132213
2132221 0 2132222 8 2132223 3 2132231 0 2132232 0 2132233 0 2132311 1 2132312 0 2132313 0 2132321
2132322 1 2132323 1 2132331 1 2132332 0 2132333 1 2133111 2 2133112 1 2133113 1 2133121 0 2133122
2133123 1 2133131 1 2133132 2 2133133 1 2133211 0 2133212 1 2133213 0 2133221 2 2133222 2 2133223
2133231 2 2133232 1 2133233 3 2133311 2 2133312 1 2133313 1 2133321 0 2133322 2 2133323 4 2133331
2133332 6 2133333 9 2211111 1 2211112 0 2211113 0 2211121 1 2211122 1 2211123 0 2211131 2 2211132
2211133 0 2211211 2 2211212 0 2211213 0 2211221 0 2211222 0 2211223 0 2211231 1 2211232 0 2211233
2211311 0 2211312 0 2211313 0 2211321 1 2211322 0 2211323 0 2211331 0 2211332 0 2211333 0 2212111
2212112 1 2212113 1 2212121 0 2212122 2 2212123 0 2212131 1 2212132 1 2212133 0 2212211 0 2212212
2212213 1 2212221 2 2212222 4 2212223 0 2212231 1 2212232 3 2212233 0 2212311 1 2212312 1 2212313
2212321 1 2212322 1 2212323 3 2212331 0 2212332 0 2212333 1 2213111 1 2213112 5 2213113 1 2213121
2213122 0 2213123 0 2213131 0 2213132 0 2213133 2 2213211 0 2213212 0 2213213 2 2213221 1 2213222
2213223 2 2213231 0 2213232 0 2213233 1 2213311 0 2213312 0 2213313 1 2213321 1 2213322 0 2213323
2213331 1 2213332 2 2213333 2 2221111 8 2221112 11 2221113 5 2221121 2 2221122 9 2221123 7 2221131
2221132 6 2221133 5 2221211 4 2221212 4 2221213 1 2221221 3 2221222 6 2221223 4 2221231 0 2221232
2221233 1 2221311 0 2221312 2 2221313 0 2221321 1 2221322 1 2221323 2 2221331 2 2221332 1 2221333
2222111 10 2222112 16 2222113 10 2222121 9 2222122 43 2222123 14 2222131 2 2222132 11 2222133 8 2222211
2222212 23 2222213 9 1 24 143 3 65 31 10 3 31 2222233 32 2222311 5 2222312
2222313 1 321 6 3 29 323 14 331 8 33 21 333 15 2223111 2 2223112 17 2223113
2223121 3 2223122 17 2223123 21 2223131 2 2223132 6 2223133 9 2223211 3 2223212 5 2223213 9 2223221

3 33 3223 29 3231 5 323 12 3233 21 2223311 1 2223312 8 2223313 8 2223321 4 2223322

3323 40 3331 5 333! 24 3333 47 2231111 2 2231112 5 2231113 4 2231121 2 2231122 8 2231123
2231131 0 2231132 2 2231133 0 2231211 2 2231212 1 2231213 1 2231221 2 2231222 2 2231223 2 2231231
2231232 0 2231233 0 2231311 1 2231312 0 2231313 0 2231321 1 2231322 0 2231323 1 2231331 1 2231332
2231333 2 2232111 2 2232112 10 2232113 4 2232121 7 2232122 10 2232123 1 2232131 0 2232132 4 2232133
2232211 3 2232212 9 2232213 4 3 1 8 3 26 3 3 25 32231 3 2232232 12 2232233 14 2232311
2232312 5 2232313 1 32321 3 323 13 32323 11 32331 3 3233 12 2232333 6 2233111 1 2233112
2233113 13 2233121 1 2233122 8 2233123 9 2233131 0 2233132 5 2233133 11 2233211 2 2233212 2 2233213

33221 6 2233 22 2233223 20 2233231 1 223323 7 2233233 17 2233311 1 2233312 2 2233313 6 2233321

333! 15 2233323 27 2233331 1 223333 25 2233333 49 2311111 0 2311112 0 2311113 0 2311121 1 2311122
2311123 0 2311131 0 2311132 0 2311133 0 2311211 0 2311212 1 2311213 1 2311221 0 2311222 0 2311223
2311231 0 2311232 0 2311233 0 2311311 0 2311312 0 2311313 0 2311321 0 2311322 0 2311323 0 2311331
2311332 0 2311333 0 2312111 0 2312112 0 2312113 0 2312121 0 2312122 0 2312123 0 2312131 2 2312132
2312133 0 2312211 0 2312212 0 2312213 0 2312221 1 2312222 1 2312223 0 2312231 0 2312232 0 2312233
2312311 0 2312312 0 2312313 1 2312321 0 2312322 0 2312323 1 2312331 0 2312332 1 2312333 1 2313111
2313112 0 2313113 1 2313121 0 2313122 0 2313123 1 2313131 1 2313132 0 2313133 0 2313211 1 2313212
2313213 1 2313221 0 2313222 0 2313223 1 2313231 1 2313232 0 2313233 2 2313311 0 2313312 0 2313313
2313321 1 2313322 0 2313323 0 2313331 0 2313332 1 2313333 2 2321111 2 2321112 2 2321113 1 2321121
2321122 0 2321123 0 2321131 0 2321132 0 2321133 2 2321211 0 2321212 0 2321213 0 2321221 0 2321222
2321223 0 2321231 0 2321232 1 2321233 1 2321311 0 2321312 1 2321313 0 2321321 0 2321322 0 2321323
2321331 1 2321332 0 2321333 1 2322111 1 2322112 3 2322113 3 2322121 1 2322122 3 2322123 6 2322131
2322132 0 2322133 2 2322211 0 2322212 1 2322213 2 2322221 3 2322222 9 2322223 3 2322231 1 2322232
2322233 1 2322311 1 2322312 0 2322313 1 2322321 0 23223 4 2322323 4 2322331 0 2322332 4 2322333
2323111 1 2323112 0 2323113 6 2323121 2 2323122 2 2323123 7 2323131 0 2323132 1 2323133 3 2323211
2323212 3 2323213 3 2323221 1 2323 10 2323223 13 2323231 0 232323 3 2323233 8 2323311 0 2323312
2323313 1 2323321 0 23233 6 2323323 10 2323331 3 232333 8 2323333 18 2331111 0 2331112 4 2331113
2331121 0 2331122 2 2331123 2 2331131 2 2331132 2 2331133 2 2331211 0 2331212 3 2331213 0 2331221
2331222 1 2331223 7 2331231 1 2331232 1 2331233 1 2331311 0 2331312 0 2331313 0 2331321 0 2331322
2331323 1 2331331 0 2331332 1 2331333 2 2332111 0 2332112 7 2332113 6 2332121 0 2332122 5 2332123
2332131 1 2332132 2 2332133 1 2332211 0 2332212 5 2332213 4 2332221 4 2332222 19 2332223 32 2332231
2332232 10 2332233 4 2332311 0 2332312 0 2332313 2 2332321 2 2332322 2 2332323 9 2332331 1 2332332
2332333 13 2333111 2 2333112 10 2333113 18 2333121 0 2333122 2 2333123 22 2333131 1 2333132 3 2333133
2333211 2 2333212 2 2333213 8 2333221 4 2333 11 2333223 27 2333231 1 2333232 4 2333233 17 2333311
2333312 1 2333313 9 2333321 3 2333322 12 2333323 38 2333331 4 2333332 12 2333333 76 3111111 2 3111112
3111113 0 3111121 1 3111122 1 3111123 0 3111131 0 3111132 0 3111133 0 3111211 3 3111212 0 3111213
3111221 0 3111222 0 3111223 0 3111231 0 3111232 1 3111233 0 3111311 0 3111312 0 3111313 0 3111321
3111322 0 3111323 0 3111331 0 3111332 0 3111333 0 3112111 0 3112112 2 3112113 0 3112121 0 3112122
3112123 0 3112131 0 3112132 0 3112133 0 3112211 0 3112212 1 3112213 0 3112221 3 3112222 0 3112223
3112231 0 3112232 2 3112233 0 3112311 0 3112312 0 3112313 2 3112321 0 3112322 0 3112323 0 3112331
3112332 0 3112333 0 3113111 0 3113112 0 3113113 1 3113121 1 3113122 0 3113123 1 3113131 1 3113132
3113133 0 3113211 0 3113212 0 3113213 0 3113221 0 3113222 0 3113223 1 3113231 0 3113232 0 3113233
3113311 0 3113312 0 3113313 1 3113321 0 3113322 1 3113323 0 3113331 1 3113332 4 3113333 0 3121111
3121112 2 3121113 1 3121121 2 3121122 0 3121123 1 3121131 0 3121132 0 3121133 0 3121211 2 3121212
3121213 0 3121221 0 3121222 3 3121223 0 3121231 1 3121232 0 3121233 0 3121311 0 3121312 0 3121313
3121321 1 3121322 0 3121323 0 3121331 1 3121332 0 3121333 0 3122111 0 3122112 1 3122113 0 3122121
3122122 2 3122123 3 3122131 0 3122132 0 3122133 1 3122211 0 3122212 1 3122213 0 3122221 1 3122222
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3122223 0 3122231 0 3122232 3 3122233 5 3122311 0 3122312 2 3122313 0 3122321 0 3122322 3 3122323 2
3122331 0 3122332 2 3122333 2 3123111 2 3123112 1 3123113 1 3123121 0 3123122 0 3123123 1 3123131 0
3123132 1 3123133 1 3123211 0 3123212 0 3123213 1 3123221 0 3123222 4 3123223 2 3123231 2 3123232 1
3123233 1 3123311 0 3123312 0 3123313 2 3123321 1 3123322 5 3123323 3 3123331 3 3123332 3 3123333 4
3131111 4 3131112 0 3131113 0 3131121 3 3131122 1 3131123 0 3131131 0 3131132 1 3131133 2 3131211 1
3131212 0 3131213 0 3131221 0 3131222 1 3131223 0 3131231 0 3131232 2 3131233 2 3131311 0 3131312 0
3131313 0 3131321 2 3131322 0 3131323 1 3131331 0 3131332 1 3131333 0 3132111 2 3132112 1 3132113 1
3132121 2 3132122 6 3132123 1 3132131 0 3132132 1 3132133 1 3132211 0 3132212 0 3132213 0 3132221 2
3132222 5 3132223 0 3132231 0 3132232 3 3132233 2 3132311 1 3132312 0 3132313 1 3132321 1 3132322 2
3132323 0 3132331 0 3132332 2 3132333 3 3133111 0 3133112 4 3133113 4 3133121 1 3133122 4 3133123 8
3133131 2 3133132 2 3133133 4 3133211 1 3133212 1 3133213 3 3133221 0 3133222 4 3133223 5 3133231 2
3133232 1 3133233 5 3133311 1 3133312 0 3133313 1 3133321 3 3133322 4 3133323 5 3133331 5 3133332 7
3133333 9 3211111 2 3211112 1 3211113 0 3211121 0 3211122 0 3211123 0 3211131 2 3211132 0 3211133 0
3211211 0 3211212 0 3211213 0 3211221 1 3211222 0 3211223 0 3211231 0 3211232 0 3211233 0 3211311 1
3211312 0 3211313 0 3211321 0 3211322 0 3211323 1 3211331 0 3211332 0 3211333 0 3212111 0 3212112 1
3212113 0 3212121 0 3212122 0 3212123 0 3212131 1 3212132 0 3212133 2 3212211 0 3212212 0 3212213 0
3212221 1 3212222 0 3212223 1 3212231 0 3212232 0 3212233 0 3212311 0 3212312 0 3212313 0 3212321 0
3212322 2 3212323 1 3212331 0 3212332 0 3212333 0 3213111 1 3213112 0 3213113 0 3213121 0 3213122 0
3213123 0 3213131 0 3213132 0 3213133 0 3213211 1 3213212 1 3213213 0 3213221 0 3213222 1 3213223 0
3213231 0 3213232 0 3213233 1 3213311 0 3213312 1 3213313 0 3213321 0 3213322 0 3213323 0 3213331 1
3213332 1 3213333 2 3221111 2 3221112 3 3221113 6 3221121 0 3221122 2 3221123 5 3221131 1 3221132 2
3221133 2 3221211 1 3221212 2 3221213 0 3221221 0 3221222 2 3221223 3 3221231 1 3221232 1 3221233 0
3221311 1 3221312 0 3221313 0 3221321 2 3221322 2 3221323 1 3221331 1 3221332 0 3221333 2 3222111 1
3222112 7 3222113 5 3222121 1 3222122 16 3222123 7 3222131 0 3222132 3 3222133 3 3222211 2 3222212 7
3222213 43 1 53 25 3 3 33 3 31 2 3 3 9 3 33 9 3222311 0 3222312 2 3222313 2
3 321 53 3 11 3 323 13 3 331 13 33 12 3 333 7 3223111 0 3223112 7 3223113 11 3223121 1
3223122 12 3223123 13 3223131 0 3223132 3 3223133 11 3223211 1 3223212 4 3223213 9 3223221 1 3223222 13
3223223 25 3223231 1 322323 7 3223233 19 3223311 0 3223312 7 3223313 5 3223321 4 3223322 12 3223323 25
3223331 4 322333 10 3223333 32 3231111 6 3231112 8 3231113 3 3231121 0 3231122 6 3231123 10 3231131 1
3231132 0 3231133 6 3231211 1 3231212 2 3231213 2 3231221 2 3231222 1 3231223 10 3231231 1 3231232 2
3231233 2 3231311 1 3231312 1 3231313 1 3231321 1 3231322 0 3231323 1 3231331 1 3231332 2 3231333 2
3232111 1 3232112 11 3232113 14 3232121 4 3232122 21 3232123 24 3232131 0 3232132 3 3232133 5 3232211 5
3232212 7 3232213 9 323 1 9 323 40 323 3 64 3232231 1 323223 16 3232233 21 3232311 4 3232312 3
3232313 8 3232321 6 32323 20 3232323 37 3232331 3 323233 20 3232333 27 3233111 4 3233112 16 3233113 17
3233121 2 3233122 16 3233123 23 3233131 3 3233132 4 3233133 16 3233211 0 3233212 11 3233213 23 3233221 6
3233 42 3233223 85 3233231 6 323323 19 3233233 49 3233311 4 3233312 11 3233313 13 3233321 11 3233322 42
3233323 84 3233331 3 3233332 36 3233333 160 3311111 0 3311112 0 3311113 0 3311121 0 3311122 0 3311123 0
3311131 0 3311132 0 3311133 0 3311211 1 3311212 0 3311213 0 3311221 0 3311222 0 3311223 0 3311231 0
3311232 0 3311233 0 3311311 0 3311312 0 3311313 0 3311321 0 3311322 0 3311323 0 3311331 0 3311332 0
3311333 0 3312111 0 3312112 0 3312113 0 3312121 0 3312122 0 3312123 0 3312131 0 3312132 0 3312133 1
3312211 0 3312212 1 3312213 0 3312221 1 3312222 0 3312223 0 3312231 0 3312232 0 3312233 0 3312311 0
3312312 0 3312313 1 3312321 0 3312322 0 3312323 0 3312331 0 3312332 0 3312333 1 3313111 0 3313112 0
3313113 1 3313121 1 3313122 2 3313123 0 3313131 0 3313132 0 3313133 2 3313211 0 3313212 0 3313213 0
3313221 1 3313222 0 3313223 0 3313231 0 3313232 0 3313233 0 3313311 0 3313312 1 3313313 1 3313321 1
3313322 0 3313323 2 3313331 0 3313332 0 3313333 1 3321111 1 3321112 1 3321113 1 3321121 0 3321122 1
3321123 2 3321131 0 3321132 0 3321133 0 3321211 0 3321212 0 3321213 1 3321221 0 3321222 1 3321223 2
3321231 0 3321232 1 3321233 2 3321311 0 3321312 0 3321313 1 3321321 0 3321322 0 3321323 1 3321331 1
3321332 0 3321333 2 3322111 1 3322112 1 3322113 6 3322121 0 3322122 2 3322123 4 3322131 1 3322132 0
3322133 1 3322211 1 3322212 0 3322213 1 33 1 2 33 10 33 3 20 3322231 1 3322232 3 3322233 4
3322311 0 3322312 1 3322313 2 3322321 1 33223 6 3322323 4 3322331 1 3322332 3 3322333 3 3323111 1
3323112 2 3323113 8 3323121 0 3323122 4 3323123 5 3323131 1 3323132 1 3323133 6 3323211 0 3323212 2
3323213 4 3323221 1 3323 6 3323223 15 3323231 0 332323 4 3323233 13 3323311 1 3323312 3 3323313 3
3323321 1 33233 4 3323323 20 3323331 2 332333 8 3323333 39 3331111 9 3331112 7 3331113 18 3331121 2
3331122 6 3331123 22 3331131 3 3331132 5 3331133 11 3331211 0 3331212 2 3331213 4 3331221 4 3331222 5
3331223 14 3331231 1 3331232 2 3331233 6 3331311 0 3331312 1 3331313 1 3331321 0 3331322 3 3331323 9
3331331 0 3331332 2 3331333 8 3332111 5 3332112 13 3332113 24 3332121 6 3332122 13 3332123 54 3332131 0
3332132 3 3332133 35 3332211 2 3332212 9 3332213 33 3332221 2 3332222 44 3332223 161 3332231 3 3332232 12
3332233 81 3332311 1 3332312 4 3332313 6 3332321 4 33323 26 3332323 78 3332331 3 3332332 16 3332333 90
3333111 6 3333112 27 3333113 118 3333121 9 3333122 27 3333123 145 3333131 0 3333132 18 3333133 113 3333211 3
3333212 15 3333213 60 3333221 10 3333 53 3333223 373 3333231 4 333323 28 3333233 271 3333311 7 3333312 13

3333313 102 3333321 10 3333322 94 3333323 538 3333331 18 3333332 127 3333333 1280
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