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Abstract

LVM and LVMB manifolds are a large family of examples of non kähler manifolds. For
instance, Hopf manifolds and Calabi-Eckmann manifolds can be seen as LVMB manifolds.
The LVM manifolds have a very natural action of a real torus and the quotient of this
action is a simple polytope. This quotient allows us to relate closely LVM manifolds to
the moment-angle manifolds studied (for example) by Buchstaber and Panov. Our aim is
to generalize the polytopes associated to LVM manifolds to the LVMB case and study the
properties of this generalization. In particular, we show that the object obtained belongs to
a very large class of simplicial spheres. Moreover, we show that for every sphere belonging to
this class, we can construct a LVMB manifold whose associated sphere is the given sphere.
We use this latter result to show that many moment-angle complexes can be endowed with
a complex structure (up to product with circles).

Introduction

It is not easy to construct non kähler compact complex manifolds. The simplest example is
the well known Hopf manifold ([Ho], 1948), which gives a complex structure on the product
of spheres S2n+1 × S1 as a quotient of Cn\{0} by the action of a discrete group. The Hopf
manifold has many generalizations: �rstly, by Calabi and Eckmann [CE] who give a structure
of complex manifold on any product of spheres (of odd dimension). Then by Santiago Lopez de
Medrano, Alberto Verjovsky ([LdM] and [LdMV]) and Laurent Meersseman [M]. In these last
generalizations, the authors obtain complex structures on products of spheres, and on connected
sums of products of spheres, also constructed as a quotient of an open subset in Cn but by the
action of a non discrete group. These manifolds are known as LVM manifolds.

The construction in [M] has (at least) two interesting features: on the one hand, the LVM
manifolds are endowed with an action of the torus (S1)n whose quotient is a simple convex
polytope and the combinatorial type of this polytope characterizes the topology of the manifold.
On the other hand, for every simple polytope P , it is possible to construct a LVM manifold
whose quotient is P .

In [Bo], Frédéric Bosio generalizes the construction of [M] emphasing on the combinatorial as-
pects of LVM manifolds. This aim of this paper is to study the LVMB manifolds (i.e. manifolds
constructed as in [Bo]) from the topological and combinatorial viewpoints. In particular, we will
generalize the associated polytope of a LVM manifold to our case and prove that this general-
ization belongs to a large class of simplicial spheres (named here rationally starshaped spheres).

In the �rst part, we brie�y recall the construction of the LVMB manifolds as a quotient of an
open set in Cn by a holomorphic action of Cm. In the second part, we study fundamental sets,
the combinatorial data describing a LVMB manifold and their connection to pure simplicial
complexes. Mainly, we show that an important property appearing in [Bo] (the SEU property)
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is related to a well-known class of simplicial complexes: the pseudo-manifolds. In the same part,
we also introduce the simplicial complex associated to a LVMB manifold and we show that this
complex generalizes the associated polytope of a LVM manifold. In the third and forth parts, we
are mainly interested in the properties of this complex and we show that the complex is indeed a
simplicial sphere. To do that, we have to study another action whose quotient is a toric variety
closely related to our LVMB manifold. This action was already studied in [MV] and [CFZ] but we
need a more thorough study. Finally, in the �fth part, we make the inverse construction: starting
with a rationally starshaped sphere, we construct a LVMB manifold whose associated complex
is the given sphere. Using this construction, we show an important property for moment-angle
complexes: up to a product of circles, every moment-angle complex arising from a starshaped
sphere can be endowed with a complex structure of LVMB manifold.

To sum up, we prove the following theorems:
Theorem 1: Let N be a LVMB manifold. Then its associated complex P is a rationally
starshaped sphere. Moreover, if N is a LVM manifold, then P can be identi�ed with (the dual
of) its associated polytope.

Proposition: Every rationally starshaped sphere can be realized as the associated complex P
for some LVMB manifold.

Theorem 2: Up to a product of circles, every moment-angle complex arising from a starshaped
sphere can be endowed with a complex structure of LVMB manifold.

Notations

In this short section, we �x several notations which will be used throughout the text:

• Si A is a subset of a set V , we denote V \A its complement in V , or simply Ac if no confusion
can be made.

• We put Iz = { k ∈ {1, . . . , n} / zk 6= 0 } for every z in Cn.

• D is the closed unit disk in C and S1 its boundary.

• Moreover, exp will be the map Cn → (C∗)n de�ned by

exp(z) = (ez1 , . . . , ezn)

(where e is the usual exponential map of C).

• If m ∈ Zn, we will denote Xm
n the character of (C∗)n de�ned by Xm

n (z) = zm1
1 . . . zmn

n .

• And the one-parameter subgroups of (C∗)n will be denoted λmn :

λmn (t) = (tm1 , . . . , tmn)

• <,> is the usual non hermitian inner product on Cn :

< z,w >=
n∑
j=1

zjwj
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• We will identify Cm, as a R-vector space, to R2m via the morphism

z 7→ (Re (z1) , . . . , Re (zn) , Im (z1) , . . . , Im (zn))

• We set Re (z) = (Re (z1) , . . . , Re (zn))

• As well, we set Im (z) = (Im (z1) , . . . , Im (zn)), so

z = Re (z) + iIm (z) = (Re (z) , Im (z))

• In Rn, Conv(A) is the convex hull of a subset A.

• Si A is a nonempty subset of Rn, the set of all nonnegative linear combinations

x =
k∑
j=1

λjaj , k ∈ N∗, λ1 ≥ 0, . . . , λk ≥ 0, a1, . . . , ak ∈ A

of elements of A is called the positive hull of A and denoted pos(A). If A = ∅, we de�ne
pos(∅) = {0}.

• For every v in Rn, we set ṽ = (1, v) ∈ Rn+1.

1 Construction of the LVMB manifolds

In this section, we brie�y recall the construction of LVMB manifolds, following the notation of
[Bo]. Let M and n be two positive integers such that n ≥M . A fundamental set is a nonempty
set E consisting of subsets of {1, . . . , n} havingM elements. Elements of E are called fundamental
subsets.

Remark: For practical reasons, we sometimes consider fundamental sets whose elements do not
belong to {1, . . . , n} but to another �nite set with n elements (usually {0, 1, . . . , n− 1}).

Let P be a subset of {1, . . . , n}. We say that P is acceptable if P contains a fundamental subset.
We de�ne A as the set of all acceptable subsets. Finally, an element of {1, . . . , n} will be called
indispensable if it belongs to every fundamental subset of E . We say that E is of type (M,n) (or
(M,n, k) if we want to emphasize the number k of indispensable elements).

Example 1: For instance,

E = { {1, 2, 5}, {1, 4, 5}, {2, 3, 5}, {3, 4, 5} }

is a fundamental set of type (3, 5, 1).

Two combinatorial properties (named SE and SEU1 respectively, cf. [Bo]) will be very important
in the sequel:

(SE) ∀ P ∈ E , ∀ k ∈ {1, . . . , n}, ∃ k′ ∈ P ; (P\{k′}) ∪ {k} ∈ E
1for Substitute's Existence and Substitute's Existence and Uniqueness
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(SEU) ∀ P ∈ E , ∀ k ∈ {1, . . . , n}, ∃! k′ ∈ P ; (P\{k′}) ∪ {k} ∈ E

Moreover, a fundamental set E is minimal for the SEU property if it veri�es this property and
has no proper subset Ẽ such that Ẽ veri�es the SEU property. Finally, we associate to E two
open subset S in Cn and V in Pn−1 (where Pn−1 is the complex projective space of dimension
n− 1) de�ned as follows:

S = { z ∈ Cn/ Iz ∈ A }

The open subset S is the complement of an arrangement of coordinate subspaces in Cn. Indeed,
we have the following description of S:

Proposition 1.1: We have

S = Cn \
⋃

(i1,...,ik)/∈P

{ z / zi1 = · · · = zik = 0}

Proof: Let z be an element of Cn. If σ = (i1, . . . , ik) ⊂ {1, . . . , n}, we denotes Lσ for the
coordinate subspace

Lσ = { z / zi1 = · · · = zik = 0}

The elements of Lσ are exactly the elements z such that Icz contains σ. If z belongs to S, then,
by de�nition, Icz is a face of P. So, if z belongs to some Lσ, we have σ ∈ P. Conversely, if z is
not an element of Lσ for every σ /∈ P, then, since z belongs LIc

z
, we conclude that Icz is a face of

P, that is, z belongs to S.

We also remark that, for all t ∈ C∗, we have Itz = Iz so the following de�nition is consistent:

V = { [z] ∈ Pn−1/ Iz ∈ A }

Example 2: In Example example 1, E veri�es the SEU property and the set S is

S = { (z1, z2, z3, z4, z5) / (z1, z3) 6= 0, (z2, z4) 6= 0, z5 6= 0 }

so

S '
(
C2\{0}

)2 × C∗

Now, we suppose that M = 2m+ 1 is odd and we �x l = (l1, . . . , ln) a family of elements of Cm.
We can de�ne an action (called acceptable holomorphic action) of C∗ × Cm on Cn de�ned by:

(α, T ) · z =
(
αe<l1,T>z1, . . . , αe

<ln,T>zn
)
∀ (α, T, z) ∈ C∗ × Cm × Cn
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Remark: If m = 0, the previous action is just the classical one de�ning Pn−1.

In the sequel, we focus only on families l such that for every P ∈ E , (lp)p∈P spans Cm (seen as
a R-a�ne space). In this case, we say that (E , l) is a acceptable system. If α ∈ C∗, T ∈ Cm and
z ∈ Cn, we have I(α,T ).z = Iz, so S is invariant for the acceptable holomorphic action. Moreover,
the restriction of this action to S is free (cf. [Bo], p.1264).

As a consequence, we denote N the orbit space for the action of C∗×Cm restricted to S. Notice
that we can also consider an action of Cm on V whose quotient is again N . We call (E , l) a good
system if N is compact and can be endowed with a complex structure such that the natural
projection S → N is holomorphic. Such a manifold is known as a LVMB manifold. Since a
quotient of a holomorphic manifold by a free and proper action (cf. [Hu], p.60) can be endowed
with a complex structure, we only have to check whenever the action is proper. Here, according
to [Hu], p.59, we de�ne a proper action of a Lie Group G on a topological space X as a continuous
action such that the map G×X → X ×X de�ned by (g, x) 7→ (g · x, x) is proper. Notice that
in our case, the group G is not discrete.

We recall the following de�nition from [Bo]:

De�nition: Let (E , l) be a acceptable system. We say that it veri�es the imbrication condition
if for every P,Q in E , the interiors of the convex hulls Conv(lp, p ∈ P ) and Conv(lq, q ∈ Q) have
a common point.

In [Bo], the following fundamental theorem is proved:

Theorem 3 ([Bo], p.1268): An acceptable system is good if and only if (E , l) veri�es the SE
property and the imbrication condition.

Remark: In [Bo], it is also proved that a good system is minimal for the SEU property.

Finally, a LVM manifold is a manifold constructed as in [LdMV] or [M]. We don't explain here
the whole construction of the LVM manifolds. The only thing we need here is that is a special
case of LVMB. Indeed, we have the following theorem (and we use this theorem as a de�nition
of LVM manifolds):

Theorem 4 ([Bo], p.1265): Every LVM manifold is a LVMB manifold. To be more precise, let
O be the set of points of Cm which are not in the convex hull of any subset of l with cardinal
2m. Then, a good system (E , l) is the good system of a LVM manifold if and only if there exists
an bounded component O in O such that E is exactly the set of subsets P of {1, . . . , n} with
(2m+ 1) for cardinal such that O is contained in Conv(lp, p ∈ P ).

Remark: In particular, a LVM manifold is a compact complex manifold.

Example 3: We come back to example example 1. If we set l1 = l3 = 1, l2 = l4 = i and l5 = 0,
then the imbrication condition is ful�lled and (E , l) is a good system. As a consequence, Theorem
theorem 3 and Theorem theorem 4 imply that N can be endowed with a structure of a LVM
manifold. In [LdMV], the LVM manifolds constructed from a good system of type (3, n, k) are
classi�ed up to di�eomorphism. Here, E has type (3, 5, 1) and we have N ≈ S3×S3. Notice that
we can also use the theory of moment-angle complex (cf. the section 5.2) to do this calculation.
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To conclude this section, we recall how to construct the polytope associated to a LVM manifold
(E , l). It is clear that the natural action of (S1)n on Cn preserves S and that this action
commutes with the given holomorphic action. So, we have an induced action of (S1)n on N . Up
to a translation of the lj (which does not change the quotient N ), Theorem theorem 4 allow us
to assume that 0 belongs to Conv(l1, . . . , ln) (this condition is known as Siegel's condition) and
in this case, the quotient P of the action of (S1)n on N can be identi�ed with:

P =

{
(r1, . . . , rn) ∈ (R+)n

/
n∑
i=1

rj lj = 0,
n∑
i=1

rj = 1

}

Since a LVM manifold is compact, this set is clearly a polytope and it can be shown that it is
simple (cf. [BM], Lemma 0.12). The polytope P is called the polytope associated to the LVM
manifold N .

Example 4: For the previous example, we have to perform a translation on the vectors lj with
the view to respect the Siegel condition. For example, N is also the LVM manifold associated
with the good system (E , λ) where λ1 = λ3 = 3

4 −
i
4 , λ2 = λ4 = − 1

4 + 3i
4 and λ5 = − 1

4 −
i
4 . A

calculation shows that the polytope P is the square

P =
{ (

1
4
− r3,

1
4
− r4, r3, r4,

1
2

) /
r3, r4 ∈

[
0,

1
4

] }

2 Fundamental sets and associated complex

In this section, we will brie�y study the fundamental sets introduced in [Bo] and recalled above,
and construct a simplicial complex whose combinatorial properties re�ect the geometry of a
LVMB manifold. Here, E is a fundamental set of type (M,n). The integer M is not supposed
to be odd. For the moment, our aim is to relate the above properties to some classical ones of
simplicial complexes.

Let us begin with some terminology. Faces, or simplices are subsets of a simplicial complex. If
a complex K is pure-dimensional (or simply pure), the simplices of maximal dimension d are
named facets and the faces of dimension 0 (resp. d− 1) are the vertices (resp. the ridges) of the
complex.

The �rst important de�nition in this paper is the following:

De�nition: Let E be a fundamental set of type (M,n). The associated complex of E is the set
P of subsets of {1, . . . , n} whose complement (in {1, . . . , n}) is acceptable.
As we will see later, this complex is the best choice for a combinatorial generalization of the
associated polytope of a LVM manifold.

First properties of P are the following:

Proposition 2.1: Let E be a fundamental set of type (M,n, k). Then, its associated complex P
is a simplicial complex on {1, . . . , n}. Moreover, P is pure-dimensional of dimension (n−M − 1)
and has (n−k) vertices. These vertices are precisely the non-indispensable elements of {1, . . . , n}
for E and the facets are exactly the complements of the subsets of E .

6



Proof: P is obviously a simplicial complex. Moreover, the maximal simplices of P are exactly
the complements of minimal subsets of A, i.e the fundamental subsets. The latters have the same
number M of elements, so every maximal simplex of P has n−M elements. Finally, an element
j ∈ {1, . . . , n} is a vertex of P if and only if {1, . . . , n}\{j} contains a fundamental subset, that
is, j is not indispensable.

Example 5: The complex P associated to the fundamental set of Example example 1 is the
complex with facets {{1, 2}, {2, 3}, {3, 4}, {1, 4}}. So, P is the boundary of a square.

Remark: Conversely, every pure complex can be realized as the associated complex of a funda-
mental set: let P be a pure-dimensional simplicial complex on the set {1, . . . , v} with dimension
d and v vertices. Then, for every integer k, there exists two integers M,n and a fundamental set
E of type (M,n, k) whose associated complex is P. If k is �xed, this fundamental set is unique.

Moreover, the SEU property can be expressed as a combinatorial property of P:

Proposition 2.2: E satis�es the SEU property if and only if

∀ Q ∈ Pmax, ∀ k ∈ {1, . . . , n}, ∃! k′ /∈ Q; (Q ∪ {k′})\{k} ∈ Pmax
where Pmax is the set of facets of P.

Proof: First, we assume that E veri�es the SEU property. Let Q be a facet of P and k ∈
{1, . . . , n}. Then P = Qc belongs to E . The SEU property implies that there is k′ in P (so
k′ /∈ Q) such that P ′ = (P\{k′}) ∪ {k} belongs to E . As claimed, P ′c is also a facet of P.
Moreover, we obviously have P ′c = (Q∪ {k′})\{k}. Finally, if Q′′ = (Q∪ {k′′})\{k} is a facet of
P with k′′ 6= k′ and k′′ /∈ Q, then (P\{k′′}) ∪ {k} is in E , which contradicts the SEU property.
The proof of the converse is analogous.

Corollary 1: Let E be a fundamental set. Then its associated complex P satis�es the SEU
property if and only if every ridge of P is contained in exactly two facets of P.
Proof: To begin, we assume that E veri�es the SEU property. Let Q be a ridge of P. By
de�nition, Q is included in a facet P of P. We put P = Q ∪ {k}, k ∈ {1, . . . , n}\Q. By
proposition proposition 2.2, there exists k′ /∈ P (and so k 6= k′) such that P ′ = (P ∪ {k′})\{k}
is a facet of P. We have P ′ = Q∪ {k′} so Q is contained in at least two facets of P. Let assume
that Q is contained in a third facet P ′′ = Q∪ {k′′}. In this case, we have P ′′ = (P ∪ {k′′})\{k},
which contradicts proposition proposition 2.2.
Conversely, let Q be a facet of P and k ∈ {1, · · · , n}. If k ∈ Q, then P = Q\{k} is a ridge of P
and by hypothesis, P is contained in exactly two facets Q1 and Q2. One of them, say Q1, is Q.
The other is Q2 and we have Q2 = P ∪ {k′}. Then we have k′ /∈ Q (on the contrary, we would
have Q2 = Q = Q1) and Q2 = (Q ∪ {k′})\{k}. Moreover, if Q3 = (Q ∪ {k′′})\{k} is another
facet of P with k′′ /∈ Q, then Q3 contains P and by hypothesis, Q3 = Q2 (i.e k′′ = k′). If k /∈ Q,
we remark that the element k′ ∈ {1, . . . , n} such that Q′ = (Q ∪ {k′})\{k} is a facet of P is
k′ = k. Indeed, if k′ = k, then Q′ = Q is a facet of P. And if k′ 6= k, then k /∈ Q ∪ {k′} and, as
a consequence, Q′ = Q ∪ {k′} is not in P.

De�nition: Let E be a fundamental set of type (M,n). We de�ne the (unoriented) graph Γ by
requiring that its vertices are fundamental subsets of E and two vertices P and Q are related by
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an edge if and only if there exist k /∈ P, k′ ∈ P such that Q = (P\{k′}) ∪ {k}. Equivalently,
we relate two subsets of E if and only if they di�er exactly by one element. Γ is called the
replacement graph of E .

Proposition 2.3: Let E be a fundamental set of type (M,n) which veri�es the SEU property.
Then, there exist an integer p ∈ N∗, and fundamental sets Ej of type (M,n) which are minimal

for the SEU property and such that E is the disjoint union
p⊔
j=1

Ej .

Proof: We proceed by induction on the cardinal of E . If E is minimal for the SEU property,
then there is nothing to do. Let assume that it is not the case: there exists a proper subset E1 of
E which is minimal for the SEU property. We put E for its complement E\E1. It is obvious that
E is a fundamental set (of type (M,n)). We claim that E veri�es the SEU property. Let P be an
element of E and k ∈ {1, . . . , n}. If k ∈ P , then, putting k′ = k, we have that (P\{k′})∪{k} = P
is an element of E . It is the only choice (for k′) since P is in E and E veri�es the SEU property.
Let assume now that k is not in P . Since P is an element of E , there exists exactly one k′ ∈ P
such that P ′ = (P\{k′}) ∪ {k} is an element of E , too. We claim that P ′ cannot be in E1.
Indeed, if it were the case, since E1 is minimal for the SEU property, there would exist exactly
one k′′ ∈ P ′ such that P ′′ = (P ′\{k′′})∪{k′} ∈ E1. But P = (P ′\{k})∪{k′} is in E and k ∈ P ′.
So, k′′ = k and P ′′ = P . As a consequence, E is a fundamental set of type (M,n) which veri�es
the SEU property with cardinal strictly smaller than E . Applying the induction hypothesis on
E , we have the decomposition of E we were looking for.

Remark: The decomposition of the previous proposition induces a decomposition of the vertex
set of Γ. In the proof, we showed that an element of Ej is related only to other elements in Ej .
Consequently, each set Ej is the vertex set of a connected component of Γ. This also implies that
this decomposition is unique up to order. We call connected components of E the sets Ej .

Corollary 2: Let E be a fundamental set of type (M,n) and Γ its replacement graph. We
assume that E veri�es the SEU property. Then, the following assertions are equivalent:

1. E is minimal for the SEU property.

2. E has only one connected component.

3. Γ is connected.

Remark: Using propositions proposition 2.1 and proposition 2.2, we can describe Γ in terms of
P. The vertices of Γ correspond to facets of P and two vertices are related if and only if they
have a common ridge.

Then, we recall the following de�nition:

De�nition: Let K be a simplicial complex. K is a pseudo-manifold if the two following prop-
erties are ful�lled:

1. every ridge of K is contained in exactly two facets.

2. for all facets σ, τ of K, there exists a chains of facets σ = σ1, . . . , σn = τ of K such that
σi ∩ σi+1 is a ridge of K for every i ∈ {0, . . . , n− 1}.
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For instance, every simplicial sphere is a pseudo-manifold. More generally, a triangulation of
a manifold (that is, a simplicial complex whose realization is homeomorphic to a topological
manifold) is also a pseudo-manifold. Now, the proposition below shows that the notion of
pseudo-manifold is exactly the combinatorial property of P which characterizes the fact that
E is minimal for the SEU property:

Proposition 2.4: Let E be a fundamental set with n > M . Then, P is a pseudo-manifold if
and only if E is minimal for the SEU property.

Proof: Let assume that E is minimal for the SEU property. This implies that every ridge of
P is contained in exactly two facets (cf. proposition corollary 1). Now, let σ, τ be two distinct
facets of P. So, P = σc and Q = τ c are two fundamental subsets. By minimality for the
SEU property, Γ is connected (cf. corollary corollary 2). Consequently, there exists a sequence
P0 = P, P1, . . . , Pr = Q of fundamental subsets such that Pi and Pi−1 di�er by exactly one
element. We denote Ri the acceptable subset Pi−1∪Pi withM +1 elements. Its complement Rci
is thus a face of P with n−M−1 = dim(P) elements. If we put σi = P ci , we have R

c
i = σi−1∩σi

so σ0 = σ, . . . , σr = τ . Consequently, P is a pseudo-manifold.
Conversely, we assume that P is a pseudo-manifold. Then, thanks to proposition corollary 1,
E veri�es the SEU property. Moreover, E will be minimal for this property if and only if Γ is
connected (cf. corollary corollary 2). Let σ, τ be two distinct elements of E . Then σc and τ c are
facets of P. Since P is a pseudo-manifold, there exists a sequence σ0 = σc, σ1, . . . , σr = τ c of
facets of P such that for every i, σi and σi−1 share a ridge of P. This means that σci and σ

c
i−1

are fundamental subsets E which di�er only by an element, and consequently, σci and σci−1 are
related in Γ. This implies that Γ is connected and E is minimal for the SEU property.

Remark: The case where n = M corresponds to P = {∅}. This is not a pseudo-manifold since
the only facet is ∅ and it does not contain any simplex with dimension strictly smaller.

Finally, we prove the following proposition which is the motivation for the study of the associated
complex:

Proposition 2.5: Let (E , l) be a good system associated to a LVM manifold and P its associated
polytope. Then the associated complex P of E is combinatorially equivalent to the boundary of
the dual of P.

Proof: Since (E , l) is a good system associated to a LVM manifold, there exists a bounded
component O in O such that E is exactly the set of subsets Q of {1, . . . , n} with (2m + 1) for
cardinality such that O is included in the convex hull of (lq, q ∈ Q). Up to a translation, (whose
e�ect on the action is just to introduce an automorphism of Cm×C∗ and so does not change the
action, cf. [Bo]), we can assume that E is exactly the set of subsets P of {1, . . . , n} with (2m+1)
for cardinality such that the convex hull of (lp, p ∈ P ) contains 0. In this setting, according to
the formula (7) on the page 65 of [BM], the boundary of P is combinatorially characterized as
the set of subsets I of {1, . . . , n} verifying

I ∈ P⇔ 0 ∈ Conv(lk, k ∈ Ic)

So, I is a subset of P if and only if Ic is acceptable, i.e. I ∈ P. As a consequence, from a
viewpoint of set theory, P and P are the same set. We claim that the orders on these sets P and
P are reversed. On the one hand, the order on P is the usual inclusion (as for every simplicial
complex). On the other hand, we recall the order on the face poset of P given in [BM]: every
j-face of P is represented by a (n − 2m − 1 − j)-tuple. So, facets of P are represented by a
singleton and vertices by a (n − 2m − 2)-tuple. Moreover, a face represented by I is contained
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in another face represented by J if and only if I ⊃ J . So, combinatorially speaking, the poset of
P is (P,⊃), which prove the claim. Finally, the poset for the dual P∗ is (P,⊂), and the proof
is completed.

3 Condition (K)

The previous section shows that P is exactly the object we are looking for to generalize the
associated polytope of a LVM manifold to the case of LVMB manifolds. We now study its
properties. Our �rst main goal is to prove the following theorem:

Theorem 5: Let (E , l) be a good system of type (2m+1, n). Then P is a simplicial (n−2m−2)-
sphere.

Remark: The theorem is trivial in the LVM case since the associated complex P is a polytope.

To prove the previous theorem, we have to focus on good systems which verify an additional
condition, called condition (K):

(K) There exists a real a�ne automorphism φ of Cm = R2m such that λj = φ(lj) has
coordinates in Z2m for every j.

For instance, if all coordinates of li are rational, then (E , l) veri�es condition (K). Note that
the imbrication condition is an open condition. As a consequence, it is su�cient to prove the
previous theorem for good systems verifying the condition (K). Indeed, since Qn is dense in Rn,
a good system (E , l) which does not verify the condition (K) can be replaced by a good system
which veri�es the condition, with the same associated complex P.

The main interest of condition (K) stands in the fact that we can associate to our holomorphic
acceptable action an algebraic action (called algebraic acceptable action) of (C∗)2m+1 on Cn (or
an action of (C∗)2m on Pn−1):

Let (E , l) be a fundamental set of type (2m + 1, n) verifying condition (K). We set lj = aj +
ibj , aj , bj ∈ Zm for every j and aj = (a1

j , . . . , a
m
j ). We can de�ne an action of (C∗)2m+1 on Cn

by setting: ∀u ∈ C∗, t, s ∈ (C∗)m , z ∈ Cn, we put

(u, t, s) · z =
(
u t

a1
1

1 . . . t
am
1
m s

b11
1 . . . s

bm
1
m z1, . . . , u t

a1
n

1 . . . t
am

n
m s

b1n
1 . . . s

bm
n
m zn

)
Using the notation X l̃j

2m+1 for the character of (C∗)2m+1 de�ned by l̃j = (1, lj), we can restate
the formula describing the acceptable algebraic action by:

t · z =
(
X l̃1

2m+1(t)z1, . . . , X
l̃n
2m+1(t)zn

)
∀t ∈ (C∗)2m+1, z ∈ Cn

It is clear that the open set S introduced p.4 is invariant by this action. So we can de�ne X as the
topological orbit space of S by the algebraic action. As for the holomorphic acceptable action,
we can de�ne an action of (C∗)2m on V whose quotient is also X. In [CFZ], proposition 2.3, it is
shown that the holomorphic acceptable action of Cm on V can be seen as the restriction of the
algebraic acceptable action to a closed cocompact subgroup H of (C∗)2m. As a consequence, we
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can de�ne an action of K = (C∗)2m/H on N whose quotient can be homeomorphically identi�ed
with X.

The principal consequence of this result is the following:

Proposition 3.1: X is Hausdor� and compact.

Proof: Let p : N → X be the canonical surjection. K is a compact Lie group so p is a closed
map (cf. [Br], p.38). Consequently, X is Hausdor�. Finally, since p is continuous and N is
compact, we can conclude that X is compact.

Another important consequence for the sequel of the article is that the algebraic action on S
(or V) is closed. Moreover, since every complex compact commutative Lie group is a complex
compact torus (i.e. a complex Lie group whose underlying topological space is (S1)n, cf. [L],
Theorem 1.19), we see that K is a complex compact torus.

Using an argument of [BB�], we show that:

Proposition 3.2: t ∈ (C∗)2m is in the stabilizer of [z] if and only if ∀i, j ∈ Iz, we have

X li
2m+1(t) = X

lj
2m+1(t)

Proof: Let us �x some linear order on Z2m. Up to a permutation of the homogeneous coordinates
of Pn−1, we can assume that lj ≤ lj+1 for every j ∈ {1, . . . , n−1} (notice that such a permutation
is an equivariant automorphism of Pn−1). We set j0 = min(Iz) the smallest index of nonzero
coordinates of z. Then, for every t which stabilizes [z], we have

[z] = t · [z] =
[
X
lj
2m+1(t)zj

]
so

[z] =
[
0, . . . , 0, X lj0

2m+1(t)zj0 , . . . , X
ln
2m+1(t)zn

]
Consequently, we have

[z] =
[
0, . . . , 0, zj0 , . . . , X

ln−lj0
2m+1 (t)zj

]
In particular, we have X

lj−lj0
2m+1 (t)zj = zj for every j. If j ∈ Iz, then X

lj−lj0
2m+1 (t) = 1.

Remark: In [BB�], it is shown that [z] is a �xed point for the algebraic acceptable action if and
only if ∀i, j ∈ Iz, we have li = lj .

Consequently, we have:

Proposition 3.3: Every element of V has a �nite stabilizer for the algebraic acceptable action.

Proof: First, we recall that an element [z] of V has at least (2m + 1) nonzero coordinates.
The index set Iz of these coordinates is an acceptable subset and, by de�nition, contains a
fundamental subset P . As a consequence, since (E , l) is supposed to be an acceptable system,
the set (lp)p∈P spans Cm as a real a�ne space. Up to a permutation, we can assume that

P = (1, 2, . . . , 2m + 1). In this case, we have X lj−l2m+1
2m+1 (t) = 1 for every j = 1, . . . , 2m and
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every t in the stabilizer of [z]. We put Lj = lj − l2m+1. Writing tj = rje
2iπθj , we get that

r = (r1, . . . , r2m+1) and θ = (θ1, . . . , θ2m+1) verify the following systems:

M.ln(r) = 0, M.θ ≡ 0 [1]

where M = (mi,j) is the matrix de�ned by mi,j = Lij and ln(r) = (ln(r1), . . . , ln(r2m+1)). The
system is acceptable, so (l1, . . . , l2m+1) spans Cm as a real a�ne space, which means exactly that
the real matrix M is invertible.

Consequently, ln(r) = 0 (i.e |tj | = 1 for all j) and θ ≡ 0 [det(M−1)]. So, rje2iπθj can take only a
�nite number of values. As a conclusion, the stabilizer of [z] is �nite, as claimed.

Remark: An analogous proof shows that the stabilizer of z ∈ S is �nite, too.

4 Connection with toric varieties

In this section, our main task is to recall that X is a toric variety and to compute its fan. When
this fan Σ is simplicial, we can construct a simplicial complex KΣ as follows: we denote Σ(1) the
set of rays of Σ and order its elements by x1, . . . , xn. Then, the complex KΣ is the simplicial
complex on {1, · · · , n} de�ned by:

∀ J ⊂ {1, · · · , n}, ( J ∈ KΣ ⇔ pos(xj , j ∈ J) ∈ Σ )

This complex KΣ is the underlying complex of Σ. We recall a theorem which will be very
important in the sequel:

Proposition 4.1: Let X be a normal separated toric variety and Σ its fan. We suppose that Σ
is simplicial. Then, the three following assertions are equivalent:

1. X is compact.

2. Σ is complete in Rn.

3. The simplicial complex underlying Σ is a (n− 1)-sphere.

Convention.− In the sequel, we will assume that a toric variety is separated and normal.

4.1 Toric varieties

To begin with, it is clear that S and V are toric varieties. As explained in [CLS], one associates
to a toric variety with lattice of one-parameter subgroups N , a fan Σ in the real vector space
NR = N ⊗ R whose cones are rational with respect to the lattice N2. So, we can compute the
fan associated to S:

Proposition 4.2: Let (ei)ni=1 be the canonical basis for Rn. Then, the fan describing S in Rn
is

Σ(S) = { pos(ei, i ∈ I)/ I ∈ P}
2a cone σ is said to be rational for N if there a family S of elements of N such that σ = pos(S). Moreover, if

S is free in NR, we say that σ is simplicial

12



Proof: To compute the fan of a toric variety, one has to calculate limits for its one-parameter
subgroups. The embedding of (C∗)n in S is the inclusion and the one-parameter subgroups of
(C∗)n have the form λm(t) = (tm1 , . . . , tmn) with m = (m1, . . . ,mn) ∈ Zn.
So, the limit of λm(t) when t tends to 0 exists in Cn if and only if mi ≥ 0 for every i. In this
case, the limit is ε = (ε1, . . . , εn) with εj = δmj ,0 (Kronecker's symbol).
Of course, the limit has to be in S, which implies for Iε to be acceptable. But Iε = {j/mj = 0}
so the condition means exactly that {j/mj > 0} belongs to P.

Example 6: For the fundamental set

E = {{1, 2, 5}, {1, 4, 5}, {2, 3, 5}, {3, 4, 5}}

of example example 1, we have

S = {z/(z1, z3) 6= 0, (z2, z4) 6= 0, z5 6= 0}

As a consequence, the fan Σ(S) is the fan in R5 whose facets are the 2-dimensional cones
pos(e1, e2), pos(e1, e4), pos(e2, e3) and pos(e3, e4) (where e1, . . . , e5 is the canonical basis of C5).

Remark: We can also easily compute orbits of S for the action of (C∗)n. For I ⊂ {1, . . . , n}, we
set OI = {z ∈ Cn/Iz = Ic}. Then if z ∈ S, its orbit is OIc

z
.

So, we obtain the partition: S =
⊔
I∈P

OI

Moreover, in the orbit-cone correspondence between S and Σ(S) (cf. [CLS] ch.3), OI corresponds
to σI = pos(ej/j ∈ I).

Remark: In quite the same way, we can show that the fan of V is Σ(V) = {pos(ei, i ∈ I)/I ∈ P}
in Rn−1, with (e1, . . . , en−1) de�ned as the canonical basis of Rn−1 and en = −(e1 + · · ·+ en−1).

In [CFZ], it is proven that the quotient X of the acceptable algebraic action of (C∗)2m+1 on S
is a compact toric variety. In the next section, we will detail the construction with in order to
identify its group of one-parameter subgroups and the structure of its fan.

Example 7: For the good system (E , l) with

E = {{1, 2, 5}, {1, 4, 5}, {2, 3, 5}{3, 4, 5}}

and l1 = l3 = 1, l2 = l4 = i and l5 = 0, the algebraic action is

(α, t, s) · z = (αtz1, αsz2, αtz3, αsz4, αz5)

Using the automorphism of (C∗)3 de�ned by φ(α, t, s) = (α, αt, αs), we can see that the quotient
X of the algebraic action is also the quotient of S by the action de�ned by

(α, t, s) · z = (tz1, sz2, tz3, sz4, αz5)

so X is the product P1 × P1.
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To conclude this section, let f : (C∗)2m+1 −→ (C∗)n be the map de�ned by

f(u, t, s) = (X l̃1
2m+1(u, t, s), · · · , X l̃n

2m+1(u, t, s))

The algebraic acceptable action on Cn is just the restriction to Im(f) of the natural action of
the torus (C∗)n on Cn.

Proposition 4.3: Ker(f) is �nite.

Proof: Let z be the point (1, . . . , 1). Then, Iz = {1, . . . , n} and z ∈ S. The stabilizer of z for the
action of (C∗)2m+1 is exactly Ker(f) then the remark following the proposition proposition 3.3
implies that Ker(f) is �nite.

Remark: Generally, f is not injective. For instance, if we consider E = {{1, 2, 4}, {2, 3, 4}} and
l1 = 1, l2 = i, l3 = p, l4 = −1 − i, where p is a nonzero positive integer. (E , l) is a good system
and for p = 4, f is not injective. Note that for p = 3, f is injective.

De�nition: We de�ne TN as the quotient group (C∗)n /Im(f)

We recall that (C∗)n is included in S as a Zariski open subset. (C∗)n is invariant by the action
of (C∗)2m+1. This implies that TN can be embedded in X as an dense open subset. Moreover,
the action of (C∗)n on S commutes with the action of (C∗)2m+1, so the action of TN on itself
can be extended to an action on X.

4.2 The algebraic torus TN

We denote F : C2m+1 → Cn the linear map de�ned by

F (U, T, S) = (U+ < aj , T > + < bj , S >)j

The matrix of F has (1, lj) as j-th row so F has maximal rank. So, F is injective. The
family fj = F (ej), with (e1, . . . , e2m+1) the canonical basis of C2m+1 is a basis for Im(F ). We
notice that each fj has integer coordinates. We complete this basis to a basis (f1, . . . , fn) of
Cn with integer coordinates. Next, we de�ne the map G : Cn → Cn−2m−1 by linearity and

G(fj) =
{

0 j ∈ {1, . . . , 2m+ 1}
gj otherwise

(with (g2m+2, . . . , gn) the canonical basis of Cn−2m−1).

It is clear by construction that the following sequence is exact:

0 // C2m+1 F // Cn G // Cn−2m−1 // 0

Moreover, we have

F (Z2m+1) ⊂ Zn, G(Zn) ⊂ Zn−2m−1

Let t ∈ (C∗)2m+1 and T be some element of C2m+1 such that t = exp (T ). We put g (t) =
exp (G (T )). The previous remark has for consequence that g is well de�ned. Moreover, we have:
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Proposition 4.4: g is a group homomorphism and the following diagram is commutative:

(C∗)2m+1 f // (C∗)n
g // (C∗)n−2m−1

C2m+1

exp

OOOO

� � F // Cn

exp

OOOO

G // // Cn−2m−1

exp

OOOO

Finally, we obtain:

Proposition 4.5: g is surjective and Ker(g) = Im(f).

Proof: The surjectivity of g is clear (since G and exp are surjective).
So, we have only to show that Ker(g) = Im(f). By the construction of F and G and by
commutativity of the previous diagram, we have for every t = exp(T ), g ◦ f(t) = g ◦ f ◦ exp(t) =
exp ◦ G ◦ F (T ) = exp(0) = 1 so Im(f) ⊂ Ker(g). Conversely, let t belong to Ker(g). We put
t = exp(T ), for some T ∈ Cn and we have 1 = g(t) so exp(G(T )) = 1. As a consequence,
G(T ) ∈ 2iπZn−2m−1, i.e.

G(T ) = (2iπq2m+2, . . . , 2iπqn)

and

G(T ) = 2iπq2m+2g2m+2 + . . . 2iπqngn = G(2iπq2m+2f2m+2 + . . . 2iπqnfn)

So T − (2iπq2m+2f2m+2 + . . . 2iπqnfn) ∈ Ker(G) = Im(F ). We have that

T = λ1f1 + . . . λ2m+1f2m+1 + 2iπq2m+2f2m+2 + . . . 2iπqnfn

Finally, T = F (λ1e1 + . . . λ2m+1e2m+1) + 2iπ(q2m+2f2m+2 + . . . qnfn), which implies that

t = exp(F (λ1e1 + . . . λ2m+1e2m+1))

which means that

t = f(exp(λ1e1 + . . . λ2m+1e2m+1)) ∈ Im(f)

In particular, TN = (C∗)n/Im(f) is isomorphic to (C∗)n−2m−1 (and, as claimed in the previous
section, X is a toric variety). We denote g for the isomorphism between TN and (C∗)n−2m−1

induced by g.

De�nition: We denote λuT the one-parameter subgroup of TN de�ned by λuT = g−1 ◦ λun−2m−1.
Since g is an isomorphism, every one-parameter subgroup of TN has this form.

Notation: Let φ : T1 → T2 be a group homomorphism between two algebraic tori T1 and T2.
We will denote φ∗ the morphism between the groups of one-parameter subgroups of T1 and T2

induced by φ: φ∗(λ) = φ ◦ λ.

The group of one-parameter subgroups of (C∗)n is {λun/u ∈ Zn} which we will identify with Zn
via u ↔ λun. Via this map, the map F and G are exactly the morphisms induced by f and g
(respectively):

Proposition 4.6: With the above identi�cation, we have F = f∗ and G = g∗. Precisely:
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1. For every v in Z2m+1, f ◦ λv2m+1 is the one-parameter subgroup λF (v)
n of (C∗)n.

2. For every v in Zn, g ◦ λvn is the one-parameter subgroup λG(v)
n−2m−1 of (C∗)n−2m−1.

Proof: Let us take some t ∈ C∗.
1) We have λv2m+1(t) = (tv1 , ..., tv2m+1) so

f ◦ λv2m+1(t) = (tv1+v2a
1
j+···+vm+1a

m
j +···+v2m+1a

m
j )j = (t<v,l̃j>)j = λF (v)

n (t)

2) Let us pick some T ∈ Cn such that t = exp(T ). We put w = G(v) = (w1, ..., wn−2m−1). If we
denote gj (resp. Gj) for the coordinate functions of g (resp. G) in the canonical bases, we can
easily verify that gj ◦ exp = exp ◦Gj and that wj = Gj(v) for every j.

Next, we have λvn(t) = (eTv1 , . . . , eTvn), so

g ◦ λvn(t) = (eG1(Tv), . . . , eGn−2m−1(Tv))

and g ◦ λvn(t) = λwn−2m−1(t).

We would like to identify the group N of one-parameter subgroups of TN with some lattice
in Cn/Im(F ). A natural candidate is described as follows: Let Π be the canonical surjection
Cn → Cn/Im(F ) and G : Cn/Im(F ) → Cn−2m−1 be the linear isomorphism induced by G.
Notice that G is also a Z-module isomorphism between Zn−2m−1 and Π(Zn). If u belongs to Zn,
we set λΠ(u)

T for the one-parameter subgroup λG(u)
T (notice that this de�nition makes sense since

Im(F ) = Ker(G)). As a consequence, we have: N = {λΠ(u)
T /u ∈ Zn} which can be identi�ed

with Π(Zn) = Zn/Im(F ).

Now, we can de�ne an "exponential" map between Cn/Im(F ) and TN : we de�ne exp : Cn/Im(F )→
TN by setting exp(Π(z)) = π◦(exp(z)) for every element z in Cn. The fact that Ker(g) = Im(f)
implies that this map is well de�ned.(Alternatively, we can de�ne this exponential as the map
g−1 ◦ exp ◦G). By construction, we have π ◦ exp = exp ◦Π and exp ◦G = g ◦ exp. Moreover, for
every v ∈ Zn, π ◦ λvn = λ

Π(v)
T , that is, that Π = π∗.

To sum up, we have the following commutative diagram:

0 // C2m+1 � � F //

F

%%LLLLLLLLLL

exp

����

Cn
F̃

zzzz
G // //

Π

&& &&NNNNNNNNNNN

exp

����

Cn−2m−1 //

exp

����

T4

G̃

xx
0

Im(F )
, �

i

::uuuuuuuuu

����

Cn/Im(F )
G

66nnnnnnnnnnnn

exp

����

(C∗)2m+1
f

f

%% %%KKKKKKKKKK
// (C∗)n

π

&& &&MMMMMMMMMMM
g // // (C∗)n−2m−1 // 1

Im(f)
, �

i

::vvvvvvvvv
TN

g

77nnnnnnnnnnnnn

(C∗)n/Im(f)
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4.3 Study of the projection π

In this last section, we are in position to prove the �rst part of theorem theorem 1. Let Σ denote
the fan in NR = N ⊗ R associated to X (this fan exists since X is separated and normal). In
order to use proposition proposition 4.1, we have to prove that Σ is simplicial. According to
[CLS], we just have to prove that X is an orbifold.

As shown previously, the holomorphic acceptable action on S is free and the algebraic action on
S has only �nite stabilizers. Consequently, every stabilizer for the action of K on N is �nite. So,
X is the quotient of the compact variety N by the action of a compact Lie group K and every
stabilizer for this action is �nite.

Finally, we can claim that the map

φn : K −→ N
h 7→ h · n

is proper for every element n in N since it is a continuous map de�ned on a compact set. By
Holmann's theorem (cf. [O], �5.1), we get that X is indeed an orbifold. Taking advantage of
proposition proposition 4.1, we have proved that KΣ, the underlying complex of the fan Σ, is a
(n− 2m− 2)-sphere.

Now, the following proposition will complete the proof of the theorem theorem 1:

Theorem 6: KΣ and P are isomorphic simplicial complexes.

Proof: First of all, π is by construction a toric morphism. According to [CLS], this implies that
π is equivariant (for the toric actions of (C∗)n and TN ), so π sends an orbit OI in S to an orbit
in X. We set ÕI to be the unique orbit in X containing π(OI). Moreover, the map π∗ (identi�ed
with Π) from Rn into NR preserves the cones.

We can easily show that S and X have exactly the same number of orbits, i.e that the quotient of
X by its torus TN is in bijection with the quotient of S by its torus (C∗)n. Since π is surjective,
we get that the assignment OI → ÕI (induced by π) is bijective. As a consequence, Π induces a
bijection between the cones of Σ(S) and those of Σ

If σ is a cone belonging to Σ(S), we denote O(σ) the orbit in S associated to σ (cf [CLS], ch.3).
Particularly, O(σI) = OI . We will also denote in the same way the orbits in X. Moreover, the

image of the cone σ by Π will be denoted σ̃. So, we have Õ(σ) = O(σ̃).
Still from [CLS], π preserves the partial order of faces: if τ is a face of σ in Σ(S), then τ̃ is a
face of σ̃.

On the other hand, a slight modi�cation of the proof of the fact that (C∗)n/Im(f) (i.e. π (O∅))
is isomorphic to (C∗)n−2m−1 shows that π(O(σ)) is isomorphic to (C∗)n−2m−1−dim(σ). At the
level of cones, this means that cones of Σ(S) with the same dimension are sent to cones of Σ
with the same dimension. In particular, Π sends rays to rays. This last property means that Π
induces a bijection between vertices of P and vertices of KΣ, bijection which we also denote Π.
It is clear by what precedes that this very last map is an isomorphism of simplicial complexes.

As a consequence, P is indeed a simplicial sphere. More precisely, what we have is a particular
type of simplicial spheres, namely spheres which are the underlying simplicial complex of some
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complete fan:

De�nition: Let K be a d-sphere. K is said to be rationally starshaped if there exists a lattice
N in Rd+1, a point p0 ∈ N and a realization3 |K| for K in Rd+1 such that every vertex of
|K| belongs to N and every ray emanating from p0 intersects |K| in exactly one point. The
realization |K| is said to be starshaped and we say that p0 belongs to the kernel of |K|.

Corollary 3: Let (E , l) be a good system verifying (K). Then its associated complex P is a
rationally starshaped sphere.

Proof: We have already seen that P is a simplicial sphere combinatorially equivalent to KΣ. If
we put Σ(1) = {ρ1, . . . , ρv} for the distinct rays of Σ and u1, . . . , uv for generators of ρ1, . . . , ρv
(respectively) in N , then the geometric simplicial complex C whose simplexes are Conv(ui, i ∈ I)
for I in P is obviously a realization of P in Rn−2m−1 with rational vertices. The point 0 is in
the kernel of C so P is rationally starshaped.

5 Inverse construction

5.1 The construction

In this section, we give a realization theorem: for every rationally starshaped sphere, there exists
a good system whose associated sphere is the given one. In [M], p.86, the same kind of theorem
is proven for simple polytopes and LVM manifolds. One of the main interests of this theorem
is that it gives us a clue to answer an open question: does there exist a LVMB manifold which
has not the same topology as a LVM manifold? The idea is to use this theorem to construct
a LVMB manifold from a rationally starshaped sphere P which is not polytopal and that this
manifold has a particular topology. For example, we expect that the LVMB manifold coming
from the Brückner sphere or the Barnette one (the two 3-spheres with 8 vertices which are not
polytopal) are good candidates.

Let P be a rationally starshaped d-sphere with v vertices (up to an isomorphism of simplicial
complexes, we will assume that these vertices are 1, 2, . . . , v). So, there exists a lattice N and a
realization |P| of P in Rd+1 all of whose vertices belong to N . We can assume that 0 is in the
kernel of |P| and that N is Zd+1. We denote x1, . . . , xd+1 the vertices of |P| corresponding to
the vertices 1, 2, . . . , v of P and p1, . . . , pv the generators of the rays of Zd+1 passing through x1

(i.e. pj is the unique generator of the semi-group Zd+1 ∩ [0, xj) ).
To begin, we suppose that v is even and we put v = 2m. We denote E the set de�ned by

{ P ⊂ {1, ..., v + d+ 1}/ P c is a facet of P }

and E0 = {{0} ∪ P/P ∈ E}. We also denote A the matrix whose columns are p1, . . . , pv. We
label its rows p1, . . . , pd+1, and �nally, we have:

Theorem 7: If e1, . . . , ev is the canonical basis of Rv, then

(E0, (0, e1, . . . , ev,−p1, . . . ,−pd+1))

is a good system of type (v + 1, d+ v + 2) whose associated complex is P.
3The fact that a d-sphere has a realization in Rd+1 is an open question (cf. [MW], �5).
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Proof: First, since P is a d-sphere, it is a pure complex whose facets have d + 1 elements.
As a consequence, every subset in E0 has v + 1 elements. So, E0 is a fundamental set of type
(v + 1, v + d + 2) (as usual, we will denote the set of its acceptable subsets A0). Notice that,
since every facet of P has vertices in {1, . . . , v}, E0 has d+ 2 indispensable elements. Moreover,
by de�nition, the associated complex to E0 is clearly P. Since P is a sphere, hence a pseudo-
manifold, proposition proposition 2.4 implies that E0 is minimal for the SEU property. We can
also notice that the same is true for E (with set of acceptable subsets A).

Secondly, we have to check that the vectors

0, e1, e2, . . . , ev,−p1, . . . ,−pd+1

"�t" with E0 to make a good system. We put ρj = pos(pj) for the ray generated by pj , j =
1, . . . , v. We also denote Σ(P) the fan de�ned by

Σ(P) = { pos(pj , j ∈ I) / I ∈ P }

Then, by de�nition, Σ(P) is a simplicial fan whose underlying complex is P. As a consequence,
Σ(P) is rational with respect to N and complete (since P is a sphere, cf. proposition proposi-
tion 4.1). We set X for the compact toric variety associated to Σ(P). Following [Ha], we will
construct X as a quotient of a quasi-a�ne toric variety by the action of an algebraic torus.

In what follows, (ej)j=1,...,N is the canonical basis of CN (for any N). Let Σ̃ be the fan in
Rv+d+1 whose cones are pos(ej , j ∈ J), J ∈ P. Obviously, Σ̃ is a non complete simplicial fan
whose underlying complex is P, too. We denote X̃ the (quasi-a�ne) toric variety associated
to this fan. Then, the open set S = {z ∈ Cv+d+1/Iz ∈ A} is exactly the set X̃. Indeed, the
computation of the proof of proposition proposition 4.2 shows that the fan of S is the fan in
Rv+d+1 whose rays are generated by the canonical basis and whose underlying complex is P.
Thus, S and X̃ have exactly the same fan, so they coincide. We also observe that

S0 = C∗ × S =
{

(z0, z) ∈ Cv+d+2
/
I(z0,z) ∈ A0

}
has the same fan, but seen in Rv+d+2.

Finally, we de�ne the map f : (C∗)v → (C∗)v+d+1 by

f(t) = (t,X−p
1

v (t), . . . , X−p
d+1

v (t))

Note that t = (Xe1
v (t), . . . , Xev

v (t)). According to [Ha], X is the quotient of X̃ = S by the
restriction of the toric action of (C∗)v+d+1 restricted to Im(f). It is a geometric quotient
because Σ̃ is simplicial.

Considering l0=0,l1=e1,. . . , l2m=e2m,lv+1=−p1,. . . ,lv+d+1=−pd+1 as elements of Cm, we can
de�ne a holomorphic action of (C∗)× Cm on S0 by setting

(α, T ) · (z0, z) = (αe<lj ,T>zj)v+d+1
j=0 ∀α ∈ C∗, t ∈ Cm, (z0, z) ∈ S0

It is clear that (E0, l) veri�es (K). Moreover, the algebraic acceptable action associated to this
system has X for quotient. Indeed, a computation shows that this algebraic action is de�ned by
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(α, t) · (z0, z) = (αz0, f(t) · z) ∀α ∈ C∗, t ∈ (C∗)2m, (z0, z) ∈ S0

If we denote V0 = { [z0, z] / (z0, z) ∈ S0 } the "projectivization" of S0, then the orbit space for
the algebraic action is the quotient of V0 by the action de�ned by

t · [z0, z] = [z0, f(t) · z] ∀T ∈ (C∗)2m, [z0, z] ∈ V0

But V0 = { [1, z] / z ∈ S } is homeomorphic to S so the claim that X is the orbit space of the
action of (C∗)2m+1 on S0 is proved.

The only thing we have to check is that (E0, l) is a good system, that is the orbit space N for
the holomorphic action is a complex manifold. We have seen that X is a geometric quotient so
the action of (C∗)2m is proper (see, for example, [BBCM], p.28). As a consequence, the action
of Cm is proper too, and since there are no compact subgroups in Cm (except {0} of course),
this action is free. Finally, the action is proper and free so N can be endowed with a structure
of complex compact manifold.

Remark: 1) Since N is a complex compact manifold, the imbrication condition is ful�lled (cf.
Theorem theorem 3). This gives another proof for the fact that the SEU property is also ful�lled.
2) The transformation of

(p1, . . . , pv, e1, . . . , ed+1)
to

(e1, . . . , ev,−p1, . . . ,−pd+1)

is called a linear transform of (x1, . . . , xv, e1, . . . , ed+1) (see [E] for example). In [M], the construc-
tion of a LVM manifold starting from a simple polytope used a special kind of linear transform
called Gale (or a�ne) transform (see. [E])

Now, we suppose that v = 2m + 1 is odd. The construction of good system whose associated
complex is P is very similar. However, we have an additional step: we de�ne an action of (C∗)v+1

on S0 by

(t0, t) · (z0, z) = (t0z0, f(t) · z) = (t0z0, X
e1(t)z1, . . . , X

−xd+1
(t)zv+d+1)

where f and the action of Im(f) are de�ned as above, and e0 is the �rst vector of the canonical
basis of Cv+1 with coordinates (z0, z1, . . . , zv). The orbit space for this last action is still X. The
rest is as above: we de�ne a fundamental set E∗ = { {−1} ∪ E / E ∈ E0 } and we have:

Theorem 8: If e0, . . . , ev is the canonical basis of Rv+1, then(
E∗,

(
0, e0, e1, . . . , ev, (0,−p1), . . . , (0,−pd+1)

) )
is a good system of type (v + 2, d+ v + 3) whose associated complex is P.

5.2 LVMB manifolds and moment-angle complexes

In this section, we follow closely the de�nitions and notations of [BP]. We use the result of the
above section to show that many moment-angle complexes with even dimension can be endowed
with a complex structure of a LVMB manifold.
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De�nition: Let K be a simplicial complex on {1, . . . , n} with dimension d−1. If σ ⊂ {1, . . . , n},
we put

Cσ = { t ∈ [0, 1]n / tj = 1 ∀j /∈ σ }

and

Bσ = { z ∈ Dn / |zj | = 1 ∀j /∈ σ }

The moment-angle complex associated to K is

ZK,n =
⋃
σ∈K

Bσ

Example 8: For instance, if K is the boundary of the n-simplex, Z̃K is the sphere S2n−1 (cf.
[BP]).

In [BP], Lemma 6.13, it is shown that if K is a simplicial sphere, then ZK,n is a closed manifold.
Moreover, let (E , l) be a good system with associated complex P. In [Bo], to prove Theorem

theorem 3 (p.1268 in [Bo]), Bosio introduces the set M̂ ′1 de�ned by

M̂ ′1 = { z ∈ Dn/ Jz ∈ A }

where Jz = { k ∈ {1, . . . , n}/ |zj | = 1 }. This set is the quotient of S by the restriction of the

holomorphic action to R∗+ ×Cm and as a consequence, N is the quotient of M̂ ′1 by the diagonal
action of S1 de�ned by:

eiθ · z = ( eiθz1, . . . , e
iθzn ) ∀θ ∈ R, z = (z1, . . . , zn) ∈ M̂ ′1 ⊂ Cn

Proposition 5.1: We have M̂ ′1 = ZP,n
Proof: Indeed, we have:

M̂ ′1 = { z ∈ Dn / Jz ∈ A }
=

⋃
τ∈A
{ z ∈ Dn /τ ⊂ Jz }

=
⋃
σ∈P
{ z ∈ Dn / ∀j /∈ σ, |zj | = 1 }

= ZP,n

Proposition 5.2: Let (E , l) be a good system with type (2m+ 1, n, k) and N the LVMB asso-
ciated to this system. If k > 0, then N is homeomorphic to a moment-angle complex.

Proof: We assume that n is indispensable. Let P be the sphere associated to E and S the
open subset of Cn whose quotient by the holomorphic action is N . According to proposition
proposition 5.1, the quotient M̂ ′1 = S/(R∗+ × Cm) can be identi�ed with ZP,n.

Let φ be the map de�ned by

φ : ZP,n → Cn−1

z 7→
(
z1
zn
, . . . , zn−1

zn

)
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Since n is indispensable, we have |zn| = 1 for every ZP,n so φ is well de�ned. Moreover, φ
is continuous and a simple calculation shows that φ is invariant for the diagonal action and
φ(ZP,n) = ZP,n−1. We claim that if φ(z) = φ(w), then z and w belong to the same orbit for the
diagonal action. Indeed, if φ(z) = φ(w), we have(

z1

zn
, . . . ,

zn−1

zn

)
=
(
w1

wn
, . . . ,

wn−1

wn

)
We have |zn| = |wn| = 1, so we put zn

wn
= eiα and we have z = eiαw.

As a consequence, φ induces a map φ : N → ZP,n−1 which is continuous and bijective. Actually,
this is an homeomorphism since the inverse map φ−1 is the continuous map

φ−1 : ZP,n−1 → N
z 7→ [(z, 1)]

where [(z, 1)] denotes the equivalence class of (z, 1) ∈ ZP,n of the diagonal action.

Corollary 4: Let P be a rationally starshaped sphere. Then there exists N ∈ N∗ such that
ZP,N can be endowed with a complex structure as LVMB manifold.

Proof: Since P is a rationally starshaped sphere, there exists a good system (E , l) with type
(2m + 1, n, k) whose associated complex is P (cf. the previous subsection). Moreover, our
construction of (E , l) implies that k > 0. So, by proposition proposition 5.2, N is homeomorphic
to ZP,n−1. So, we put N = n − 1 and we endow ZP,N with the complex structure induced by
this homeomorphism.

Remark: Let N0 be the smallest integer N as in corollary corollary 4. Then, for every q ∈ N,
ZP,N0+2q can also be endowed with a complex structure and then we have ZP,N0+2q = ZP,N0 ×
(S1)2q. Indeed, let Λ be the matrix whose columns are the vectors of the good system (E , l)
constructed in the proof of corollary corollary 4. We put Ẽ = { P ∪ {N0 + 1, N0 + 2}/ P ∈ E}
and we de�ne λ1, . . . , λn+2 as the columns of the matrix Λ 0 0

−1 · · · − 1 1 0
−1 · · · − 1 −1 1


Then it is easy to show that (Ẽ , (λ1, . . . , λn+2)) is a good system and

ZP,N0+2 = ZP,N0 × (S1)2
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