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Nonlinear Schrödinger equation

Consider the nonlinear Schrödinger equation with a potential V{
iΦt = [−∆ + V (x) + |Φ|2]Φ, (t, x) ∈ R× R3

Φ(0) = Φ0 ∈ H1(R3).
(1)

Aim : Asymptotic stability

Given initial conditions which lie in a neighborhood of a solitary wave
eiγ0ψE0 , the solution

Φ(t) = e−i
( ∫ t

0
E(s) ds−γ(t)

)
(ψE(t) + φ(t))

converges asymptotically to a solitary wave of nearby energy E± and phase
γ± in L4, as t→ ±∞, i.e.,

Φ(t) ∼ e−i
∫ t
0
E(s) dseiγ±ψE± , t→ ±∞.
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Hypotheses for a potential V

Hypotheses

Let V : R3 → R be a smooth function satisfying

(V1) V ∈ S(R3).

(V2) −∆ + V has exactly one negative eigenvalue E∗ on L2(R3) with
corresponding L2 normalized eigenfunction ψ∗.

(V3) V (x) = V (|x|).

Nonresonance Condition (NR)

V satisfies (NR) condition if 0 is neither an eigenvalue nor a resonance of
−∆ + V .
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Nonlinear bound state

Consider a time periodic and spatially localized solution to (1) of the form

Φ(t, x) = e−iEtψE(x).

ψE satisfies
H(E)ψE ≡ [−∆ + V (x) + |ψE |2]ψE = EψE

ψE ∈ H2, ψE > 0
(2)

An H2-solution ψE is called a nonlinear bound state or solitary wave profile.

Note that the solution e−iEtψE does not converge to e−iE0tψE0 , since there
is a family of solitary waves.
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Nonlinear bound state

Theorem-Existence of ψE

Let E ∈ (E∗, 0). Then, there exists a solution ψE > 0 to (2) such that

(a) ψE ∈ H2.

(b) The function E 7→ ‖ψE‖H2 is smooth for E 6= E∗, and

lim
E→E∗

‖ψE‖H2 = 0,

i.e. (E,ψE) bifurcates from the zero solution at (E∗, 0) in H2 (and
therefore in Lp, 2 ≤ p ≤ ∞ thanks to Sobolev embedding).

(c) For all ε > 0,
|ψE(x)| ≤ CE,εe−(|E|−ε)|x|.

(d) As E → E∗,

ψE =

(
E − E∗∫

ψ4
∗

) 1
2

[ψ∗ +O(E − E∗)]

in H2. Here ψ∗ is the normalized ground state of −∆ + V with
corresponding eigenvalue E∗.
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Nonlinear bound state

Corollary

For all E ∈ Ω, any compact subinterval of (E∗, 0), we have
‖ψE‖H2 ≤ CΩ‖ψE‖L2 .

Theorem-Weighted estimates

Let E ∈ (E∗, 0). Also, E lie in a sufficiently small neighborhood of E∗.
Then, for k ∈ Z+ and s ≥ 0,

‖〈x〉kψE‖Hs ≤ Ck,s‖ψE‖Hs

and
‖〈x〉k∂EψE‖Hs ≤ C ′k,s|E − E∗|−1‖ψE‖Hs

Remark : By above theorems and corollary, we can regard any weighted Lp

norm of ψE and ∂EψE as a constant, which tends to 0 as E → E∗, in various
estimates appearing in the analysis.
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Decay estimates

Decay estimate

Let K = −∆ + V acting on L2(R3), and assume Hypotheses on V . Also,
V satisfies (NR). Let Pc(K) denote the projection onto the continuous
spectral part of K. If 1/p+ 1/q = 1, 2 ≤ q ≤ ∞, then

‖eitKPc(K)ψ‖Lq ≤ Cq|t|−(3/2−3/q)‖ψ‖Lp .

If ψ is more regular (ψ ∈ H1), then

‖eitKPc(K)ψ‖Lq ≤ Cq〈t〉−(3/2−3/q)(‖ψ‖Lp + ‖ψ‖H1).

A simple consequence is the following local decay estimate

Local decay estimate

Under the same assumption as in the above theorem, let σ > 3/2− 3/q.
Then

‖〈x〉−σeitKPc(K)ψ‖L2 ≤ Cq|t|−(3/2−3/q)‖ψ‖Lp .
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Decomposition of the solution Φ

We decompose the solution to (1) as

Φ(t) = e−iΘ(ψE(t) + φ(t))

where
Φ(0) = Φ0 = eiγ0(ψE0 + φ0)

Θ =

∫ t

0

E(s) ds− γ(t)

E(0) = E0, γ(0) = γ0

Orthogonality Condition

〈ψE0
, φ0〉 = 0 and

d

dt
〈ψE0

, φ(t)〉 = 0

The orthogonality condition ensures that φ(t) lies in the Range of
Pc(H(E0)).
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Decomposition of the solution Φ

{
iφt = [H(E0)− E0]φ+ [E0 − E(t) + γ̇(t)]φ+ F,

φ(0) = φ0

(3)

where
F = F1 + F2,

F1 = γ̇ψE − iĖ∂EψE ,
F2 = F2,lin + F2,nl.

Here F2,lin is a linear term in φ of the form

F2,lin = (2ψ2
E − ψ2

E0
)φ+ ψ2

Eφ

and F2,nl is a nonlinear term in φ of the form

F2,nl = 2ψE |φ|2 + ψEφ
2 + |φ|2φ.
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Decomposition of the solution Φ

The Orthogonality condition says

φ(0) = φ0 = Pc(H(E0))φ0,

which implies
F = Pc(H(E0))F.

Moreover, we know

Ė(t) = 〈∂EψE , ψE0〉−1Im〈F2, ψE0〉

and
γ̇(t) = −〈ψE , ψE0〉−1Re〈F2, ψE0〉.

C. Kwak August 21–25, 2017 11 / 19



Linear propagator of dispersive part φ
Consider the homogeneous linear equation{

iut = (H(E0)− E0)u+ (E0 − E(t) + γ̇(t))u,

u(s) = f.
(4)

Let U(t, s) be the propagator associated to (4), i.e.

u(t) = U(t, s)f, U(s, s) = Id.

Using the gauge transform

u(t) = e−i
∫ t
s

[E0−E(τ)] dτ−i(γ(t)−γ(s))v(t),

(4) is equivalent to the equation ivt = (H(E0)− E0)v with the initial data
v(s) = f . The solution v is of the form

v(t) = e−i(H(E0)−E0)(t−s)f.

Hence

U(t, s) = e−i
∫ t
s

[E0−E(τ)] dτ−i(γ(t)−γ(s))e−i(H(E0)−E0)(t−s). (5)
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Linear propagator of dispersive part φ

Now (3) can be rewritten as the integral equation, in addition to the
Orthogonality condition,

φ(t) = U(t, 0)Pc(H(E0))φ0 − i
∫ t

0

U(t, s)Pc(H(E0))F(s) ds.

We remark that the gauge transform (5) preserves Lp or weighted L2 norms,
i.e.,

‖U(t, s)g‖X = ‖e−i(H(E0)−E0)(t−s)g‖X
where X = Lp or a weighted L2.
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Well-posedness theory

Contraction mapping principle ⇒ Local well-posedness

The equation (1) admits the following mass and energy conservation
laws:

N [Φ(t)] ≡
∫
R3

|Φ(x)|2 dx = N [Φ0]

H[Φ(t)] ≡ 1

2

∫
R3

|∇Φ(x)|2 dx+
1

2

∫
R3

V (x)|Φ(x)|2 dx+
1

4

∫
R3

|Φ(x)|4 dx

= H[Φ0]

For C0 > 0 such that |V (x)| ≤ C0,

‖Φ(t)‖2H1 ≤ 2H[Φ0] + (C0 + 1)N [Φ0] ≤ C(‖Φ0‖2H1 + ‖Φ0‖4H1)

Local well-posedness implies Global well-posedness
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Main Theorem

Theorem-Asymptotic stability

Let Ωη = (E∗, E∗ + η), where η is positive and sufficiently small. Then for
all E0 ∈ Ωη and γ0 ∈ [0, 2π), there exists a positive number ε = ε(E0, η) such
that if

Φ(0) = eiγ0(ψE0
+ φ0)

where
‖φ0‖L1(R3

x) + ‖φ0‖H1(R3
x) < ε

then
Φ(t) = e−i

∫ t
0
E(s) ds+iγ(t)(ψE(t)+φ(t))

with
Ė(t), γ̇(t) ∈ L1(Rt) (⇒ ∃ lim

t→±∞
(E(t), γ(t)) = (E±, γ±))
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Main Theorem

Theorem A. - Asymptotic stability

and φ(t) is purely dispersive in the sense that

‖〈x〉−σφ(t)‖L2(R3) = O(〈t〉− 3
2 )

for σ > 2, and
‖φ(t)‖L4(R3) = O(〈t〉− 3

4 )

as |t| → ∞.
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Decomposition of initial data

Let Ẽ ∈ (E∗, 0) and γ̃ ∈ [0, 2π) be given. Consider the initial data Φ0, which
is nearby a nonlinear bound state:

Φ0 = eiγ̃ψẼ + δΦ.

In general, 〈ψẼ , δΦ〉 6= 0, so we can find E0 and γ0 such that

〈e−iγ0Φ0 − ψE0
, ψE0

〉 = 0,

i.e.
Φ0 := eiγ0(ψE0

+ φ0)

= eiγ0ψE0
+ [eiγ̃ψẼ − e

iγ0ψE0
+ δΦ].

Indeed, let

F [E, γ, δΦ] := 〈ψE , φ0〉 = 〈eiγψE , eiγ̃ψẼ − e
iγψE + δΦ〉.

Then F [Ẽ, γ̃, 0] = 0.
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Decomposition of initial data

We write
F [E, γ, δΦ] = F1[E, γ, δΦ] + iF2[E, γ, δΦ].

The Jacobian matrix of (E, γ, δΦ) 7→ (F1, F2) is given by− 1
2
d
dE

∫
|ψE |2

∣∣∣
E=Ẽ

0

0
∫
|ψE |2

∣∣∣
E=Ẽ


at (Ẽ, γ̃, 0). Since the curve E 7→ ‖ψE‖2L2 has no critical point for

E ∈ (E∗, 0), the determinant of the Jacobian matrix at (Ẽ, γ̃, 0) is nonzero.
By the implicit function theorem, for any δΦ near 0, there uniquely exists
(E0, γ0) near (Ẽ, γ̃) such that F [E0, γ0, δΦ] = 0, i.e. the decomposition

Φ0 = eiγ0(ψE0 + φ0)

with 〈ψE0
, φ0〉 = 0 holds.
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Thank You
for Your Attention!!
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