Presentation on Multichannel Nonlinear Scattering for Nonintegrable equations
 by A. Soffer and M. I. Weinstein

Presenter: Chulkwang Kwak
Facultad de Matemáticas
Pontificia Universidad Católica de Chile

2017 Participating School, KAIST
August 21-25, 2017

Part I

Nonlinear Schrödinger equation

Consider the nonlinear Schrödinger equation with a potential V

$$
\left\{\begin{array}{l}
i \Phi_{t}=\left[-\Delta+V(x)+|\Phi|^{2}\right] \Phi, \quad(t, x) \in \mathbb{R} \times \mathbb{R}^{3} \tag{1}\\
\Phi(0)=\Phi_{0} \in H^{1}\left(\mathbb{R}^{3}\right) .
\end{array}\right.
$$

Aim : Asymptotic stability

Given initial conditions which lie in a neighborhood of a solitary wave $e^{i \gamma_{0}} \psi_{E_{0}}$, the solution

$$
\Phi(t)=e^{-i\left(\int_{0}^{t} E(s) d s-\gamma(t)\right)}\left(\psi_{E(t)}+\phi(t)\right)
$$

converges asymptotically to a solitary wave of nearby energy $E_{ \pm}$and phase $\gamma_{ \pm}$in L^{4}, as $t \rightarrow \pm \infty$, i.e.,

$$
\Phi(t) \sim e^{-i \int_{0}^{t} E(s) d s} e^{i \gamma_{ \pm}} \psi_{E_{ \pm}}, \quad t \rightarrow \pm \infty .
$$

Hypotheses for a potential V

Hypotheses

Let $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a smooth function satisfying
(V1) $V \in \mathcal{S}\left(\mathbb{R}^{3}\right)$.
(V2) $-\Delta+V$ has exactly one negative eigenvalue E_{*} on $L^{2}\left(\mathbb{R}^{3}\right)$ with corresponding L^{2} normalized eigenfunction ψ_{*}.
(V3) $V(x)=V(|x|)$.

Nonresonance Condition (NR)

V satisfies (NR) condition if 0 is neither an eigenvalue nor a resonance of $-\Delta+V$.

Nonlinear bound state

Consider a time periodic and spatially localized solution to (1) of the form

$$
\Phi(t, x)=e^{-i E t} \psi_{E}(x) .
$$

ψ_{E} satisfies

$$
\begin{gather*}
H(E) \psi_{E} \equiv\left[-\Delta+V(x)+\left|\psi_{E}\right|^{2}\right] \psi_{E}=E \psi_{E} \\
\psi_{E} \in H^{2}, \quad \psi_{E}>0 \tag{2}
\end{gather*}
$$

An H^{2}-solution ψ_{E} is called a nonlinear bound state or solitary wave profile.
Note that the solution $e^{-i E t} \psi_{E}$ does not converge to $e^{-i E_{0} t} \psi_{E_{0}}$, since there is a family of solitary waves.

Nonlinear bound state

Theorem-Existence of ψ_{E}

Let $E \in\left(E_{*}, 0\right)$. Then, there exists a solution $\psi_{E}>0$ to (2) such that
(a) $\psi_{E} \in H^{2}$.
(b) The function $E \mapsto\left\|\psi_{E}\right\|_{H^{2}}$ is smooth for $E \neq E_{*}$, and

$$
\lim _{E \rightarrow E_{*}}\left\|\psi_{E}\right\|_{H^{2}}=0
$$

i.e. $\left(E, \psi_{E}\right)$ bifurcates from the zero solution at $\left(E_{*}, 0\right)$ in H^{2} (and therefore in $L^{p}, 2 \leq p \leq \infty$ thanks to Sobolev embedding).
(c) For all $\varepsilon>0$,

$$
\left|\psi_{E}(x)\right| \leq C_{E, \varepsilon} e^{-(|E|-\varepsilon)|x|}
$$

(d) As $E \rightarrow E_{*}$,

$$
\psi_{E}=\left(\frac{E-E_{*}}{\int \psi_{*}^{4}}\right)^{\frac{1}{2}}\left[\psi_{*}+O\left(E-E_{*}\right)\right]
$$

in H^{2}. Here ψ_{*} is the normalized ground state of $-\Delta+V$ with corresponding eigenvalue E_{*}.

Nonlinear bound state

Corollary

For all $E \in \Omega$, any compact subinterval of $\left(E_{*}, 0\right)$, we have $\left\|\psi_{E}\right\|_{H^{2}} \leq C_{\Omega}\left\|\psi_{E}\right\|_{L^{2}}$.

Theorem-Weighted estimates

Let $E \in\left(E_{*}, 0\right)$. Also, E lie in a sufficiently small neighborhood of E_{*}. Then, for $k \in \mathbb{Z}_{+}$and $s \geq 0$,

$$
\left\|\langle x\rangle^{k} \psi_{E}\right\|_{H^{s}} \leq C_{k, s}\left\|\psi_{E}\right\|_{H^{s}}
$$

and

$$
\left\|\langle x\rangle^{k} \partial_{E} \psi_{E}\right\|_{H^{s}} \leq C_{k, s}^{\prime}\left|E-E_{*}\right|^{-1}\left\|\psi_{E}\right\|_{H^{s}}
$$

Remark: By above theorems and corollary, we can regard any weighted L^{p} norm of ψ_{E} and $\partial_{E} \psi_{E}$ as a constant, which tends to 0 as $E \rightarrow E_{*}$, in various estimates appearing in the analysis.

Decay estimates

Decay estimate

Let $K=-\Delta+V$ acting on $L^{2}\left(\mathbb{R}^{3}\right)$, and assume Hypotheses on V. Also, V satisfies (NR). Let $P_{c}(K)$ denote the projection onto the continuous spectral part of K. If $1 / p+1 / q=1,2 \leq q \leq \infty$, then

$$
\left\|e^{i t K} P_{c}(K) \psi\right\|_{L^{q}} \leq C_{q}|t|^{-(3 / 2-3 / q)}\|\psi\|_{L^{p}}
$$

If ψ is more regular $\left(\psi \in H^{1}\right)$, then

$$
\left\|e^{i t K} P_{c}(K) \psi\right\|_{L^{q}} \leq C_{q}\langle t\rangle^{-(3 / 2-3 / q)}\left(\|\psi\|_{L^{p}}+\|\psi\|_{H^{1}}\right) .
$$

A simple consequence is the following local decay estimate

Local decay estimate

Under the same assumption as in the above theorem, let $\sigma>3 / 2-3 / q$. Then

$$
\left\|\langle x\rangle^{-\sigma} e^{i t K} P_{c}(K) \psi\right\|_{L^{2}} \leq C_{q}|t|^{-(3 / 2-3 / q)}\|\psi\|_{L^{p}}
$$

Decomposition of the solution Φ

We decompose the solution to (1) as

$$
\Phi(t)=e^{-i \Theta}\left(\psi_{E(t)}+\phi(t)\right)
$$

where

$$
\begin{gathered}
\Phi(0)=\Phi_{0}=e^{i \gamma_{0}}\left(\psi_{E_{0}}+\phi_{0}\right) \\
\Theta=\int_{0}^{t} E(s) d s-\gamma(t) \\
E(0)=E_{0}, \quad \gamma(0)=\gamma_{0}
\end{gathered}
$$

Orthogonality Condition

$$
\left\langle\psi_{E_{0}}, \phi_{0}\right\rangle=0 \quad \text { and } \quad \frac{d}{d t}\left\langle\psi_{E_{0}}, \phi(t)\right\rangle=0
$$

The orthogonality condition ensures that $\phi(t)$ lies in the Range of $P_{c}\left(H\left(E_{0}\right)\right)$.

Decomposition of the solution Φ

$$
\left\{\begin{array}{l}
i \phi_{t}=\left[H\left(E_{0}\right)-E_{0}\right] \phi+\left[E_{0}-E(t)+\dot{\gamma}(t)\right] \phi+\mathbf{F} \tag{3}\\
\phi(0)=\phi_{0}
\end{array}\right.
$$

where

$$
\begin{aligned}
& \mathbf{F}=\mathbf{F}_{\mathbf{1}}+\mathbf{F}_{\mathbf{2}}, \\
& \mathbf{F}_{\mathbf{1}}=\dot{\gamma} \psi_{E}-i \dot{E} \partial_{E} \psi_{E}, \\
& \mathbf{F}_{\mathbf{2}}=\mathbf{F}_{\mathbf{2}, \mathbf{l i n}}+\mathbf{F}_{\mathbf{2}, \mathbf{n l}} .
\end{aligned}
$$

Here $\mathbf{F}_{\mathbf{2}, \text { lin }}$ is a linear term in ϕ of the form

$$
\mathbf{F}_{\mathbf{2}, \operatorname{lin}}=\left(2 \psi_{E}^{2}-\psi_{E_{0}}^{2}\right) \phi+\psi_{E}^{2} \bar{\phi}
$$

and $\mathbf{F}_{\mathbf{2}, \mathbf{n l}}$ is a nonlinear term in ϕ of the form

$$
\mathbf{F}_{\mathbf{2}, \mathbf{n l}}=2 \psi_{E}|\phi|^{2}+\psi_{E} \phi^{2}+|\phi|^{2} \phi
$$

Decomposition of the solution Φ

The Orthogonality condition says

$$
\phi(0)=\phi_{0}=P_{c}\left(H\left(E_{0}\right)\right) \phi_{0},
$$

which implies

$$
\mathbf{F}=P_{c}\left(H\left(E_{0}\right)\right) \mathbf{F} .
$$

Moreover, we know

$$
\dot{E}(t)=\left\langle\partial_{E} \psi_{E}, \psi_{E_{0}}\right\rangle^{-1} \operatorname{Im}\left\langle\mathbf{F}_{\mathbf{2}}, \psi_{E_{0}}\right\rangle
$$

and

$$
\dot{\gamma}(t)=-\left\langle\psi_{E}, \psi_{E_{0}}\right\rangle^{-1} \operatorname{Re}\left\langle\mathbf{F}_{\mathbf{2}}, \psi_{E_{0}}\right\rangle .
$$

Linear propagator of dispersive part ϕ

Consider the homogeneous linear equation

$$
\left\{\begin{array}{l}
i u_{t}=\left(H\left(E_{0}\right)-E_{0}\right) u+\left(E_{0}-E(t)+\dot{\gamma}(t)\right) u \tag{4}\\
u(s)=f
\end{array}\right.
$$

Let $U(t, s)$ be the propagator associated to (4), i.e.

$$
u(t)=U(t, s) f, \quad U(s, s)=I d
$$

Using the gauge transform

$$
u(t)=e^{-i \int_{s}^{t}\left[E_{0}-E(\tau)\right] d \tau-i(\gamma(t)-\gamma(s))} v(t),
$$

(4) is equivalent to the equation $i v_{t}=\left(H\left(E_{0}\right)-E_{0}\right) v$ with the initial data $v(s)=f$. The solution v is of the form

$$
v(t)=e^{-i\left(H\left(E_{0}\right)-E_{0}\right)(t-s)} f .
$$

Hence

$$
\begin{equation*}
U(t, s)=e^{-i \int_{s}^{t}\left[E_{0}-E(\tau)\right] d \tau-i(\gamma(t)-\gamma(s))} e^{-i\left(H\left(E_{0}\right)-E_{0}\right)(t-s)} \tag{5}
\end{equation*}
$$

Linear propagator of dispersive part ϕ

Now (3) can be rewritten as the integral equation, in addition to the Orthogonality condition,

$$
\phi(t)=U(t, 0) P_{c}\left(H\left(E_{0}\right)\right) \phi_{0}-i \int_{0}^{t} U(t, s) P_{c}\left(H\left(E_{0}\right)\right) \mathbf{F}(s) d s
$$

We remark that the gauge transform (5) preserves L^{p} or weighted L^{2} norms, i.e.,

$$
\|U(t, s) g\|_{X}=\left\|e^{-i\left(H\left(E_{0}\right)-E_{0}\right)(t-s)} g\right\|_{X}
$$

where $X=L^{p}$ or a weighted L^{2}.

Well-posedness theory

- Contraction mapping principle \Rightarrow Local well-posedness
- The equation (1) admits the following mass and energy conservation laws:

$$
\begin{gathered}
\mathcal{N}[\Phi(t)] \equiv \int_{\mathbb{R}^{3}}|\Phi(x)|^{2} d x=\mathcal{N}\left[\Phi_{0}\right] \\
\mathcal{H}[\Phi(t)] \equiv \frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla \Phi(x)|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{3}} V(x)|\Phi(x)|^{2} d x+\frac{1}{4} \int_{\mathbb{R}^{3}}|\Phi(x)|^{4} d x \\
=\mathcal{H}\left[\Phi_{0}\right]
\end{gathered}
$$

- For $C_{0}>0$ such that $|V(x)| \leq C_{0}$,

$$
\|\Phi(t)\|_{H^{1}}^{2} \leq 2 \mathcal{H}\left[\Phi_{0}\right]+\left(C_{0}+1\right) \mathcal{N}\left[\Phi_{0}\right] \leq C\left(\left\|\Phi_{0}\right\|_{H^{1}}^{2}+\left\|\Phi_{0}\right\|_{H^{1}}^{4}\right)
$$

- Local well-posedness implies Global well-posedness

Main Theorem

Theorem-Asymptotic stability

Let $\Omega_{\eta}=\left(E_{*}, E_{*}+\eta\right)$, where η is positive and sufficiently small. Then for all $E_{0} \in \Omega_{\eta}$ and $\gamma_{0} \in[0,2 \pi)$, there exists a positive number $\epsilon=\epsilon\left(E_{0}, \eta\right)$ such that if

$$
\Phi(0)=e^{i \gamma_{0}}\left(\psi_{E_{0}}+\phi_{0}\right)
$$

where

$$
\left\|\phi_{0}\right\|_{L^{1}\left(\mathbb{R}_{x}^{3}\right)}+\left\|\phi_{0}\right\|_{H^{1}\left(\mathbb{R}_{x}^{3}\right)}<\epsilon
$$

then

$$
\Phi(t)=e^{-i \int_{0}^{t} E(s) d s+i \gamma(t)}\left(\psi_{E(t)+\phi(t)}\right)
$$

with

$$
\dot{E}(t), \dot{\gamma}(t) \in L^{1}\left(\mathbb{R}_{t}\right) \quad\left(\Rightarrow \exists \lim _{t \rightarrow \pm \infty}(E(t), \gamma(t))=\left(E_{ \pm}, \gamma_{ \pm}\right)\right)
$$

Main Theorem

Theorem A. - Asymptotic stability

and $\phi(t)$ is purely dispersive in the sense that

$$
\left\|\langle x\rangle^{-\sigma} \phi(t)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}=O\left(\langle t\rangle^{-\frac{3}{2}}\right)
$$

for $\sigma>2$, and

$$
\|\phi(t)\|_{L^{4}\left(\mathbb{R}^{3}\right)}=O\left(\langle t\rangle^{-\frac{3}{4}}\right)
$$

as $|t| \rightarrow \infty$.

Decomposition of initial data

Let $\widetilde{E} \in\left(E_{*}, 0\right)$ and $\widetilde{\gamma} \in[0,2 \pi)$ be given. Consider the initial data Φ_{0}, which is nearby a nonlinear bound state:

$$
\Phi_{0}=e^{i \widetilde{\gamma}} \psi_{\widetilde{E}}+\delta \Phi
$$

In general, $\left\langle\psi_{\widetilde{E}}, \delta \Phi\right\rangle \neq 0$, so we can find E_{0} and γ_{0} such that

$$
\left\langle e^{-i \gamma_{0}} \Phi_{0}-\psi_{E_{0}}, \psi_{E_{0}}\right\rangle=0
$$

i.e.

$$
\begin{aligned}
\Phi_{0} & :=e^{i \gamma_{0}}\left(\psi_{E_{0}}+\phi_{0}\right) \\
& =e^{i \gamma_{0}} \psi_{E_{0}}+\left[e^{i \widetilde{\gamma}} \psi_{\widetilde{E}}-e^{i \gamma_{0}} \psi_{E_{0}}+\delta \Phi\right] .
\end{aligned}
$$

Indeed, let

$$
F[E, \gamma, \delta \Phi]:=\left\langle\psi_{E}, \phi_{0}\right\rangle=\left\langle e^{i \gamma} \psi_{E}, e^{i \widetilde{\gamma}} \psi_{\widetilde{E}}-e^{i \gamma} \psi_{E}+\delta \Phi\right\rangle .
$$

Then $F[\widetilde{E}, \widetilde{\gamma}, 0]=0$.

Decomposition of initial data

We write

$$
F[E, \gamma, \delta \Phi]=F_{1}[E, \gamma, \delta \Phi]+i F_{2}[E, \gamma, \delta \Phi] .
$$

The Jacobian matrix of $(E, \gamma, \delta \Phi) \mapsto\left(F_{1}, F_{2}\right)$ is given by

$$
\left[\begin{array}{cc}
-\left.\frac{1}{2} \frac{d}{d E} \int\left|\psi_{E}\right|^{2}\right|_{E=\widetilde{E}} & 0 \\
0 & \left.\int\left|\psi_{E}\right|^{2}\right|_{E=\widetilde{E}}
\end{array}\right]
$$

at $(\widetilde{E}, \widetilde{\gamma}, 0)$. Since the curve $E \mapsto\left\|\psi_{E}\right\|_{L^{2}}^{2}$ has no critical point for $E \in\left(E_{*}, 0\right)$, the determinant of the Jacobian matrix at $(\widetilde{E}, \widetilde{\gamma}, 0)$ is nonzero. By the implicit function theorem, for any $\delta \Phi$ near 0 , there uniquely exists $\left(E_{0}, \gamma_{0}\right)$ near $(\widetilde{E}, \widetilde{\gamma})$ such that $F\left[E_{0}, \gamma_{0}, \delta \Phi\right]=0$, i.e. the decomposition

$$
\Phi_{0}=e^{i \gamma_{0}}\left(\psi_{E_{0}}+\phi_{0}\right)
$$

with $\left\langle\psi_{E_{0}}, \phi_{0}\right\rangle=0$ holds.

Thank You for Your Attention!!

