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Some generalities

f ∈ K [X ] a separable polynomial over some field K ; G = Gal(f /K ),
the Galois group of (the splitting field of) f over K , embeds
naturally into Sn via its action on the roots of f .

G is a transitive group in this action ⇔ f is irreducible.
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Dedekind’s reduction criterion

Theorem (Dedekind)

Let f ∈ Z[X ] be a separable polynomial of degree n over the rationals,
and let G ≤ Sn be its Galois group. Let p be a prime number and denote
by f ∈ (Fp)[X ] the modulo-p reduction of f . If f is separable of degree
n, then Gal(f /Fp) is a subgroup of G .

Remarks:

Only finitely many primes fail the assumptions of the theorem
(namely, prime divisors of the discriminant of f , and of the leading
coefficient of f ).

The theorem remains true in a much more general setup. Instead of
the coefficient ring R = Z, one may choose for R any “Dedekind
domain” (e.g., the ring of integers OK of a number field K , or a
polynomial ring K [t]). The reduction should then be modulo a
maximal ideal of R.
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Dedekind’s reduction criterion

Particularly useful application:

Theorem (Dedekind)

If f mod p is separable of degree n and splits into irreducible factors of
degrees n1, . . . , nk over Fp, then G contains an element of cycle structure
[n1, . . . , nk ].

This is because Gal(f /Fp) ≤ Sn is cyclic, with orbits exactly the
roots of the respective irreducible factors.
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Example I

Take f = X 5 − X + 1 ∈ Z[X ].

f mod 2 is (X 3 + X 2 + 1)(X 2 + X + 1), so Gal(f ) contains an
element of cycle structure [3, 2]

f mod 3 is irreducible, so Gal(f ) contains a 5-cycle.

In total, Gal(f ) is a subgroup of S5 containing elements of order 5
and 6. In particular, its order is a multiple of 30, and then it must
be S5.
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Example II: Construction of polynomials with Galois group Sn for
any n (Exercise!).

Deeper result:

Frobenius (or Chebotarev) density theorem

If one moves p through the set of all prime numbers, every cycle
structure of the Galois group G will eventually occur (infinitely often) as
a factorization pattern of f = f mod p.
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p-adic fields, inertia and decomposition groups

Dedekind’s criterion applies to almost all primes. However, it is
often exactly the few primes that were “sorted out” which provide
the most useful information!

A “classical” example: Eisenstein’s criterion. Reduction mod p gives
f = X n, so seemingly no information.
But then one reduces also mod p2, and everything is fine!
This is the first example of considering an integer polynomial over
the p-adic field Qp.
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p-adic fields, inertia and decomposition groups

Ramification and splitting of prime ideals

p a prime number, K/Q a finite extension, OK the ring of integers
of K .

Then the ideal p · OK has a unique factorization p · OK =
∏

peii into
prime ideals of OK (the pi are said to extend p).

ei : The ramification index of the ideal pi in K/Q.

OK/pi is a finite extension of Z/pZ. The degree di of this extension
is called the (residue) degree of pi .
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p-adic fields, inertia and decomposition groups

Important special case: K/Q a Galois extension, with group G .
Then G acts transitively on the set of all pi extending p. In
particular, the degree di and ramification index ei depend only on p
(not on i).

The stabilizer in G of pi is called the decomposition group of pi
over p, denoted D(pi/p). The conjugacy class of this subgroup in G
depends only on p, often denoted Dp.

D(pi/p) acts on the residue field extension (OK/pi )/(Z/pZ). The
kernel of this action is called the inertia group I (pi/p). If the
ramification index is coprime to p, then the inertia group is cyclic.
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Completions, inertia and decomposition groups

From now: Assumption K/Q Galois.

Let Qp ⊃ Q the field of all p-adic numbers
∑∞

i=k aip
i (with k ∈ Z,

ai ∈ {0, . . . , p − 1}, ak 6= 0). Then the compositum Kp := K ·Qp is
the completion of K at pi .

The decomposition group Dp is isomorphic to the Galois group
Gal(Kp/Qp).
(... and even permutation-isomorphic as a subgroup of Gal(f )!)

The extension Kp/Qp also has a ramification theory as above (but
now, p · Zp is the only maximal ideal of the ring Zp).

There is a unique maximal subextension K ur
p /Qp of Kp/Qp in which

the maximal ideal (p) has ramification index 1. Then I (pi/p) is
isomorphic to Gal(Kp/K

ur
p ) (and [K ur

p : Qp] = [Dp : Ip] is the residue
degree of pi ).
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To obtain information about the Galois group G = Gal(K/Q), it is
obviously useful to find out about the structure of decomposition
groups in G .

If ei = 1 (p is unramified in K/Q), then the decomposition group
Dp(= Dp/Ip) is cyclic! This is the case that Dedekind’s criterion
deals with.
(In particular, Hensel’s lemma guarantees that a separable factorization of f

mod p yields a factorization into the same degrees over Qp .)
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Newton polygons

The Newton polygon is a graphical tool designed to give information
about the factors of a polynomial over Qp, the orbits of the
decomposition group Dp, and/or the inertia group Ip.

Definition (Newton polygon)

Let f ∈ Qp[X ] a polynomial of degree n. For each j ∈ {1, . . . , n}, let
ν(j) ∈ Z ∪ {+∞} be the p-adic valuation of the coefficient of f at X j .
Draw all the points (j , ν(j)) with ν(j) <∞ in the plane R2,
The Newton polygon of f is defined as the lower convex hull of this set
of points.

Example: f = 25X 5 + 5X 4 + X 3 + 5X + 5 over Q5 gives vertices (0, 1),
(1, 1), (3, 0), (4, 1), and (5, 2). The lower convex hull is spanned by the
points (0, 1), (3, 0), (5, 2).
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Newton polygons

Theorem

Let `1, . . . , `r be the line segments of the Newton polygon, let ∆xi and
∆yi be the respective lengths and heights, and let si = ∆yi

∆xi
= ai

bi
be their

slopes (with ai ∈ Z, bi ∈ N coprime).

i) Then f factors over Qp into (not necessarily irreducible) polynomials
of degrees ∆xi .

ii) In particular, the sequence [n1, . . . , nk ] of orbit lengths of Dp (on the
roots of f ) is a refinement of the partition [∆x1, . . . ,∆xr ] of n.

iii) On the other hand, any orbit length of the inertia group Ip
corresponding to the line segment `i is a multiple of bi .

(Note that from the definition, the sequence of slopes is strictly
increasing!)
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Newton polygons

Example I

f = 25X 5 + 5X 4 + X 3 + 5X + 5 over Q5 gives two line segments of
lengths ∆x1 = 3, ∆x2 = 2, with slopes −1/3 and 1 respectively.

Then f must split into an irreducible degree 3-factor, and a
(possibly reducible) degree-2 factor.

In particular, the inertia group is cyclic, generated either by (1, 2, 3)
or by (1, 2, 3)(4, 5).

(Actual result: f = (X 3− 25X 2− 20X + 5)(25X 2 + 5X + 1) +O(53)
is an irreducible factorization over Q5.)
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Newton polygons

Example II: Eisenstein’s criterion

Let f ∈ Z[X ] be a degree-n polynomial fulfilling the assumption of
Eisenstein’s criterion for the prime p (leading coefficient not divisible by
p, all others divisible, and constant coefficient not divisible by p2). Then
the Newton polygon consists of a single line segment of slope − 1

n .
Therefore, the inertia group Ip ≤ Gal(f ) is transitive! In particular, f is
irreducible not only over Q, but also over Qp.
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So far, all tools presented were designed to find lower bounds for the
Galois group of a given polynomial. How to find upper bounds?

Let’s not forget some easy special cases. E.g., if f (X ) = g(h(X )) is
a composition of two polynomials of degree n and m, then Gal(f )
naturally becomes a subgroup of the wreath product
Sn o Sm = (Sn × ...× Sn) o Sm. This does give an upper bound
without any complicated computations!
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Resolvents

A noteworthy special case: The discriminant

Recall: ∆(f ) =
∏

i<j(αi − αj)
2, where α1, . . . , αn are the roots of f .

Rather obviously, this expression is fixed under action of the Galois group
of f (i.e., lies in the base field).
On the other hand

√
∆(f ) is fixed exactly under the even permutations

in Gal(f ).

“Moral” of this example: The expression
√

∆(f ) =
∏

i<j(αi − αj) is an
invariant of the group An. I.e., if ∆(f ) is actually a square in the base
field, then the Galois group must be contained in An. This gives a
“descent argument” for the Galois group from Sn to An.
If the Galois group is in fact still smaller, we need similar arguments to
descend even further.
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Resolvents

The following approach to compute Galois groups was essentially outlined
by Jordan (1870), and made practical for computation by Stauduhar 100
years later.

Let g ∈ Sn, and for F ∈ Z[X1, . . . ,Xn], define
F g := F (Xg(1), . . .Xg(n)). This gives an action of Sn on the
multivariate polynomial ring.

Now let G ≤ Sn, and let f ∈ Z[X ] be a monic degree-n polynomial
with simple roots ξ1, . . . , ξn. Assume now that we have found a
polynomial F ∈ Z[X1, . . . ,Xn] whose stabilizer is G , i.e., F g = F if
and only if g ∈ G .

Let F1, . . . ,Fm be the conjugates of F in Sn (i.e., m = [Sn : G ]) and
set θG (f ,F ) =

∏m
j=1(X − Fj(ξ1, . . . , ξn)).

θG f ,F is called a resolvent for G .
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Resolvents

Theorem

θG (f ,F ) is in Z[x ], and if it is additionally separable, then:
Gal(f ) is conjugate (in Sn) to a subgroup of G if and only if θG (f ,F ) has
a root in Z.

Argument why θG (f ,F ) has integer coefficients: Let
F = X n + an−1X

n−1 + ...+ a0 = (X − ξ1) · · · (X − ξn) be a generic
polynomial (with transcendentals ai as coefficients). Then θG (f ,F )
is invariant under action of Sn, so the coefficients are integer
polynomials in the symmetric functions of the ξi , i.e., in the
coefficients ai .
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Resolvents

In practice, one may use numerical approximations of the roots of f .
These approximations then need to be sufficiently good to recognize
with certainty when a certain approximate root of θG (f ,F ) is
actually an integer.

It remains to find a polynomial F with stabilizer G in the first place.

Simple example: For G = An ≤ Sn, the polynomial
F =

∏
1≤i<j≤n(Xi − Xj) works. The resolvent then becomes

X 2 −∆(f ).

Simple example: For G = D4 ≤ S4, the polynomial
F = X1X3 + X2X4 works (Exercise!).
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Some improvements

The degree of θG (f ,F ) constructed above is huge as soon as G is
small compared to Sn. A more effective way is to define relative
resolvents for any pair of groups G ≤ H(≤ Sn). One can then
descend from Sn to the correct Galois group one step at a time.

The above version of resolvent gives a result only depending on
whether the resolvent has or does not have a rational root. That’s a
bit of a waste, considering the large amount of possible
factorizations of a polynomial. The following kind of resolvent gives
a result depending on whether or not the resolvent is irreducible:
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Linear resolvents

An important invariant is the linear polynomial
X1 + · · ·+ Xk ∈ Z[X1, . . . ,Xn].

Linear resolvents

For f of degree n with roots ξ1, . . . , ξn, and 1 ≤ k ≤ n − 1, define

Θf (X ) =
∏

S⊂{1,...,n};|S|=k

(X −
∑
i∈S

ξi ).

Assuming Θf (X ) is separable, the degrees of its irreducible factors over
Q correspond 1-to-1 to the orbit lengths of Gal(f ) acting on k-subsets of
{1, · · · , n}! In particular, if Gal(f ) is k-fold transitive, then Θf must be
irreducible.

(Recall: A transitive group G ≤ Sn is called 2-transitive if the stabilizer of 1 is
transitive on {2, . . . n}.
A 2-transitive group is 3-transitive, if the pointwise stabilizer of 1 and 2 is transitive

on {3, . . . , n}, etc.)
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Example: A polynomial with Galois group PSL3(2) < S7

(The following example is taken from Cox, Galois Theory:)

Theorem

The polynomial x7 − 154x + 99 has Galois group PSL3(2) over Q.

Proof.

First, form the resolvent of degree

(
7
3

)
= 35 coming from action on

3-sets.
Galois group equals PSL3(2) if and only if this resolvent factors into two
irreducibles of degrees 7 and 28 respectively.
Group-theoretical explanation: The action of PSL3(2) on 3-sets in
{1, . . . , 7} is intransitive (this is because the image of a + b ∈ F3

2 under
any element of GL3(2) is fixed with a and b), with an orbit of length 7
coming from the sets {a, b, a + b}.

Joachim König Methods for computing Galois groups 26 / 47



Local tools: Reduction and completion Invariants of Galois groups Galois groups in infinite families Some recent developments

1 Local tools: Reduction and completion

2 Invariants of Galois groups

3 Galois groups in infinite families
Multi-parameter polynomials of fixed degree: function field methods
Families of polynomials of unbounded degree

4 Some recent developments

Joachim König Methods for computing Galois groups 27 / 47



Local tools: Reduction and completion Invariants of Galois groups Galois groups in infinite families Some recent developments

Multi-parameter polynomials of fixed degree: function field methods

Function field methods

Bounding Galois groups from above via resolvents is often very tedious
business.
In some cases, there are much nicer ways of finding upper bounds,
coming from methods over function fields, such as monodromy.

Lemma

Let F (t,X ) = f (X )− tg(X ), with coprime polynomials f , g ∈ Q[X ], and
let G = Gal(F/Q(t)). Then the degrees of the irreducible factors of
f (X )g(Y )− g(X )f (Y ) ∈ Q[X ,Y ] are exactly the lengths of the orbits of
a point stabilizer in G . In particular, Gal(F/K (t)) is 2-transitive if and

only if the polynomial f (X )g(Y )−g(X )f (Y )
X−Y ∈ K [X ,Y ] is irreducible.

Proof.

Let y be a root of F over Q(t). Then t = f (y)
g(y) , so over Q(y), we have

F = f (X )− f (y)
g(y)g(X ). But Gal(F/Q(y)) is exactly a point stabilizer in

G .
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Multi-parameter polynomials of fixed degree: function field methods

Example: A polynomial for the sporadic Higman-Sims
group

HS is a finite simple group with a primitive, but not 2-transitive
permutation action of degree 100. This action extends to the
automorphism group Aut(HS) = HS o C2.

The following polynomial with Galois group Aut(HS) = HS o C2

over the field Q(t) was computed by Barth and Wenz (2016):

Theorem

Let p(X ) = (7X 5 − 30X 4 + 30X 3 + 40X 2 − 95X + 50)4 · (2X 10 − 20X 9 +
90X 8 − 240X 7 + 435X 6 − 550X 5 + 425X 4 − 100X 3 − 175X 2 + 250X −
125)4 · (2X 10 + 5X 8 − 40X 6 + 50X 4 − 50X 2 + 125)4, and
q(X ) = (X 4− 5)5 · (X 8− 20X 6 + 60X 5− 70X 4 + 100X 2− 100X + 25)10.
Then f (t,X ) = p(X )− tq(X ) has Galois group Aut(HS) over Q(t).
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Multi-parameter polynomials of fixed degree: function field methods

Proof.

p(X )q(Y )− q(X )p(Y ) = (X − Y )f1(X ,Y )f2(X ,Y ) ∈ Q[X ,Y ], with
deg(f1) = 22 and deg(f2) = 77. Therefore Gal(f ) cannot be 2-transitive,
i.e., cannot be S100 or A100.
Now, only need to find cycle structures in Gal(f ) via Dedekind’s
criterion. One of them is (119.1), which forces Gal(f ) to be primitive.
Then, in the list of primitive groups of degree 100, Aut(HS) is the only
one with all those cycle structures.
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Multi-parameter polynomials of fixed degree: function field methods

A variant of the above.

Lemma

Let f (t,X ) ∈ Q(t)[X ] be irreducible. Assume that there exists a
non-constant rational function g(Y ) ∈ Q(Y ) of degree d such that
f (g(Y ),X ) is reducible over Q(Y ), but does not possess a root. Then
the splitting field of f over Q(t) contains a rational function field Q(y) of
degree [K (y) : K (t)] dividing d , and whose Galois group is an intransitive
subgroup of G .

This is often applicable nicely for detecting linear groups as Galois
groups.

Theorem (K., 2014)

The polynomial
f (t, x) = (x5 − 95x4 − 110x3 − 150x2 − 75x − 3)3(x5 + 4x4 − 38x3 +
56x2 + 53x − 4)3(x − 3)− t(x2 − 6x − 1)8(x2 − x − 1)4(x + 2)4x has
Galois group PSL5(2) over Q(t).
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Multi-parameter polynomials of fixed degree: function field methods

Proof.
That polynomial was computed as part of a family F (α, t, x) with an extra parameter
α, already specialized above. Now among that family, there will be a second value α′

for which the polynomial F (α′, t, x) =: g(t, x) has exactly the same branch points as
f (t, x) (this reflects the fact that inside the splitting field of f (t, x), there is a second,
non-conjugate subfield with the same ramification structure!). Write
f (t, x) = f1(x)− tf2(x) and g(t, x) = g1(x)− tg2(x), and factor the polynomial
f − 1(x)g2(y)− f2(x)g1(y). This corresponds to the factorization of f (t, x) over
Q(y), where y is a root of g ! The polynomial turns out to factor into degrees 15 and
16, corresponding to the fact that the second index-31 subgroup of PSL5(2) has orbit
lengths 15 and 16 in the action of the cosets of the first index-31 subgroup.

Since no other degree-31 transitive group has such a behaviour, the Galois group must

be PSL5(2)!
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Families of polynomials of unbounded degree

As seen above, computation of the Galois group of one fixed
polynomial is essentially an algorithmic problem.

In particular, if a fixed degree-n polynomial has “large” Galois group
(Sn or An), it will “give it away” rather easily (Dedekind’s criterion,
Chebotarev’s theorem).

Verifying the Galois group of an infinite family (of unbounded
degree) of polynomials is a whole different matter.

Even though such families “morally” (often) tend to have large
Galois group, the strict verification can be very hard!

In the following, we look at some examples where “local” methods
help.
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Families of polynomials of unbounded degree

Truncated exponential series: A result by Schur

Theorem (Schur, 1930)

Let fn = 1 + x + x2

2 + ...+ xn

n! (the n-th Taylor polynomial of the

exponential function). Then Gal(fn/Q) =

{
An, if 4|n
Sn, else

.
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Families of polynomials of unbounded degree

Auxiliary results from group theory

Theorem (Jordan, 1870s)

Assume that G ≤ Sn is a primitive permutation group containing a
p-cycle for some prime p < n − 2. Then G ∈ {An,Sn}.
If additionally, p > n/2, then the assumption of primitivity can be
weakened to transitivity.

Note: A primitive permutation group is a transitive group whose point stabilizer is a

maximal subgroup. Equivalently, the action of G does not preserve a non-trivial block

system.

Theorem (Chebyshev (“Bertrand’s postulate”))

If n ≥ 8, then there exists at least one prime number p with
n/2 < p < n − 2.
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Families of polynomials of unbounded degree

A modern proof of Schur’s theorem

Due to Coleman (1987).

Due to above auxiliary results, it suffices to show the following:

a) fn is irreducible.

b) Gal(fn) contains a p-cycle for some n/2 < p < 2.

c) ∆(fn) is a square if and only if 4|n.

Lemma

The slopes of the Newton polygon of fn are − pni − 1

pni (p − 1)
, where

n1 > · · · > ns are the exponents of p occurring in a p-adic expansion of n.
In particular, if pk ≤ n, then pk divides the degree of the splitting field of
fn over Qp
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Families of polynomials of unbounded degree

Now assertion b) follows immediately from Bertrand’s postulate
(plus the fact that any element of such order p > n/2 in Sn must be
a p-cycle).

Furthermore, from above Lemma it follows that if pm divides n, then
it also divides the order of each irreducible factor over Qp.
In total, fn must be irreducible over Q.

To conclude, it suffices to show the following

Lemma

∆(fn) = (−1)
n(n−1)

2 · (n!)n.
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Families of polynomials of unbounded degree

Generalized Laguerre polynomials

Definition

The polynomial Lαm(x) =
∑m

j=0
(m+α)(m+α−1)···(j+α+1)·(−x)j

(m−j)!j! is called

generalized Laguerre polynomial.

Interesting special cases

L
(−m−1)
m (x) is the truncated exponential series.

L0
m(x) =

∑m
j=0

(
m
j

)
(−1)j

j! x j are the “classical” Laguerre

polynomials.

Theorem (Schur)

Gal(L
(0)
m (x)) = Sm, for each m ∈ N.

Gal(L
(1)
m (x)) = Am if m > 1 is odd or of the form k2 − 1; and Sm

otherwise.
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Families of polynomials of unbounded degree

Laguerre polynomials

Theorem (Gow, 1989)

If m is even such that L
(m)
m is irreducible, then Gal(L

(m)
m (x)) = Am.

(Filaseta/Williams: Most of them are actually irreducible.)
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Families of polynomials of unbounded degree

Generalized Fibonacci polynomials

Definition

The polynomial fn(X ) := X n − X n−1 − · · · − X − 1 is called generalized
Fibonacci polynomial of degree n.

Reason for the naming: The generalized Fibonacci sequence is defined by
the recursion an+k = an+k−1 + ...+ an. The ratio ak+1/ak of two
subsequent elements of the series then converges to a root of the
equation xk = xk−1 + · · ·+ x + 1.
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Families of polynomials of unbounded degree

Generalized Fibonacci polynomials

Theorem (Martin, 2004)

If n is even or a prime number, then Gal(fn/Q) = Sn.
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Families of polynomials of unbounded degree

Generalized Fibonacci polynomials

Some remarks about the proof:

fn(x) has a real root between 1 and 2, and all other roots have
absolute value < 1.
Exercise: Then fn must be irreducible.

fn(x) · (x − 1) = xn+1 − 2xn + 1. This is useful, since discriminants
of trinomials are easy to calculate.

By considering some auxiliary polynomial, one finds that for every
prime p > 2 dividing the discriminant, there is only one double
root, and otherwise simple roots, for f mod p.
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Families of polynomials of unbounded degree

Generalized Fibonacci polynomials

Now what does this mean for the inertia group Ip?

Either Ip is trivial (so p was actually unramified).
Or Ip is generated by a transposition!

Now a transitive group of prime degree q with a transposition is Sq.

If the degree is even, then one can show additionally that 2 does not
divide the discriminant of f . So all the non-trivial inertia groups are
generated by transpositions.

Fact: The inertia groups generate the whole Galois group.

And a transitive group generated by transpositions is also always the
full symmetric group.
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An idea by Elkies for determination of multiply transitive
Galois groups

There are known polynomials for the Galois group M23 (Mathieu
group acting on 23 points), not over Q, but over some small number
fields.
This group is 4-fold, but not 5-fold transitive.

To strictly verify the Galois group, one could now use the
intransitivity of the action on M23 on 5-sets, to distinguish it from
A23. This would boil down to the computation of a resolvent of

degree

(
23
5

)
= 33649. That is, however, not practical!

Instead, the following has been suggested (and applied successfully)
by Noam Elkies:
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Determination of multiply transitive Galois groups

Assume given an irreducible degree-n equation f (t,X ) ∈ Q[t,X ],
such that the cycle structures (in Sn) of the inertia group generators
σ1, . . . , σr over Q(t) are known.
(This is not a big assumption; the cycle structures can often be read of from

factorizations of f (t0,X ), where t0 ∈ Q is a branch point).

Now in the splitting field Ω/Q(t) of f , consider the fixed field Ek of
the stabilizer of a k-set (2 ≤ k ≤ n − 2). This field has a certain
genus - a group-theoretical invariant which can be computed from
the cycle structure of the σi in the action on k-sets. If G is k-fold
transitive, then these cycle structures, and therefore the genus of Ek

can be estimated by rather simple combinatorial methods!
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Determination of multiply transitive Galois groups

Moreover, modulo “most” primes p, the mod-p reduction of Ek still
retains the genus of Ek . From the Hasse-Weil bound, one can then
estimate (from below and above) the number of degree-1-places
(=Fp-rational points) of Ek mod p.

On the other hand, from the given equation f (t,X ), one can actually
explicitly compute the number of such Fp-rational points (without
knowing an equation for Ek , just by factoring f (t0,X ) for all t0 ∈ Fp.

If that number contradicts what the Hasse-Weil bound would have
predicted for the genus (under the assumption “G is k-transitive”),
then obviously G wasn’t k-transitive.

In particular, since An and Sn are the only groups which are more
than 5-transitive, this method is well-suited to rule out these groups
as Galois groups!
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