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Regular Inverse Galois problem

k a number field (especially, k = Q), G a finite group.
An extension E/k(t) is called k-regular if E ∩ k = k .

Regular Inverse Galois Problem

Does there exist a k-regular Galois extension E/k(t) with group G , for
each finite group G?
(Equivalently, does there exist a Galois cover X → P1 of smooth
projective curves, with group G , defined over k?)

Motivation: Positive answer to RIGP implies positive answer to IGP, by
Hilbert’s irreducibility theorem.
Concretely: Given E/k(t) Galois with group G , there are infinitely many
t0 ∈ k such that the specialization Et0/k (=residue field extension at
prime t 7→ t0) has Galois group G .
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Regular Inverse Galois problem

Basic question: To what extent can Hilbert’s irreducibility theorem solve
the inverse Galois problem over k?

Concrete questions

Does every G -extension of k “lift” to a G -cover of k (i.e., occur as a
specialization of some suitable G -cover)? (Beckmann-Black
problem)

Is there even a cover of P1
k , resp., of Pd

k which lifts all G -extensions
at once? (“Parametric extension”)

More generally, given a G -cover over k: what is the structure of the
set of specializations?
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Examples

k(
√
t)/k(t) is a parametric extension for the group C2. It is even

generic (i.e., parametric over all extensions of k).

E/Q(t) the function field of an elliptic curve: This specializes to a
quadratic field Q(

√
d) if and only if the d-th quadratic twist of the

curve has a non-trivial Q-point.
So this extension is not parametric. Moreover, when counting by
discriminant the fields Q(

√
d) which occur as specializations,

Goldfeld’s (“average rank 1/2”) conjecture predicts that 50% of
them occur.
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Previous results

Theorem (K.-Legrand 2018, K.-Legrand-Neftin 2019)

For “many” finite groups G : There is no Q-regular G -extension E/k(t)
which specializes to all G -extensions of k .

Computational evidence suggests more: Compared with the set of all
G -extensions, the set of specializations of a given regular extension seems
“very small”.
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The Malle conjecture

Let G be a finite group, k be a number field and B ∈ N. Let N(G , k,B)
be the number of G -extensions L/k such that the discriminant ∆(L/k) is
of norm at most B.

Conjecture (Malle; 2002, 2004)

There are constants C1 (depending on G and k) and C2 (depending on
G , k and ε > 0) such that

C1B
1/α(G) ≤ N(G , k ,B) ≤ C2B

1/α(G)+ε.

Here α(G ) := p−1
p |G |, where p is the smallest prime divisor of |G |.

The conjecture is known to hold for all nilpotent groups G (but of course
open in general, since it implies the inverse Galois problem over k).

Joachim König Specialization sets 8 / 34
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Specialization and “lower bound Malle”

Theorem (Dèbes, 2017)

Let E/k(t) be a k-regular G -extension. Then the number of
G -extensions of k , with discriminant of norm ≤ B, and which arise as
specializations of E/k(t), is � Bα(E), where α(E ) is an (explicitly
given) positive constant depending on E/k(t).

Remarks:

In fact, α = β(G )/R, where β(G ) depends only on G and R is the
number of branch points of E/k(t).

Obvious question: Can we also give a (reasonably non-trivial) upper
bound exponent?
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The abc-conjecture

Definition

The radical rad(N) of a positive integer N is the product of all prime
divisors of N, without multiplicities.

abc-conjecture

For every ε > 0, there are only finitely many triples (a, b, c) of coprime
positive integers with a + b = c , such that

rad(abc) ≤ c1−ε.
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A result about quadratic twists of hyperelliptic curves

Let C be a hyperelliptic curve over Q, given by Y 2 = f (T ) (f ∈ Z[T ]
separable). Recall that the d-th quadratic twist Cd of C is given by
dY 2 = f (T ).

Theorem (Granville, 2007)

Assume that the abc-conjecture holds.
Let C be a hyperelliptic curve over Q of genus g ≥ 2. Then the number
of squarefree integers d ∈ [−N, ...,N] such that the d-th quadratic twist
Cd of C has a non-trivial rational point is asymptotically smaller than
N1/(g−1)+ε.
In particular, if g ≥ 3, the density of squarefree integers such that Cd has
a non-trivial rational point is 0.
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A result about quadratic twists of hyperelliptic curves

Translation into specialization of Galois covers: Given
C : Y 2 = f (T ), with f ∈ Z[T ] separable, Cd has a non-trivial
rational point if and only if the hyperelliptic (degree-2) cover
C → P1 has the field Q(

√
d) as a specialization.

In total, there are of course Ω(N) quadratic fields of discriminant (of
absolute value) ≤ N.

So Granville’s result says that (conditionally on abc), a hyperelliptic
curve of genus g ≥ 3 has “very few” quadratic fields as
specializations. In particular, the proportion of such fields is 0.
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Twists of Galois covers

Let f : X → P1 be a Galois cover with group G , defined over k. Let
ϕ : Galk → G be a continuous epimorphism (yielding a G -extension
F/k). Then there exists a cover f ϕ : X̃ → P1, defined over k (but not
necessarily Galois), with the following properties:

A fiber (f ϕ)−1(t0) contains a rational point if and only if the
specialization of f at t0 equals ϕ.

After extension of constants from k to F , the covers f ϕ and f
become isomorphic.

f ϕ is called the twisted cover of f by ϕ.
Special case: If G = C2 and f : C → P1

Q is a hyperelliptic cover, then

the twist of f by (the epimorphism corresponding to) Q(
√
d)/Q yields

the d-th quadratic twist of C .

Joachim König Specialization sets 15 / 34
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Rational points on twisted covers

Theorem (K., Legrand (submitted, 2019))

Let f : X → P1 be a Galois cover defined over Q, with group G , with R
branch points. If the abc-conjecture holds, then the number of distinct
specializations L/Q of f of discriminant ≤ B is asymptotically bounded
from above by

B

2

α̃(f )(R − 4)
+ε

.

Here α̃(f ) := p−1
p |G |, where p is the smallest prime divisor of any

ramification index of f .

(In particular, as soon as R ≥ 5, we have an upper bound Bγ(G)/R , where γ(G)

depends only on G .)
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Outline of proof

Important tool: Ramification in specializations of covers:

Theorem (Beckmann, 1991)

Let f : X → P1 be a Galois cover defined over a number field k, with
Galois group G , function field extension E/k(t), and with branch points
t1, ..., tr ∈ k . Then there is a finite set S of primes of k (“bad primes”)
such that for all primes p /∈ S, the following holds:
p can only ramify in Et0/k of t0 and ti meet modulo p (for some
i ∈ {1, ..., r}), and in this case, the inertia group at p in Et0/k is
generated by xνp(t0−ti ), where x generates an inertia group at t 7→ ti in
E/k(t).

Joachim König Specialization sets 17 / 34
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Outline of proof

Let t1, ..., tr ∈ P1(Q) be the branch points of f and let
F (X ,Y ) =

∏r
i=1(X − tiY ) ∈ Z[X ,Y ] the homogenized product of

their minimal polynomials (deg(F ) = R).
Let t0 = r

s ∈ Q, n := max{|r |, |s|}.
By Beckmann’s theorem, the specialization ft0/Q is ramified at most
at the prime divisors of F (r , s), and possibly some fixed finite set
(“bad primes”).
Conversely, if a “good” prime q divides F (r , s), but qp does not
divide, then q is ramified in ft0/Q, and with ramification index at
least p.
Well-known discriminant formula then gives
|∆(ft0/Q)| > C · (

∏
q)α̃(f ) (with some constant C > 0), where the

product is over all primes dividing F (r , s) such that qp does not
divide.

Joachim König Specialization sets 18 / 34
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Outline of proof

Now use a consequence of the abc-conjecture:

Theorem (Langevin, Granville)

Let F (X ,Y ) be a homogeneous polynomial of degree d over Z, and let
ε > 0. Then

rad(F (r , s)) ≥ max{|r |, |s|}d−2−ε

for all but finitely many coprime r , s ∈ Z.

This gives bounds from below on the product P of all primes which
divide F (r , s) to a power less than p, namely

P ≥ nR−2−2/(p−1)−ε(≥ nR−4−ε).

Substituting in the above discriminant formula, with some
elementary manipulations, gives the assertion.

Joachim König Specialization sets 19 / 34
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Some consequences

Corollary

Assume the abc-conjecture and the Malle conjecture for the group G . If
f : X → P1 is a Galois cover with group G over Q, with at least 7 branch
points, then f cannot be parametric. More precisely, the proportion of
G -extensions of Q which arise as specializations from f converges to 0
(when counted by discriminant).

Worded differently, the set of all twists of f (by G -extensions of Q) which
have an unramified rational point is of density 0 (when counted by
discriminant).

In particular, the case G = C2 regains Granville’s result on twists of
hyperelliptic curves.
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Some consequences

Combination with the lower bound results (Dèbes) yield that two
G -covers f1, f2 with “sufficiently different” branch point number must
have different sets of specializations (conditional on abc).

Corollary

Let G be a finite group. Assume that the abc-conjecture holds. Then
there exists a constant N ∈ N (depending on G ) such that for every
Galois cover f : X → P1, defined over Q and with at least N branch
points, the following holds: The proportion of G -extensions of Q which
arise as specializations from f converges to 0 (when counted by
discriminant).
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What we expect vs what we know

Conjecture I

Let f : X → P1 be an arbitrary Galois cover with group G over Q (or
indeed, over any number field), of genus ≥ 2. Then G specializes to 0%
of all G -extensions of Q.

Our evidence:

Conditional on abc, we show Conjecture I, with the bound g ≥ 2
replaced by g ≥ 2|G | − 1.

In joint work with Dèbes, Legrand and Neftin, we showed
(unconditionally!) a geometric analog of this conjecture, where the
field Q is replaced by C(t), the notion of specialization is replaced
by “rational pullback”, and the “density” notion is replaced by a
notion in the Zariski topology on moduli spaces of Galois covers.

Joachim König Specialization sets 22 / 34
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What we expect vs what we know

Definition

Let f : X → P1 be a connected cover, given by an equation F (t,X ) = 0.
Let T (U) ∈ C(U) be a non-constant rational function. Then the cover
f U given by F (T (U),X ) = 0 is called the rational pullback of f by T (U).

Pullback can be viewed as specialization from C(U)(T ) into C(U), where
the initial cover was isotrivial.

Definition (Hurwitz space)

Let C be a class vector of length r in the group G . The set of all Galois
covers of P1 with ramification type C is called the Hurwitz space
H(G ,C ). It is a finite (possibly empty) union of r -dimensional varieties
over C.

Joachim König Specialization sets 23 / 34
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(Recall:) Conjecture I

Let f : X → P1 be an arbitrary Galois cover with group G over Q (or
indeed, over any number field), of genus ≥ 2. Then G specializes to 0%
of all G -extensions of Q.

Theorem (Dèbes-K.-Legrand-Neftin (2018))

Let g ≥ 2, and let Sg be any set of genus-g covers X → P1 with group
G . Then Sg pulls back to 0% of all G -covers in the following sense:
Given any sufficiently long class vector C of G with non-empty Hurwitz
space, the set of all covers in H(G ,C ) which are rational pullbacks from
Sg (by any rational function) is contained in the complement of a
Zariski-dense open subset of H(G ,C ).

Joachim König Specialization sets 24 / 34
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What we expect vs what we know

Conjecture II

Let f , g be two Galois covers of P1 with group G , defined over Q, of
genus ≥ 2, and not “equivalent”. Then f and g have different sets of
specializations (in other words, the set of specializations identifies the
cover!).

Once again, we showed a weaker statement: If f and g have
“sufficiently different” branch point numbers, then their
specialization sets are different.

The “pullback” analog of this conjecture is trivial: Since f is a
pullback of itself, f and g could only have the same set of pullbacks
if they are mutual pullbacks of each other. Riemann-Hurwitz genus
formula shows that such a thing is impossible, unless the pullback
maps are trivial.
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Hasse principle

Hasse principle (for curves)

Let C be a curve over Q with a non-singular point over every Qp

(including the infinite prime). Then C has a rational point.

Hasse principle is known to hold for some important special cases
(e.g., quadratic forms), but fails in general.

E.g., Bhargava et al. have shown that a positive proportion of
hyperelliptic curves of a fixed genus fail the Hasse principle.
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Hasse principle

Hasse principle (for covers)

Let f be a Galois cover over Q with an unramified Qp-point for all p.
Then f has an unramified rational point.

Question

How many twists of a given Galois cover fail the above Hasse principle,
i.e., have an (unramified) point everywhere locally, but no (unramified)
Q-point?

In the hyperelliptic case: Conditional on abc, infinitely many
quadratic twists of a given genus ≥ 3 hyperelliptic curve violate the
Hasse principle (Clark, Watson 2018).
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An unconditional result:

Theorem (K., in preparation)

Let G be a finite abelian, but non-cyclic group, and k be a number field.
Let f be a G -cover of P1, defined over k . Then the proportion of twists
of f by G -extensions of k which do not have a point everywhere locally
equals 100%, when extensions are counted by conductor.
In other words, for 100% of G -extensions L/k , there is a prime p of k
such that f does not specialize to L/k , even after base field extension to
kp.
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So Hasse principle holds (but trivially) for 100% of twists. However:

Theorem (K.-Legrand (2019))

Let G be an abelian group, f be a G -cover of P1, defined over Q, with
≥ 7 branch points. Conditional on abc, 0% of those twists of f which
have a point everywhere locally, also have a Q-point.

Remarks:

The result remains (essentially) true for arbitrary groups G with
non-trivial center, under some technical extra assumptions of the
cover f .

In particular, we can generate a huge amount of curves failing the
Hasse principle, via twists, starting from a “relatively” general curve.
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Idea of proof

Need to count how many G -extensions L/Q have the following
property: For every prime p, there is a specialization of f which
locally at p behaves the same as L/Q.

For (most) unramified primes of L/Q, the following observation
suffices: If p is sufficiently large (depending on f ), then every
unramified behaviour occurs at p in a suitable specialization of f .
This is due to:

Theorem (Dèbes, Ghazi (2012))

Let f : X → P1 be a G -cover defined over Q. Then for every prime p
outside some finite set S0 (depending only on E ) and for every
unramified extension Kp/Qp with Galois group embedding into G , there
are specializations of f whose completion at p equals Kp/Qp.
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Idea of proof

So for sufficiently large primes p, we always have a Qp-point on the
twist of f by L/Q, as soon as p is unramified in L.

If p is (large and) ramified in L, then we use (a special case) of a
recent result on local behaviour in specializations:

Theorem ((Special case of) K.-Legrand-Neftin, 2019)

Let f : X → P1 be a G -cover defined over Q, and ti ∈ P1(Q) be a branch
point of f , with inertia group I ≤ G . Let p be a prime which splits
completely in the residue extension of f at ti . Then every I -extension of
Qp is a specialization of f (⊗Qp).

If p is small, then we know less. But at least there is some
G -extension L/Q whose twist as a Qp-point.
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Idea of proof

Therefore, it suffices to estimate the number of G -extensions with
the following two conditions:

i) For some fixed finite set S0 of primes p, the local behaviour at p is
prescribed (according to some specialization of f ).

ii) All further ramified primes are in some prescribed positive density
set (namely, in the set of primes that ramify in some specialization of
f , and completely split in some prescribed number field), and with a
prescribed inertia group.
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Idea of proof

Our idea is now to grab one such G -extension (namely, a suitable
specialization of f ), and then change it “slightly” by twisting with a
suitable Cp-extension (Cp ≤ Z (G )), say F/Q, without destroying
the local conditions (i.e., without altering the behaviour at the set
S0, and without introducing “forbidden” ramified primes).

These Cp-extensions can be constructed very explicitly inside certain
cyclotomic field Q(ζq) (introducing only one ramified prime q at a
time!), and their discriminant is “under control”.
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Idea of proof

Then it can be shown that the proportion of “good” G -extensions of
discriminant ≤ N (i.e., such that the corresponding twist of f has a
point everywhere locally) is at least 1/( polylogarithmic expression in
N).

On the other hand, due to our assumptions on f , and conditionally
on abc, the proportion of twists of f with a rational point is < Nα,
for some α > 0.
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