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Introduction

1. Spaces with finite number of open sets studied by Alexandroff;
2. Fundamental papers of McChord and Stong in 1966;
3. Almost nothing in the 20th century;
4. Dozens of articles since 2000.
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Topological spaces

Let X be a non empty set. A topology on X is a collection O of subsets
of X such that

• ∅ and X belong to O;
• if (Oj)j is a collection of elements of O, then ∪jOj is also an
element of O;

• if (Oj)j is a finite collection of elements of O, then ∩jOj is also an
element of O.

Elements of a topology O are called open sets, their complements are
called closed sets. (X ,O) is called topological space (or just space).
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Examples

Let X be a set, then O = {∅,X} is a topology on X called coarse
topology or undiscrete topology on X .

Let X be a set, then O = P(X ) (the set of all subsets of X ) is a
topology on X called discrete topology on X .

X = {0, 1}, with O = {{0}, {0, 1}} is a topological space called Serpinski
space.
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Remark on finite spaces

Let X be a finite topological space. Then every union of closed sets is
closed (since it is a finite union!). So the closed sets for a topology O
also define a topology on X called opposite topology.
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Minimal basis of a finite space

Let X be a finite topological space. Then every intersection of open sets
is also open.

Let x be an element of X . We denote Ux the intersection of all open sets
of O containing x . And B = { Ux/x ∈ X }

Theorem
Ux is the smallest open set of O containing x . Moreover, B is a minimal
basis of O. Here, minimal means that if C is another basis of O, then B
in contained in C.
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Examples

Let X be a finite topological space. Then:

• If X is endowed with the discrete topology, then Ux = {x} for every
x ∈ X .

• Conversely, if X is endowed with the coarse topology, then Ux = X
for every x ∈ X .

Let X = {0, 1} be the Serpinski space. Then U0 = {0} and U1 = {0, 1}
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Characterization of minimal basis

Theorem
Let X be a non empty finite set and B a family of subsets of X . Then B
is a minimal basis for some topology on X if and only if the three
following properties are satisfied:

• The elements of B cover X ;
• For every A and B in B, A ∩ B is an union of elements of B;
• If (Aj)j∈J is a family of elements of B such that

⋃
j∈J

Aj is also in B,

then there j0 ∈ J such that Aj0 =
⋃
j∈J

Aj .
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Preorder of a finite space

Let (X ,O) be a finite topological space and B = { Ux / x ∈ X } its
minimal basis. We can define a relation ≤ on X by

x ≤ y ⇔ Ux ⊂ Uy

Alternatively, x ≤ y if and only if x ∈ Uy .

The relation ≤ is a preorder, i.e. it is reflexive and transitive.
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Examples

Let X be a finite topological space. Then:

• If X is endowed with the discrete topology, then an element of X is
only comparable to itself. So ≤ is the equality.

• Conversely, if X is endowed with the coarse topology, then every
element is related to every element of X .

Let X = {0, 1} be the Serpinski space. Then we have 0 < 1.
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Axioms of separation

Let X be a (non necesarly finite) topological space. Then we say that:
• X is T0 if for every pair (a, b) of distinct points of X , there exists an
open set O which contains a but not b, or there exists an open set
O which contains b but not a.

• X is T1 if for every pair (a, b) of distinct points of X , there exists an
open set O which contains a but not b, and there exists an open set
O which contains b but not a.

• X is T2 (or Haussdorff) if for every pair (a, b) of distinct points of
X , there exists an open set O and an open set U such that O
contains a, U contains b and O and U are disjoint.

T2 implies T1 and T1 implies T0.
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Axioms of separation

Let X be a (non necesarly finite) topological space. Then we say that:
• X is T0 if for every pair (a, b) of distinct points of X , there exists an
open set O which contains a but not b, or there exists an open set
O which contains b but not a.

• X is T1 if for every pair (a, b) of distinct points of X , there exists an
open set O which contains a but not b, and there exists an open set
O which contains b but not a.

• X is T2 (or Haussdorff) if for every pair (a, b) of distinct points of
X , there exists an open set O and an open set U such that O
contains a, U contains b and O and U are disjoint.

T2 implies T1 and T1 implies T0.
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Examples

Examples:

A coarse space is not T0.

A discrete space is T2.

The Serpinski space is T0 but not T1.
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Two important theorems (1)

Let (X ,O) be a finite topological space. Then the following properties
are equivalent:

• the topology O is T1;
• the topology O is Haussdorff;
• O is the discrete topology;
• O is metrizable.
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Two important theorems (2)

Let (X ,O) be a finite topological space. Then the following properties
are equivalent:

• the topology O is T0;
• the application x 7→ Ux is injective;
• the preorder ≤ is an order.
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Connectedness of finite spaces

Theorem:
Let X be a finite topological space. Then Ux is arcwise connected for
every x in X .

Corollary:
A finite topological space is locally arcwise connected.

Corollary:
A finite topological space is connected if and only if it is arcwise
connected.
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Total order

Proposition:
Let X be a finite topological space and ≤ its associated preorder. If ≤ is
a total order, then X is arcwise connected.

Remark: The converse statement is false, even if one assumes ≤ to be
an order. For, consider X = {a, b, c} with minimal basis Ua = {a},
Ub = {b} and Uc = {a, b, c}. Then, X is arcwise connected but ≤ is not
a total order.
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Let X = {1, . . . , n} be a set with n element. The generalized Serpinski
topology on X is the topology whose minimal basis consists of
Uk = {1, . . . , k}, for every k ∈ X . Notice that the preorder of the
generalized Serpinski topology is the natural order on X .

Proposition:
Let (X ,O) be a finite topological space. Then, if the associated preorder
≤ is a total order, then (X ,O) is homeomorphic to a generalized
Serpinski space.
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Continuity

Let (X ,OX ) and (Y ,OY ) be two finite topological spaces and
f : X → Y be an application. Then f is continuous if and only if f is
order-preserving.

∀x , y ∈ X , x ≤X y ⇒ f (x) ≤Y f (y)
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Homeomorphisms

Let (X ,O) be a finite topological space and f a continuous map from X
to itself. Then, f is an homeomorphism if and only if f is injective or
surjective.

Let (X ,O) be a finite topological space and f a bijective map from X to
itself. Then, f is an homeomorphism if and only if f is continuous.
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Theorem of Kuratowski

Let X be a (non necesarly finite) topological space and A a subset of X .
Applying the two operators b (closure) and o (interior), how many
different sets can we obtain?

Kuratowski theorem
We can obtain at most 7 different sets. Moreover, there exists a
topological space X and a subset A of X such that, applying a and o to
A, we can obtain exactly 7 different sets.
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Finite version of Kuratowski theorem

Definition: Let X be a topological space and A a subset of X . The
Kuratowski number of A is the number of different sets one can obtain
applying b and o to A.

Question 1: Does there exist a finite topological space X such that there
exists a subset A of X whose Kuratowski number is 7?

Question 2: What is the minimal cardinal for such a space X?
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Let X be the space X = {a1, a2, b1, b2, c1, c2, c3, c4} with topology with
basis

Ua1 = {a1, a2}, Ua2 = {a2},
Ub1 = {b1, b2}, Ub2 = {b1, b2},
Uc1 = {c1}, Uc2 = {c1, c2}, Uc3 = {c1, c2, c3, c4}, Uc4 = {c4},

Finally, we put A = {a1} t {b1} t {c1, c3}.

The Kuratowski number of A is 7.

For the second question, the answer is between 5 and 8.
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Topogeneous matrix of a finite space

Let (X ,O) be a finite topological space with n elements.

We denote x1, x2, . . . , xn the elements of X and Ui the minimal open set
containing xi . Then we define a topogeneous matrix of X to be the
square matrix of order n whose (i , j)th entry is 1 if xj belong to Ui and 0
otherwise.

For example, a topogeneous of a discrete space is the identity matrix and
the topogeneous matrix of a coarse space is the matrix whose entries are
all 1.
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Topogeneous matrix(2)

Theorem:
Let (X ,OX ) and (Y ,OY ) be two finite topological spaces and M and N
be topogeneous matrices associated to X and Y respectively. Then X
and Y are homeomorphic if and only if there exists a permutation matrix
P such that N = P ′MP (where P ′ is the transpose matrix of P).
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Spaces with few points

Up to homeomorphisms:

1. There exists only 1 topological space with one point: the discrete
space;

2. there exists 3 topological spaces with two points: the discrete space,
the coarse space and the Serpinski space;

3. there exists 9 topological spaces with three points.
4. there exists 33 topological spaces with four points.

Problem: find names for those spaces.

Problem: is there a way to simply describe all the finite space?
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Non-Haussdorff cones and suspensions

Let X be a finite topological space. We put X = {x1, . . . , xn} and denote
B = {U1, . . . ,Un} its minimal basis.

Definition
The non-Haussdorff cone over X is the space CX = X t {+} with
minimal basis B′ = {U1, . . . ,Un,U+} where U+ = X t {+}.

Definition
The non-Haussdorff suspension over X is the space §X = X t {−,+}
with minimal basis B′ = {U ′−,U ′1, . . . ,U ′n,U ′+} where U ′− = X t {−},
U ′j = Uj t {j} and U ′+ = X t {+}.
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The "product problem"

Let X and Y be two finite topological spaces. Then X × Y , endowed
with the product topology, is also a finite space (!)

Problem: Given a finite topological space Z , how one can know if Z is
homeomorphic to a non trivial product of topological spaces?
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Case of topological groups

Definition:
A topological group is a topological space G with a group structure such
that the maps g 7→ g−1 and (g , h) 7→ gh are continuous.

Theorem:
A finite topological is a disjoint union of coarse spaces with the same
cardinal. Therefore, a finite topological group is a product of a discrete
space and a coarse space. Moreover, the coarse space containing the
identity is a normal closed subgroup.
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Group of homeomorphisms

Theorem:
Let X be a finite topological space. Then, for the compact-open
topology, the group (H = Homeo(X ), ◦) of homeomorphisms of X is a
topological group. Moreover, the preorder on H is

f ≤H g ⇔ ∀x ∈ X , f (x) ≤ g(x)

Theorem:
If X is T0, then Homeo(X ) is discrete.
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Homotopy

Let X and Y be two topological spaces and f and g two continuous
maps from X to Y . We say that f and g are homotopy equivalent if
there exists a continuous map F from X × [0, 1] to Y such that
f (x , 0) = f (x) and f (x , 1) = g(x) for every x in X .

If (X , x0) and (Y , y0) are ponited spaces and f and g satisfy
f (x0) = g(x0) = y0, then we also require that F (x0, t) = y0 for every t.

Homotopy equivalence of maps is an equivalence relation.
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Homotopy groups of a topological space

Let X be a topological space and a base point x0 in X . A loop is a
continuous map γ from [0, 1] to X such that γ(0) = γ(1) = x0.

π1(X , x0) is the set of the equivalence classes of loops of X at x0 for the
homotopy equivalence relation. One can define multiplication and inverse
of theses classes and π1(X , x0) becomes a group.

Taking maps from (Sn, ∗) to (X , x0), one can also define homotopy
groups πn(X , x0) for every n ≥ 0.

Moreover, every map from (X , x0) to (Y , y0) induces group
homomorphisms f∗ from πi (X , x0) to πi (Y , y0). X and Y are said weak
homotopy equivalent if all these maps are isomorphisms.
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Finite circle

Let X = {a, b, c , d} with minimal basis Ua = {a}, Ub = {b},
Uc = {a, b, c} and Ud = {a, b, d}. Then X is weakly homotopy
equivalent to the circle S1.
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From finite posets to finite T0-spaces

We know that to a finite T0-space, we can associate a finite poset.

Conversely, if (X ,≤) is a finite poset, then we can define a topology on
X whose associated preorder is ≤:

∀x ∈ X ,Ux = { y ∈ X / y ≤ x }

This clearly defines a minimal basis for a topology on X .
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Simplicial complexes

Definition:
A simplicial complex on a finite set V is a collection K of subsets of V
such that:
1. ∅ is element of K ;
2. for every σ in K , we have: τ ⊂ σ ⇒ τ ∈ K .
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Geometric realization of a simplicial complex

Definition
A geometric complex is a finite collection C of simplexes of Rn such that

• If C belongs to C, then every face of C belongs to C;
• If C and C ′ belong to C, then C ∩ C ′ is a facet of C and a facet of

C ′.

The support of C is the union |C| of all its elements. We say that C is a
realization of a simplicial complex K (on a set V ) if there is a bijection φ
from V to the set of vertices of C such that for every σ in K φ(σ) is the
set of vertices of some element of C.
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Order complex of a finite topological space

Let X be a finite T0 topological space and ≤ its associated order. A
chain of X is a sequence (x1, . . . , xp) of elements of X such that
xj < xj+1 for every j .

We define the order complex K(X ) of X as follows:
1. V = X ;
2. ∅ belongs to K(X );
3. {x1, . . . , xp} belongs to K(X ) if and only if up to order (x1, . . . , xp)

is a chain of X .
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Examples

Let X = {a, b, c , d} the space with Ua = {a}, Ub = {a, b},
Uc = {a, b, c} and Ud = {a, b, d} as minimal basis. Then K(X ) is the
complex whose vertices are a, b, c and d and with two triangles {a, b, c}
and {a, b, d}.

But, if consider the minimal basis Ua = {a, b, c , d}, Ub = {b, c , d},
Uc = {c} and Ud = {d}, we obtain the same complex.
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Face poset of a simplicial complex

Let K be a simplicial poset on a set V . Then the face poset of K is the
topological space F(K ) whose poset is (K ,⊂).

Proposition
For every simplicial complex K , K ′ = K(F(K )) is the barycentric
subdivision of K . As a consequence, |K ′| and |K | are homeomorphic.
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Definition
Let X and Y be two topological spaces. A map f from X into Y is said
weak homotopy equivalence if it induces isomorphisms from πi (X ) onto
πi (Y ) for every i ≥ 0.

Theorem
|K(X )| is weak homotopy equivalent to X .

Corollary
For every simplicial complex K , |K | and F(K ) are weakly homotopy
equivalent.
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The weak homotopy equivalence

If X is a finite T0 space, then, for every element σ of K(X ), then
σ = {xj1 , . . . , xjr } where xj1 < · · · < xjr . Then the map f from K(X ) to
X defined by f (σ) = xj1 is a weak homotopy equivalence.
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