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. . . . . .

We consider the nonlinear Klein Gordon equation (NLKG):{
utt −∆u + Vu + u + u3 = 0,

(u(0, x), ut(0, x)) = (u0(x), v0(x)) ∈ H1(R3)× L2(R3),
(1.1)

where

u = u(t, x) : R× R3 → R ; unknown function,

V = V (x) ∈ S(R3,R); given function.

Aim

To show scattering if energy is sufficiently small, by using Birkhoff normal
form method.
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Assumptions:

0 is neither an eigenvalue nor a resonant for −∆+ V .
i.e. there is no u ∈ L2(R3) s.t. ∆u = Vu,
and there is no u ∈ C∞(R3) s.t. ∆u = Vu with |u(x)| ≲ ⟨x⟩−1

σ(−∆+ V ) = {−λ2} ∪ [0,∞), λ ∈ (0, 1), and
σd(−∆+ V ) = {−λ2}.
Furthermore, we also assume that the multiplicity of λ is one,
and let φ be its eigenfunction with ∥φ∥L2 = 1.
(We can show that φ ∈ S.)
Let ω =

√
1− λ. Then, we assume 1

ω ̸∈ Z.
By this assumption, we take N ∈ Z s.t. Nω < 1 < (N + 1)ω.

Furthermore, we assume the condition (5.31), which is introduced by
2nd presenter.
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. . . . . .

Denote K0(t) =
sin(t

√
−∆+1)√

−∆+1
for t > 0.

.
Theorem ([Bambusi-Cuccagna ’11])
..

......

There exists ϵ0 > 0 and C > 0 such that the following holds:
If ∥(u0, v0)∥H1×L2 ≤ ϵ < ϵ0, then the solution to (1.1) is global, and there
exists (u±, v±) with ∥(u±, v±)∥H1×L2 ≤ Cϵ such that

lim
t→±∞

∥u(t)− K ′
0(t)u± − K0(t)v±∥H1 = 0.

Remark If the nonlinear term u3 does NOT exist, then this theorem does
NOT hold.

Proof Assume that the claim holds. Using the eigenfunction φ and
0 < ϵ ≪ 1,

u(t) ≡ ϵ cos(ωt)φ

is a solution to (1.1). However, this does NOT scatter, since

u(t) ̸⇀ 0 in H1.
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Notations, function spaces and norms:

N := {1, 2, · · · }, N0 := N ∪ {0}.
⟨f , g⟩ :=

∫
R3 f (x)g(x)dx .

For k ∈ R, 1 < p < ∞, K = R,C,
W k,p(R3,K ) := {f : R3 → K : ∥f ∥W k,p := ∥(−∆+ 1)k/2f ∥Lp < ∞}.

Hk(R3,K ) = W k,2(R3,K ).

For p = 1,∞ and k ∈ N,
W k,p(R3,K ) := {f : R3 → K : ∂α

x f ∈ Lp(R3,K ) for all |α| ≤ k}.

For s ∈ R,
Hk,s(R3,K ) := {f : R3 → K : ∥f ∥Hk,s := ∥⟨x⟩s(−∆+ 1)k/2f ∥L2 < ∞}.

L2,s := H0,s(R3,K ).

For an operator A, we denote (A− z)−1 by RA(z).
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. . . . . .

Hamiltonian structure

It is known that various kinds of equations in physics have Hamiltonian
structure, and (1.1) is one of these equations.

Consider H1(R3,R)× L2(R3,R) with the standard symplectic form:

Ω((u1, v1); (u2, v2)) := ⟨u1, v2⟩L2 − ⟨u2, v1⟩L2 .

The Hamiltonian:

H = HL + HP ,

HL :=

∫
R3

1

2
(v2 + |∇u|+ Vu2 + u2)dx ,

HP :=

∫
R3

1

4
u4dx .

(HL: linear part, HP : nonlinear part.)
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. . . . . .

. We can rewrite the equation (1.1) into{
u̇ = ∇vH,

v̇ = −∇uH,

where ∇vH ∈ L2(R3) is the L2-gradient w.r.t. v , i.e.

⟨∇vH(u, v), h⟩ = dvH(u, v)h, ∀h ∈ L2(R3),

where dvH(u, v) is the Frechét derivative of H(u, ·) : L2 → R.

And ∇uH ∈ H−1(R3) is the H1-gradient w.r.t. u, i.e.

⟨∇uH(u, v), h⟩ = duH(u, v)h, ∀h ∈ H1(R3),

where duH(u, v) is the Frechét derivative of H(·, v) : H1 → R.

(Note that (H1)∗ ≃ H−1 by the above representation.)

Ikkei Shimizu (Kyoto univ.) Birkhoff normal form 2017 Aug. 22 at Daejeon 7 / 28



. . . . . .

Small energy GWP of NLKG

We recall that NLKG (1.1) is GWP for small initial data:
.
Theorem (Small energy GWP of NLKG)
..

......

(i) There exists ϵ0 > 0 and C > 0 such that the following holds:
If ∥(u0, v0)∥H1×L2 ≤ ϵ < ϵ0, then (1.1) has a unique solution
u ∈ C 0(R,H1) ∩ C 1(R, L2).

(ii) For any bounded interval I ⊂ R, the map

(u0, v0) 7→ (u, v)

is continuous.

(iii) The Hamiltonian H(u(t), v(t)) is conserved.

(iv) ∥(u(t), v(t))∥H1×L2 ≤ C∥(u0, v0)∥H1×L2 for all t ∈ R.
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New variables

For our analysis, we introduce new variables.

Let Pd := ⟨·, φ⟩φ and Pc := 1− Pd (the orthogonal projection in L2.)
Then, we can write

u = qφ+ Pcu, v = pφ+ Pcu,

where q, p ∈ R.

We introduce the operator B in PcL
2:

B := Pc(−∆+ V + 1)1/2Pc

Remark Since −∆+ V + 1 is positive operator, we can consider the
fractional order.

Remark2 Note that σ(B) = [1,∞).
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. . . . . .

We set new variables (ξ, f ) by

ξ :=
qω1/2 + ipω−1/2

√
2

, f :=
B1/2Pcu + iB−1/2Pcv√

2
.

Then, we have the following fact:
.
Fact (Theorem 6.2)
..

......

H1(R3,R)× L2(R3,R) → P1/2,0 := C⊕ PcH
1/2,0(R3,C)

∈ ∈

(u, v) 7→ (ξ, f )

is an isomorphism.

Thus, for these variables, our new phase space is P1/2,0.
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. . . . . .

New representation of Hamiltonian structure 1

By calculation, the Hamiltonian can be written by:
.

......

HL = ω|ξ|2 + ⟨f ,Bf ⟩

HP =
∫
R3

1
4

(
ξ+ξ√
2ω

φ+ U(x)
)4

dx , where U(x) := B−1/2(f + f )/
√
2.

And the symplectic form becomes:
.

......

Ω((ξ(1), f (1)), (ξ(2), f (2)))

= −i(ξ
(1)

ξ(2) − ξ(1)ξ
(2)

)− i
(
⟨f (2), f (1)⟩ − ⟨f (1), f (2)⟩

)
.
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. . . . . .

New representation of Hamiltonian structure 2

The Hamilton equations take the form:
.

......
ξ̇ = −i

∂H

∂ξ
, ḟ = −i∇fH.

We consider the Poisson bracket given by
.

......
{H,K} := i

(
∂H

∂ξ

∂K

∂ξ
− ∂H

∂ξ

∂K

∂ξ

)
+ i⟨∇fH,∇fK ⟩ − i⟨∇fH,∇fK ⟩.

Remark The intention of new variables:

HL = ..ω|ξ|2 + ..⟨f ,Bf ⟩

.. discrete part.
(action)

. continuous part.
(sesqui-linear form of f )
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. . . . . .

Expand HP in the order of U

By pointwise calculation, we have(
ξ + ξ√
2ω

φ+ U(x)

)4

=
3∑

l=0

Fl(x , ξ)U
l + U4

with

Fl(x , ξ) =
4!

l!(4− l)!

(
ξ + ξ√
2ω

φ

)4

, l = 0, 1, 2, 3.

The following lemma concerns with the regularity of Fl .
.
Lemma 3.2
..

......

(i) For any k, s ∈ R and l = 0, 1, 2, 3 , the functions ξ 7→ Fl(·, ξ) are in
C∞(C,Hk,s), and Hl(ξ,U) :=

∫
R3 Fl(x , ξ)U

ldx are in C∞(C× H1,R).
(ii) There exists a constant C s.t. for l = 0, 1, 2, 3,

∥Fl(·, ξ)∥Hk,s ≤ C |ξ|4−l .
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Strategy of Birkhoff normal form 1

First, we introduce the notion of canonical transformation.
.
Definition
..

......

Let U ⊂ P1/2,0 be an open set. The map T : U → P1/2,0 is a canonical
transformation if
(i) T : U → T (U) is C∞-diffeomorphism,
(ii) T conserves the Hamiltonian structure, i.e. let (ξ′, f ′) := T (ξ, f ) be
new variables, then for any smooth function H : P1/2,0 → R,

ξ̇ = −i
∂H

∂ξ
, ḟ = −i∇fH

⇐⇒ ξ̇′ = −i
∂(H ◦ T −1)

∂ξ′
, ḟ ′ = −i∇f ′(H ◦ T −1).
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. . . . . .

Strategy of Birkhoff normal form 2

Now, our Hamiltonian is H = HL + HR .
Given canonical transformation T , let H ′ := H ◦ T . Then,

(ξ(t), f (t)) satisfies ξ̇ = −i ∂H
∂ξ

, ḟ = −i∇fH (i.e. (1.1))

⇐⇒ (ξ′(t), f ′(t)) := T −1(ξ(t), f (t)) satisfies

ξ̇′ = −i ∂(H
′◦T −1)

∂ξ′
, ḟ ′ = −i∇f ′(H

′ ◦ T −1).

Our wish is to find T which makes new Hamiltonian simpler.
The theory of Birkhoff normal form says, we can choose T so that

H ′ = ..HL + Z .+ ..R .

where Z is lower order polynomial of ξ, f , and R is higher order term of
ξ, f .
.
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. . . . . .

Strategy of Birkhoff normal form 2

Now, our Hamiltonian is H = HL + HR .
Given canonical transformation T , let H ′ := H ◦ T . Then,

(ξ(t), f (t)) satisfies ξ̇ = −i ∂H
∂ξ

, ḟ = −i∇fH (i.e. (1.1))

⇐⇒ (ξ′(t), f ′(t)) := T −1(ξ(t), f (t)) satisfies

ξ̇′ = −i ∂(H
′◦T −1)

∂ξ′
, ḟ ′ = −i∇f ′(H

′ ◦ T −1).

Our wish is to find T which makes new Hamiltonian simpler.
The theory of Birkhoff normal form says, we can choose T so that

H ′ =. ..HL + Z +. ..R

where Z is lower order polynomial of ξ, f , and R is higher order term of
ξ, f .
..

negligible term

.

main terms
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. . . . . .

Lie transform

One of the convenient way of constructing canonical transformations is
Lie transform.

Set z = (ξ, f ).
Consider the function χ of the form

χ(z) := χ0(ξ, ξ) +
∑

µ+ν=M0+1

ξµξ
ν
(⟨Φµν , f ⟩+ ⟨Ψµν , f ⟩), (4.1)

where

M0 ∈ N0,

Φµν ,Ψµν ∈ S(R3,C) with Φµν = Ψνµ,

χ0 is a homogeneous polynomial of degree M0 + 2 with

χ0(ξ, ξ) = χ0(ξ, ξ).
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. . . . . .

For k , s ∈ R, let Pk,s := C⊕ PcH
k,s .

.
Proposition 4.3 (Part I)
..

......

For any κ, τ ∈ R, there exists Uκ,τ ⊂ Pκ,τ ; a neighborhood of (0, 0), s.t.
for z = (ξ, f ) ∈ Uκ,τ , there exists a unique solution ϕs(z) = (ξ(s), f (s)) to
the following ODE up to time s = 1:

dξ

ds
= −i

∂χ

∂ξ
,

df

ds
= −i∇f χ

(ξ(0), f (0)) = (ξ, f ),

and ϕs ∈ C 1([0, 1],Pκ,τ ).

Set ϕ(z) := ϕ1(z). ϕ is called the Lie transform generated by χ.

Remark The definition of ϕ is consistent with the choice of κ, τ .
Namely, if z ∈ Pκ,τ ∩ Pκ′,τ ′ , then ϕ(z) constructed in Pκ,τ and in Pκ′,τ ′

coincide with each other.
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. . . . . .

Then, we have the following property.
.
Proposition 4.3 (Part II)
..

......

(i) ϕ is a canonical transformation.
(ii) For any k , κ, s, τ ≥ 0, if z ∈ U−k,−s , then z − ϕ(z) ∈ Pκ,τ . Moreover,
there exists a constant Ck,κ,s,τ > 0 s.t.

∥z − ϕ(z)∥Pκ,τ ≤ Ck,κ,s,τ |ξ|M0(|ξ|+ ∥f ∥H−k,−s )

.
Proposition 4.4
..

......

Let K ∈ C∞(U1/2,0,C) satisfying |K (z)| ≤ C∥z∥M1

P1/2,0 and

∥dK (z)∥P−1/2,0 ≤ C∥z∥M1−1
P1/2,0 with M1 ≥ 2. Then K ◦ ϕ ∈ C∞(U1/2,0,C)

and
|K (ϕ(z))| ≤ C1∥z∥M1

P1/2,0

|K (ϕ(z))− K (z)| ≤ C1∥z∥M0+M1

P1/2,0

for some constant C1 > 0.
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Normal form

We introduce the notion of normal form.
.
Definition
..

......

A polynomial Z = Z (ξ, ξ, f , f ) is in normal form if we have

Z = Z0 + Z1

where
(i) Z0 = Z0(ξ, ξ) (independent of f , f ), and Z0 is a linear combination of
monomials ξµξ

ν
satisfying

{HL, ξ
µξ

ν} = 0

(ii) Z1 is the form∑
ω(µ−ν)<−1

ξµξ
ν⟨Φµν , f ⟩+

∑
ω(µ′−ν′)>1

ξµ
′
ξ
ν′⟨Ψµ′ν′ , f ⟩

where Φµν ,Ψµ′ν′ ∈ S(R3,C).
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. . . . . .

Birkhoff normal form

This is the main theorem of 1st part:
.
Theorem ( Birkhoff normal form (Theorem 4.9) 1/3 )
..

......

For any k, s > 0 and r ∈ N0, there exists a neighborhood of the origin
Ur ,k,s ⊂ P1/2,0 and Tr : Ur ,k,s → P1/2,0 with the following properties.
(1) Tr is a canonical transformation.
(2) Tr is consistent with the choice of k , s.
(3) Let H(r) := H ◦ Tr . Then, we have

H(r) = HL + Z (r) + R(r),

where Z (r) and R(r) has the following properties.
(3-i) Z (r) is a polynomial of degree r + 3 which is in normal form.
(The form ⟨Φ, f ⟩ is considered to be the monomial of f of 1 degree.)
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. . . . . .

.
Theorem ( Birkhoff normal form (Theorem 4.9) 2/3 )
..

......

(3-ii) Tr is close to identity. Namely, there is an open set

U−k,−s
r ⊂ P−k,−s s.t. 1− Tr can be extended into a C∞-map from

U−k,−s
r to Pk,s , and

∥z − Tr (z)∥Pk,s ≤ Cr ,k,s∥z∥3P−k,−s .

(3-iii) R(r) is higher order term than Z (r). More precisely, we have

R(r) =
∑4

d=0 R
(r)
d where R

(r)
d is d-th order terms of f of the form

R
(r)
0 =

∑
µ+ν=r+4

ξµξ
ν
∫
R3

a(r)µν (x , z ,ReB
1/2f (x))dx ,
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. . . . . .

.
Theorem ( Birkhoff normal form (Theorem 4.9) 3/3 )
..

......

R
(r)
1 =

∑
µ+ν=r+3

ξµξ
ν
∫
R3

Λ(r)
µν (x , z ,ReB

1/2f (x)) · B−1/2fdx ,

R
(r)
d =

∫
R3

Fd(x , z ,ReB
−1/2f (x)) [U(x)]ddx , for d = 2, 3,

R
(r)
4 =

∫
R3

1

4
[U(x)]4dx ,

where a
(r)
µν , Λ

(r)
µν are smooth functions, and f = (f , f ), U = B−1/2(f + f ).

Moreover,
∥F (r)

2 (·, z ,w)∥Hk,s ≤ Cr ,k,s |ξ|.
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Key lemma: Homological equation

Before moving on to the proof, we observe one lemma.

Consider a homogeneous polynomial

K =
∑

µ+ν=M1

Kµνξ
µξ

ν
+

∑
µ′+ν′=M1−1

ξµ
′
ξ
ν′⟨Φµ′ν′ , f ⟩

+
∑

µ′′+ν′′=M1−1

ξµ
′′
ξ
ν′′⟨Ψµ′′ν′′ , f ⟩,

where Φµ′ν′ ,Ψµ′′ν′′ ∈ S(R3,C).

And let Z be the normal part of K . (Namely, taking the summation of the
terms in normal form.)
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.
Lemma 4.11.
..

......

There exists a polynomial χ s.t.

{HL, χ}+ Z = K .

Moreover, this χ satisfies (4.1). (Namely, χ generates Lie transform.)

The role of this lemma

If we consider the Lie transform ϕ generated by χ.
. The terms not in normal form become higher order terms in new
Hamiltonian K ◦ ϕ.
(In other words, the terms in normal form are the remainder terms
which we cannot remove by Lie transform.)

Iterating this procedure, we will have the result.
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Sketch of proof of Theorem 4.9.

Induction on r ∈ N0

r = 0 =⇒ T0 := 1,Z (0) := 0,R(0) := HP goes well.

Assume Theorem 4.9 holds for some r ∈ N0.
Define R(r)

02 ,R
(r)
12 by

R(r)
0 =

∑
µ+ν=r+4

ξµξ
ν
∫
R3

a(r)µν (x , 0, 0)dx +R(r)
02

R(r)
1 =

∑
µ+ν=r+3

ξµξ
ν
∫
R3

Φ(r)
µν (x) · fdx +R(r)

12

with Φ
(r)
µν (x) := Λ

(r)
µν (x , 0, 0).

The meaning of this decomposition:

1st term: principal term of R(r)
0 ,R(r)

1

2nd term: higher order term of R(r)
0 ,R(r)

1
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. . . . . .

Set

Kr+1 :=
∑

µ+ν=r+4

ξµξ
ν
∫
R3

a(r)µν (x , 0, 0)dx +
∑

µ+ν=r+3

ξµξ
ν
∫
R3

Φ(r)
µν (x) · fdx .

(Summation of principal part)

We apply Lemma 4.11 to Kr+1. . We take χr+1,Zr+1 s.t.

{HL, χr+1}+ Zr+1 = Kr+1.

Let ϕr+1 be the Lie transform generated by χr+1.

Define
.

...... Tr+1 := Tr ◦ ϕr+1, Z (r+1) := Z (r) + Zr+1.

Then,

Tr+1 is s canonical transformation, and

Zr+1 is in normal form.
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. . . . . .

Moreover, H(r+1) = H ◦ Tr+1 = H(r) ◦ ϕr+1, and

H(r) ◦ ϕr+1 = HL + ..Z (r) + Zr+1 .

+ ..Z (r) ◦ ϕr+1 − Z (r) .

+ ..Kr+1 ◦ ϕr+1 − Kr+1 .

+ ..HL ◦ ϕr+1 − (HL + {χr+1,HL}) .

+ ..(R(r)
02 +R(r)

12 ) ◦ ϕr+1 .

+ ..R(r)
2 ◦ ϕr+1 .

+ ..R(r)
3 ◦ ϕr+1 .

+ ..R(r)
4 ◦ ϕr+1 .

.

Hence, the induction works and we finish the proof.
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. . . . . .

Moreover, H(r+1) = H ◦ Tr+1 = H(r) ◦ ϕr+1, and

H(r) ◦ ϕr+1 = HL + . ..Z (r) + Zr+1

+ . ..Z (r) ◦ ϕr+1 − Z (r)

+ . ..Kr+1 ◦ ϕr+1 − Kr+1

+ . ..HL ◦ ϕr+1 − (HL + {χr+1,HL})

+ . ..(R(r)
02 +R(r)

12 ) ◦ ϕr+1

+ . ..R(r)
2 ◦ ϕr+1

+ . ..R(r)
3 ◦ ϕr+1

+ . ..R(r)
4 ◦ ϕr+1

..

higher order terms

.

(absorbed in R(r+1))

.

Z (r+1)

.

(new normal form)

Hence, the induction works and we finish the proof.
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We finish the 1st part.

Thank you for your attention.
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