Density of specialization sets and Hasse principle in families of twisted Galois covers

(joint with Francois Legrand)

Joachim König

KAIST, Daejeon

Lille Number Theory Days, July 11th, 2019

1 Introduction

2 *ABC*

3 Twists and specialization of covers

4 Application: Hasse principle in families of twisted Galois covers

-< ≣⇒

Introduction		

1 Introduction

2 *ABC*

3 Twists and specialization of covers

4 Application: Hasse principle in families of twisted Galois covers

Joachim König

Specialization sets 3 / 34

< ∃⇒

k a number field (especially, $k = \mathbb{Q}$), G a finite group. An extension E/k(t) is called k-regular if $E \cap \overline{k} = k$.

Regular Inverse Galois Problem

Does there exist a *k*-regular Galois extension E/k(t) with group *G*, for each finite group *G*? (Equivalently, does there exist a Galois cover $X \to \mathbb{P}^1$ of smooth projective curves, with group *G*, defined over *k*?)

▶ < 글 ▶ < 글 ▶</p>

k a number field (especially, $k = \mathbb{Q}$), G a finite group. An extension E/k(t) is called k-regular if $E \cap \overline{k} = k$.

Regular Inverse Galois Problem

Does there exist a *k*-regular Galois extension E/k(t) with group *G*, for each finite group *G*? (Equivalently, does there exist a Galois cover $X \to \mathbb{P}^1$ of smooth projective curves, with group *G*, defined over *k*?)

Motivation: Positive answer to **RIGP** implies positive answer to **IGP**, by Hilbert's irreducibility theorem.

Concretely: Given E/k(t) Galois with group G, there are infinitely many $t_0 \in k$ such that the **specialization** E_{t_0}/k (=residue field extension at prime $t \mapsto t_0$) has Galois group G.

・ロト ・回ト ・ヨト ・ヨト

Basic question: To what extent can Hilbert's irreducibility theorem solve the inverse Galois problem over k?

Basic question: To what extent can Hilbert's irreducibility theorem solve the inverse Galois problem over k?

Concrete questions

Does every G-extension of k "lift" to a G-cover of k (i.e., occur as a specialization of some suitable G-cover)? (Beckmann-Black problem)

글 에 에 글 어

Basic question: To what extent can Hilbert's irreducibility theorem solve the inverse Galois problem over k?

Concrete questions

- Does every G-extension of k "lift" to a G-cover of k (i.e., occur as a specialization of some suitable G-cover)? (Beckmann-Black problem)
- Is there even a cover of \mathbb{P}^1_k , resp., of \mathbb{P}^d_k which lifts all *G*-extensions at once? ("Parametric extension")

• • = • • = •

Basic question: To what extent can Hilbert's irreducibility theorem solve the inverse Galois problem over k?

Concrete questions

- Does every G-extension of k "lift" to a G-cover of k (i.e., occur as a specialization of some suitable G-cover)? (Beckmann-Black problem)
- Is there even a cover of \mathbb{P}^1_k , resp., of \mathbb{P}^d_k which lifts all *G*-extensions at once? ("Parametric extension")
- More generally, given a G-cover over k: what is the structure of the set of specializations?

Examples

- $k(\sqrt{t})/k(t)$ is a parametric extension for the group C_2 . It is even **generic** (i.e., parametric over all extensions of k).
- $E/\mathbb{Q}(t)$ the function field of an elliptic curve: This specializes to a quadratic field $\mathbb{Q}(\sqrt{d})$ if and only if the *d*-th quadratic twist of the curve has a non-trivial \mathbb{Q} -point.

So this extension is not parametric. Moreover, when counting by discriminant the fields $\mathbb{Q}(\sqrt{d})$ which occur as specializations, Goldfeld's ("average rank 1/2") conjecture predicts that 50% of them occur.

Previous results

Theorem (K.-Legrand 2018, K.-Legrand-Neftin 2019)

For "many" finite groups G: There is no \mathbb{Q} -regular G-extension E/k(t) which specializes to all G-extensions of k.

< 注→ < 注→

Previous results

Theorem (K.-Legrand 2018, K.-Legrand-Neftin 2019)

For "many" finite groups G: There is no \mathbb{Q} -regular G-extension E/k(t) which specializes to all G-extensions of k.

Computational evidence suggests more: Compared with the set of all G-extensions, the set of specializations of a given regular extension seems "very small".

B > < B >

The Malle conjecture

Let G be a finite group, k be a number field and $B \in \mathbb{N}$. Let N(G, k, B) be the number of G-extensions L/k such that the discriminant $\Delta(L/k)$ is of norm at most B.

Conjecture (Malle; 2002, 2004)

There are constants C_1 (depending on G and k) and C_2 (depending on G, k and $\epsilon > 0$) such that

$$C_1 B^{1/\alpha(G)} \leq N(G, k, B) \leq C_2 B^{1/\alpha(G)+\epsilon}$$

Here $\alpha(G) := \frac{p-1}{p} |G|$, where p is the smallest prime divisor of |G|.

コマン くほう くほう

The Malle conjecture

Let G be a finite group, k be a number field and $B \in \mathbb{N}$. Let N(G, k, B) be the number of G-extensions L/k such that the discriminant $\Delta(L/k)$ is of norm at most B.

Conjecture (Malle; 2002, 2004)

There are constants C_1 (depending on G and k) and C_2 (depending on G, k and $\epsilon > 0$) such that

$$C_1 B^{1/\alpha(G)} \leq N(G, k, B) \leq C_2 B^{1/\alpha(G)+\epsilon}$$

Here $\alpha(G) := \frac{p-1}{p} |G|$, where p is the smallest prime divisor of |G|.

The conjecture is known to hold for all nilpotent groups G (but of course open in general, since it implies the inverse Galois problem over k).

白 マ イヨマ イヨマ

Specialization and "lower bound Malle"

Theorem (Dèbes, 2017)

Let E/k(t) be a k-regular G-extension. Then the number of G-extensions of k, with discriminant of norm $\leq B$, and which arise as specializations of E/k(t), is $\gg B^{\alpha(E)}$, where $\alpha(E)$ is an (explicitly given) positive constant depending on E/k(t).

Remarks:

- In fact, $\alpha = \beta(G)/R$, where $\beta(G)$ depends only on G and R is the number of branch points of E/k(t).
- Obvious question: Can we also give a (reasonably non-trivial) upper bound exponent?

回 と く ヨ と く ヨ と

1 Introduction

2 *ABC*

3 Twists and specialization of covers

4 Application: Hasse principle in families of twisted Galois covers

Joachim König

Specialization sets 10 / 34

- 4 回 2 - 4 □ 2 - 4 □

The *abc*-conjecture

Definition

ARC

The **radical** rad(N) of a positive integer N is the product of all prime divisors of N, without multiplicities.

abc-conjecture

For every $\epsilon > 0$, there are only finitely many triples (a, b, c) of coprime positive integers with a + b = c, such that

 $\mathit{rad}(\mathit{abc}) \leq c^{1-\epsilon}.$

ARC

A result about quadratic twists of hyperelliptic curves

Let C be a hyperelliptic curve over \mathbb{Q} , given by $Y^2 = f(T)$ ($f \in \mathbb{Z}[T]$ separable). Recall that the d-th quadratic twist C_d of C is given by $dY^2 = f(T)$.

A result about quadratic twists of hyperelliptic curves

Let C be a hyperelliptic curve over \mathbb{Q} , given by $Y^2 = f(T)$ ($f \in \mathbb{Z}[T]$ separable). Recall that the d-th quadratic twist C_d of C is given by $dY^2 = f(T)$.

Theorem (Granville, 2007)

ARC

Assume that the abc-conjecture holds.

Let C be a hyperelliptic curve over \mathbb{Q} of genus $g \ge 2$. Then the number of squarefree integers $d \in [-N, ..., N]$ such that the d-th quadratic twist C_d of C has a non-trivial rational point is asymptotically smaller than $N^{1/(g-1)+\epsilon}$.

In particular, if $g \ge 3$, the density of squarefree integers such that C_d has a non-trivial rational point is 0.

ARC

A result about quadratic twists of hyperelliptic curves

- Translation into specialization of Galois covers: Given $C: Y^2 = f(T)$, with $f \in \mathbb{Z}[T]$ separable, C_d has a non-trivial rational point if and only if the hyperelliptic (degree-2) cover $C \to \mathbb{P}^1$ has the field $\mathbb{Q}(\sqrt{d})$ as a specialization.
- In total, there are of course $\Omega(N)$ quadratic fields of discriminant (of absolute value) $\leq N$.
- So Granville's result says that (conditionally on abc), a hyperelliptic curve of genus g ≥ 3 has "very few" quadratic fields as specializations. In particular, the proportion of such fields is 0.

• • = • • = •

	Twists and specialization of covers	

1 Introduction

2 *ABC*

3 Twists and specialization of covers

4 Application: Hasse principle in families of twisted Galois covers

Joachim König

Specialization sets 14 / 34

甩

Twists of Galois covers

Let $f: X \to \mathbb{P}^1$ be a Galois cover with group G, defined over k. Let $\varphi: Gal_k \to G$ be a continuous epimorphism (yielding a G-extension F/k). Then there exists a cover $f^{\varphi}: \tilde{X} \to \mathbb{P}^1$, defined over k (but not necessarily Galois), with the following properties:

- A fiber (f^φ)⁻¹(t₀) contains a rational point if and only if the specialization of f at t₀ equals φ.
- After extension of constants from k to F, the covers f^φ and f become isomorphic.

 f^{φ} is called the **twisted cover** of f by φ . **Special case:** If $G = C_2$ and $f : C \to \mathbb{P}^1_{\mathbb{Q}}$ is a hyperelliptic cover, then the twist of f by (the epimorphism corresponding to) $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$ yields the *d*-th quadratic twist of *C*.

▲圖▶ ▲屋▶ ▲屋▶

Rational points on twisted covers

Theorem (K., Legrand (submitted, 2019))

Let $f : X \to \mathbb{P}^1$ be a Galois cover defined over \mathbb{Q} , with group G, with R branch points. If the abc-conjecture holds, then the number of distinct specializations L/\mathbb{Q} of f of discriminant $\leq B$ is asymptotically bounded from above by

$$rac{2}{ ilde{lpha}(f)(R-4)}^{+\epsilon}$$

Here $\tilde{\alpha}(f) := \frac{p-1}{p}|G|$, where p is the smallest prime divisor of any ramification index of f.

(In particular, as soon as $R \ge 5$, we have an upper bound $B^{\gamma(G)/R}$, where $\gamma(G)$ depends only on G.)

Outline of proof

Important tool: Ramification in specializations of covers:

Theorem (Beckmann, 1991)

Let $f: X \to \mathbb{P}^1$ be a Galois cover defined over a number field k, with Galois group G, function field extension E/k(t), and with branch points $t_1, ..., t_r \in \overline{k}$. Then there is a finite set S of primes of k ("bad primes") such that for all primes $p \notin S$, the following holds: p can only ramify in E_{t_0}/k of t_0 and t_i meet modulo p (for some $i \in \{1, ..., r\}$), and in this case, the inertia group at p in E_{t_0}/k is generated by $x^{\nu_p(t_0-t_i)}$, where x generates an inertia group at $t \mapsto t_i$ in E/k(t).

コマン くほう くほう

Outline of proof

- Let $t_1, ..., t_r \in \mathbb{P}^1(\overline{\mathbb{Q}})$ be the branch points of f and let $F(X, Y) = \prod_{i=1}^r (X t_i Y) \in \mathbb{Z}[X, Y]$ the homogenized product of their minimal polynomials (deg(F) = R). Let $t_0 = \frac{r}{s} \in \mathbb{Q}$, $n := \max\{|r|, |s|\}$.
- By Beckmann's theorem, the specialization f_{t_0}/\mathbb{Q} is ramified at most at the prime divisors of F(r, s), and possibly some fixed finite set ("bad primes").

Conversely, if a "good" prime q divides F(r, s), but q^p does not divide, then q is ramified in f_{t_0}/\mathbb{Q} , and with ramification index at least p.

Well-known discriminant formula then gives

 $|\Delta(f_{t_0}/\mathbb{Q})| > C \cdot (\prod q)^{\tilde{\alpha}(f)}$ (with some constant C > 0), where the product is over all primes dividing F(r, s) such that q^p does not divide.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Outline of proof

Now use a consequence of the abc-conjecture:

Theorem (Langevin, Granville)

Let F(X, Y) be a homogeneous polynomial of degree d over \mathbb{Z} , and let $\epsilon > 0$. Then

 $rad(F(r,s)) \ge \max\{|r|, |s|\}^{d-2-\epsilon}$

for all but finitely many coprime $r, s \in \mathbb{Z}$.

This gives bounds from below on the product P of all primes which divide F(r, s) to a power less than p, namely

$$P \ge n^{R-2-2/(p-1)-\epsilon} (\ge n^{R-4-\epsilon}).$$

 Substituting in the above discriminant formula, with some elementary manipulations, gives the assertion.

> < 三> < 三> < 三> < 二</p>

Corollary

Assume the abc-conjecture and the Malle conjecture for the group G. If $f: X \to \mathbb{P}^1$ is a Galois cover with group G over \mathbb{Q} , with at least 7 branch points, then f cannot be parametric. More precisely, the proportion of G-extensions of \mathbb{Q} which arise as specializations from f converges to 0 (when counted by discriminant).

물 제 문 제 문 제

Corollary

Assume the abc-conjecture and the Malle conjecture for the group G. If $f: X \to \mathbb{P}^1$ is a Galois cover with group G over \mathbb{Q} , with at least 7 branch points, then f cannot be parametric. More precisely, the proportion of G-extensions of \mathbb{Q} which arise as specializations from f converges to 0 (when counted by discriminant). Worded differently, the set of all twists of f (by G-extensions of \mathbb{Q}) which have an unramified rational point is of density 0 (when counted by

discriminant).

Corollary

Assume the abc-conjecture and the Malle conjecture for the group G. If $f: X \to \mathbb{P}^1$ is a Galois cover with group G over \mathbb{Q} , with at least 7 branch points, then f cannot be parametric. More precisely, the proportion of G-extensions of \mathbb{Q} which arise as specializations from f converges to 0 (when counted by discriminant). Worded differently, the set of all twists of f (by G-extensions of \mathbb{Q}) which have an unramified rational point is of density 0 (when counted by

discriminant).

In particular, the case $G = C_2$ regains Granville's result on twists of hyperelliptic curves.

Combination with the lower bound results (Dèbes) yield that two G-covers f_1 , f_2 with "sufficiently different" branch point number must have different sets of specializations (conditional on abc).

Corollary

Let G be a finite group. Assume that the abc-conjecture holds. Then there exists a constant $N \in \mathbb{N}$ (depending on G) such that for every Galois cover $f : X \to \mathbb{P}^1$, defined over \mathbb{Q} and with at least N branch points, the following holds: The proportion of G-extensions of \mathbb{Q} which arise as specializations from f converges to 0 (when counted by discriminant).

• • = • • = •

What we expect vs what we know

Conjecture I

Let $f : X \to \mathbb{P}^1$ be an arbitrary Galois cover with group G over \mathbb{Q} (or indeed, over any number field), of genus ≥ 2 . Then G specializes to 0% of all G-extensions of \mathbb{Q} .

Our evidence:

- Conditional on abc, we show Conjecture I, with the bound $g \ge 2$ replaced by $g \ge 2|G| 1$.
- In joint work with Dèbes, Legrand and Neftin, we showed (unconditionally!) a geometric analog of this conjecture, where the field Q is replaced by C(t), the notion of specialization is replaced by "rational pullback", and the "density" notion is replaced by a notion in the Zariski topology on moduli spaces of Galois covers.

・日・ ・ ヨ・ ・ ヨ・

What we expect vs what we know

Definition

Let $f: X \to \mathbb{P}^1$ be a connected cover, given by an equation F(t, X) = 0. Let $T(U) \in \mathbb{C}(U)$ be a non-constant rational function. Then the cover f^U given by F(T(U), X) = 0 is called the rational pullback of f by T(U).

Pullback can be viewed as specialization from $\mathbb{C}(U)(T)$ into $\mathbb{C}(U)$, where the initial cover was **isotrivial**.

Definition (Hurwitz space)

Let \underline{C} be a class vector of length r in the group G. The set of all Galois covers of \mathbb{P}^1 with ramification type \underline{C} is called the Hurwitz space $\mathcal{H}(G,\underline{C})$. It is a finite (possibly empty) union of r-dimensional varieties over \mathbb{C} .

回 と く ヨ と く ヨ と

(Recall:) Conjecture I

Let $f : X \to \mathbb{P}^1$ be an arbitrary Galois cover with group G over \mathbb{Q} (or indeed, over any number field), of genus ≥ 2 . Then G specializes to 0% of all G-extensions of \mathbb{Q} .

Theorem (Dèbes-K.-Legrand-Neftin (2018))

Let $g \ge 2$, and let S_g be **any** set of genus-g covers $X \to \mathbb{P}^1$ with group G. Then S_g pulls back to 0% of all G-covers in the following sense: Given any sufficiently long class vector \underline{C} of G with non-empty Hurwitz space, the set of all covers in $\mathcal{H}(G, \underline{C})$ which are rational pullbacks from S_g (by **any** rational function) is contained in the complement of a Zariski-dense open subset of $\mathcal{H}(G, \underline{C})$.

ヨット イヨット イヨッ

What we expect vs what we know

Conjecture II

Let f, g be two Galois covers of \mathbb{P}^1 with group G, defined over \mathbb{Q} , of genus ≥ 2 , and not "equivalent". Then f and g have different sets of specializations (in other words, the set of specializations identifies the cover!).

- Once again, we showed a weaker statement: If f and g have "sufficiently different" branch point numbers, then their specialization sets are different.
- The "pullback" analog of this conjecture is trivial: Since f is a pullback of itself, f and g could only have the same set of pullbacks if they are mutual pullbacks of each other. Riemann-Hurwitz genus formula shows that such a thing is impossible, unless the pullback maps are trivial.

白マ イヨマ イヨマ

	Application: Hasse principle in families of twisted Galois covers

1 Introduction

2 *ABC*

3 Twists and specialization of covers

4 Application: Hasse principle in families of twisted Galois covers

-≣->

Hasse principle

Hasse principle (for curves)

Let *C* be a curve over \mathbb{Q} with a non-singular point over every \mathbb{Q}_p (including the infinite prime). Then *C* has a rational point.

- Hasse principle is known to hold for some important special cases (e.g., quadratic forms), but fails in general.
- E.g., Bhargava et al. have shown that a positive proportion of hyperelliptic curves of a fixed genus fail the Hasse principle.

Hasse principle

Hasse principle (for covers)

Let f be a Galois cover over \mathbb{Q} with an unramified \mathbb{Q}_p -point for all p. Then f has an unramified rational point.

Question

How many twists of a given Galois cover fail the above Hasse principle, i.e., have an (unramified) point everywhere locally, but no (unramified) \mathbb{Q} -point?

E ► < E ►</p>

Hasse principle

Hasse principle (for covers)

Let f be a Galois cover over \mathbb{Q} with an unramified \mathbb{Q}_p -point for all p. Then f has an unramified rational point.

Question

How many twists of a given Galois cover fail the above Hasse principle, i.e., have an (unramified) point everywhere locally, but no (unramified) \mathbb{Q} -point?

■ In the hyperelliptic case: Conditional on abc, infinitely many quadratic twists of a given genus ≥ 3 hyperelliptic curve violate the Hasse principle (Clark, Watson 2018).

An unconditional result:

Theorem (K., in preparation)

Let G be a finite abelian, but non-cyclic group, and k be a number field. Let f be a G-cover of \mathbb{P}^1 , defined over k. Then the proportion of twists of f by G-extensions of k which do not have a point everywhere locally equals 100%, when extensions are counted by **conductor**. In other words, for 100% of G-extensions L/k, there is a prime p of k such that f does not specialize to L/k, even after base field extension to k_p .

So Hasse principle holds (but trivially) for 100% of twists. However:

Theorem (K.-Legrand (2019))

Let G be an abelian group, f be a G-cover of \mathbb{P}^1 , defined over \mathbb{Q} , with ≥ 7 branch points. Conditional on abc, 0% of those twists of f which have a point everywhere locally, also have a \mathbb{Q} -point.

Remarks:

- The result remains (essentially) true for arbitrary groups *G* with non-trivial center, under some technical extra assumptions of the cover *f*.
- In particular, we can generate a huge amount of curves failing the Hasse principle, via twists, starting from a "relatively" general curve.

B > < B >

- Need to count how many G-extensions L/Q have the following property: For every prime p, there is a specialization of f which locally at p behaves the same as L/Q.
- For (most) unramified primes of L/Q, the following observation suffices: If p is sufficiently large (depending on f), then every unramified behaviour occurs at p in a suitable specialization of f. This is due to:

Theorem (Dèbes, Ghazi (2012))

Let $f : X \to \mathbb{P}^1$ be a *G*-cover defined over \mathbb{Q} . Then for every prime *p* outside some finite set S_0 (depending only on *E*) and for every **unramified** extension K_p/\mathbb{Q}_p with Galois group embedding into *G*, there are specializations of *f* whose completion at *p* equals K_p/\mathbb{Q}_p .

・回 ・ ・ ヨ ・ ・ ヨ ・

- So for sufficiently large primes p, we always have a Q_p-point on the twist of f by L/Q, as soon as p is unramified in L.
- If p is (large and) ramified in L, then we use (a special case) of a recent result on local behaviour in specializations:

Theorem ((Special case of) K.-Legrand-Neftin, 2019)

Let $f : X \to \mathbb{P}^1$ be a *G*-cover defined over \mathbb{Q} , and $t_i \in \mathbb{P}^1(\overline{\mathbb{Q}})$ be a branch point of *f*, with inertia group $I \leq G$. Let *p* be a prime which splits completely in the residue extension of *f* at t_i . Then every *I*-extension of \mathbb{Q}_p is a specialization of $f (\otimes \mathbb{Q}_p)$.

If p is small, then we know less. But at least there is some G-extension L/Q whose twist as a Q_p-point.

- Therefore, it suffices to estimate the number of *G*-extensions with the following two conditions:
 - i) For some fixed finite set S_0 of primes p, the local behaviour at p is prescribed (according to some specialization of f).
 - ii) All further **ramified primes** are in some prescribed positive density set (namely, in the set of primes that ramify in some specialization of *f*, and completely split in some prescribed number field), and with a prescribed inertia group.

roduction

- Our idea is now to grab **one** such *G*-extension (namely, a suitable specialization of *f*), and then change it "slightly" by twisting with a suitable C_p -extension ($C_p \leq Z(G)$), say F/\mathbb{Q} , without destroying the local conditions (i.e., without altering the behaviour at the set S_0 , and without introducing "forbidden" ramified primes).
- These C_p -extensions can be constructed very explicitly inside certain cyclotomic field $\mathbb{Q}(\zeta_q)$ (introducing only one ramified prime q at a time!), and their discriminant is "under control".

- Then it can be shown that the proportion of "good" *G*-extensions of discriminant $\leq N$ (i.e., such that the corresponding twist of *f* has a point everywhere locally) is at least 1/(polylogarithmic expression in *N*).
- On the other hand, due to our assumptions on f, and conditionally on abc, the proportion of twists of f with a rational point is < N^α, for some α > 0.