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1 Normal Form Transformation of NLKG

This section mainly covers [2, Section 1-4]. We consider a real-valued non-
linear Klein-Gordon equation with potential

utt −∆u+ V u+ u+ u3 = 0, (t, x) ∈ R× R3, (1.1)

where V ∈ S(R3;R). Mass is normalized to be 1, and nonlinearity is taken
as u3. For convenience, we restrict ourselves to the case that the Schrödinger
operator −∆ + V has only one eigenvalue, which is in addition simple. This
restriction makes the computation easier without losing the essence of the pa-
per. We note that the original paper deals with more general cases; −∆ + V
can have finitely many eigenvalues with finite multiplicities, and the nonlin-
earity can be replaced by some suitable β′(u).

1.1 Assumptions and the Goal

Let us state our assumptions precisely.

H1. V is a Schwartz function.
H2. 0 is neither an eigenvalue nor a resonance for −∆ + V .
H3. We assume that σd(−∆ + V ) = {−λ2} and −λ2 is simple.
H4. Let w :=

√
1− λ2 and assume Nw < 1 < (N + 1)w for some N ∈ N.

H5. (Nondegeneracy condition) See (2.2).

Let K0(t) = sin(t
√
−∆+1)√
−∆+1

be the free Klein-Gordon propagator. With the
above assumptions, the paper proves small data scattering of NLKG.
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Theorem 1.1 (Small data scattering in H1 × L2). Assume the hypothe-
ses (H1-H5). Then, there exist ε0 > 0 and C > 0 such that for any
‖(u0, v0)‖H1×L2 ≤ ε < ε0, then it admits a unique global solution and there
are (u±, v±) with ‖(u±, v±)‖H1×L2 ≤ Cε and

lim
t→±∞

‖u(t)−K ′0(t)u± −K0(t)v±‖H1 = 0.

Moreover, it is possible to write u(t, x) = A(t, x) + ũ(t, x) with |A(t, x)| ≤
CN(t)〈x〉−N for any N , with lim|t|→∞CN(t) = 0 and

‖ũ‖
LrtW

1
p−

1
r+

1
2 ,p

x

≤ Cε

for any admissible pair (r, p).

Remark. When V ≡ 0, one can take A ≡ 0 so that the Strichartz estimate is
valid with u = ũ.

As in the case of V ≡ 0, we know that the small data scattering occurs on
the continuous mode. However, in our situation, there is an eigenvector ϕ ∈
S(R3,R) satisfying (−∆ + V )ϕ = −λ2ϕ. If there were no nonlinearity, the
dynamics of ϕ is merely a rotation so we do not have scattering. Therefore,
presence of the nonlinearity should account for the scattering, especially the
leakage of energy from the discrete mode to the continuous mode. We will
not prove Theorem 1.1, but we will present how this leakage can happen.

1.2 Original Hamiltonian Structure

Let H1(R3,R)×L2(R3,R) be the phase space equipped with the symplectic
form

Ω
(
(u1, v1); (u2, v2)

)
:= 〈u1, v2〉L2 − 〈u2, v1〉L2 .

The Hamiltonian

H =

ˆ
R3

1

2
(v2 + |∇u|2 + V u2 + u2)dx︸ ︷︷ ︸

HL

+

ˆ
R3

1

4
u4dx︸ ︷︷ ︸

HP

gives rise to NLKG. Indeed, the Hamilton equation reads[
u̇
v̇

]
=

[
v

∆u− V u− u− u3

]
.

The Hamiltonians HL and HP correspond to the linear and nonlinear evo-
lution, respectively. Note that HP can be regarded as a polynomial in u of
order 4.

2



1.3 Spectral Decomposition of −∆ + V

At first, in a spirit of spectral analysis, we decompose our phase spaceH1×L2

into the discrete mode and continuous mode. To do this, let ϕ ∈ S(R3,R)
be the eigenvector associated to −λ2. Express

u = qϕ+ Pcu, v = pϕ+ Pcv,

where Pc is the orthogonal projection onto the continuous spectrum part.
We then introduce the operator

B := Pc(−∆ + V + 1)1/2Pc

and the complex variables

ξ :=
q
√
w + i p√

w√
2

, f :=
B1/2Pcu+ iB−1/2Pcv√

2
.

This defines an isomorphism between phase spaces H1(R3,R) × L2(R3,R)
and P1/2,0 := C ⊕ PcH1/2,0(R3,C). Note that every function of u, v can be
expressed by our variables ξ, ξ̄, f, f̄ . With this coordinate,

Ω
(
(ξ(1), f (1)); (ξ(2), f (2))

)
= −2Im[ξ(1)ξ(2) + 〈f (1), f (2)〉].

The Poisson bracket becomes

{H,K} := i(∂ξH∂ξK − ∂ξH∂ξK) + i〈∇fH,∇fK〉 − i〈∇fH,∇fK〉.

One may compare with various expressions of symplectic forms:
∑

j dxj∧dyj,
i
2

∑
j dzj ∧ dzj, and the imaginary part of a Hermitian form. The Hamilton

equations become
ξ̇ = −i∂ξH, ḟ = −i∇fH.

where the original Hamiltonian H in this coordinate reads

H = w|ξ|2 + 〈f,Bf〉︸ ︷︷ ︸
HL

+

ˆ
R3

1

4

(ξ + ξ√
2w

ϕ+ U
)4

dx︸ ︷︷ ︸
HP

,

with U := Pcu = B−
1
2 (f+f√

2
).

Remark. There are some estimates and regularity concerns of the Hamilto-
nian, but we will not discuss them.
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1.4 Normal Form Transformation

We start with the nonlinearity HP , which is of order 4. We will use the
Birkhoff normal form theory. It canonically transforms the Hamiltonian
equation by leaving the linear part and eliminating nonresonant nonlinear-
ities. This enables us to examine the dynamics almost accurately for long
time.

In our situation, as f is a continuous variable, we cannot perform the usual
normal form transformation directly. In this subsection, we eliminate some
nonresonant continuous part of the equation in some sense, up to order 1.

We first define the notion of normal form. A polynomial Z is in normal form
if Z = Z0 + Z1 where Z0 is a polynomial of ξ, ξ satisfying {HL, Z0} = 0
and Z1 has monomials of the form ξµξ̄ν〈Φ, f〉 and ξµ

′
ξ̄ν
′〈Φ, f〉 with indices

satisfying w(µ− ν) < −1 and w(µ′ − ν ′) > 1.

As in the usual Birkhoff normal form theory, we will use Lie transforma-
tions generated by polynomials. Those transformations keep the symplectic
structure. To find an appropriate polynomial, let us recall the Homological
equation. Let K be a homogeneous polynomial given by

K =
∑

µ+ν=M1

Kµνξ
µξ̄ν +

∑
µ′+ν′=M1−1

ξµ
′
ξ̄ν
′
ˆ

Φµ′ν′f + (conjugate part).

We want to find a polynomial χ and Z in normal form satisfying

{HL, χ}+ Z = K.

To do this, let us examine the spectral property of the homological operator
χ 7→ {HL, χ}.

Lemma 1.2 (Spectral property of the homological operator). We have

{HL, ξ
µξν} = −iw(µ− ν)ξµξν ,

{HL, ξ
µξν〈Φ, f〉} = −iξµξν〈(B − w(ν − µ))Φ, f〉,

{HL, ξ
µξν〈Φ, f〉} = iξµξν〈(B − w(µ− ν))Φ, f〉.

The above lemma follows by an easy computation. The above lemma also
says that when w(µ − ν) is nonzero, we can invert w(µ − ν) to delete the
corresponding term in K. When w(ν − µ) < 1, we can invert the operator
B − w(ν − µ). Similarly, we can invert B − w(µ − ν) when w(µ − ν) < 1.
Therefore, we are led to the following lemma.
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Lemma 1.3 (Solution to the homological equation). Let K be given. Define

χ :=
iKαβξ

αξ̄β

w(α− β)
+ i
∑
µ,ν

ξµξν〈RνµΦµν , f〉 − i
∑
µ′,ν′

ξµ
′
ξ̄ν
′〈Rµ′ν′Ψµ′ν′ , f〉,

Z := (resonant part of K)

where the indices µ, ν in χ ranges over

w(α− β) 6= 0, w(ν − µ) < 1, w(µ′ − ν ′) < 1

Then, Z and χ solve the homological equation.

As in the usual ODE case, one can prove the following (with some more
technically delicate issues).

Theorem 1.4 (Normal Form). For any integer r with r ≥ 0, there exist an
analytic canonical transformation Tr defined locally at the origin such that

H(r) := H ◦ Tr = HL + Z(r) +R(r)

where
1. Z(r) is a polynomial of degree r + 3 which is in normal form,
2. R(r) is of order ≥ r + 4 at the origin,
3. Near the origin, Tr is close to the identity map of order 3. More precisely,

‖z − Tr(z)‖ ≤ C‖z‖3.

Remark. There are more regularity concerns and error estimates in the paper.

2 Dynamics of the Normal form

This section mainly covers [2, Section 5]. We apply the normal form theorem
with r = 2N . If we denote ξ, f by the transformed variable, we have

H = HL(ξ, f) + Z0(ξ) + Z1(ξ, f) +R(2N)(ξ, f)

where

Z1(ξ, f) = 〈G, f〉+ 〈G, f〉,

G =
∑

2≤µ+ν≤2N+2
w(µ−v)<−1

ξµξνΦµν .

This is our starting point.
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2.1 Decoupling Variables ξ and f

We neglect the remainder term R(2N) from now on. So we have

ḟ = −i(Bf +G)

ξ̇ = −iwξ − i∂ξZ0 − i〈∂ξG, f〉 − i〈∂ξG, f〉.

It is still hard to see why the energy leaks from discrete modes to continuous
modes. Hence we make another coordinate change, which decouples the
variables ξ and f . This will enable us to examine the equation in detail.
Express

g := f + Y (ξ, ξ).

Then, the dynamics of g is given by

ġ = −iBg − i
{
G+BY

}
− Ẏ .

Note that we will take Y of the form

Y :=
∑

2≤µ+ν≤2N+2
w(µ−v)>1

Y µνξ
µξ̄ν .

By the chain rule,

Ẏ = [ξ̇∂ξ + ξ̇∂ξ]Y

= [−iwξ∂ξ + iwξ∂ξ]Y + (remaining terms),

where the remaining terms consist of (∂ξZ0)∂ξY , 〈∂ξG, f〉∂ξY , and so on.
Substituting this, we get

ġ = −iBg − i
{
G− [B − w(ξ∂ξ − ξ∂ξ)]Y

}
+ (remaining terms),

where the remaining terms consist of high order polynomial in ξ (obtained
from terms such as (∂ξZ0)∂ξY ) and linear terms in f (obtained from terms
such as 〈∂ξG, f〉∂ξY ). As the remaining terms can be considered as error
terms, a detailed analysis of g will be possible if the curly bracket vanishes.
To do this, using the formula of Y , it suffices to find Yµν such that(

B − w(µ− ν)
)
Y µν = Φνµ.

As different as the situation in the homological equation, we cannot invert
the operator B −w(µ− ν) in a trivial way because w(µ− ν) ∈ σ(B). So we
regularize the resolvent as follows.

R±µν = lim
ε→0+

(
B − w(µ− ν)∓ iε

)−1

= R±−∆+V (k2)(B + w(µ− ν)).
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where k2 = w2(µ − ν)2 − 1. This can be defined in the norm topology of
B(H2,s, L2,−s) with s > 1

2
. We finally set

Yµν := R−µνΦνµ.

2.2 Leakage of Energy and Nondegeneracy Condition

By the coordinate change made in the previous subsection, we have

ξ̇ = −iwξ − i∂ξZ0 + i〈∂ξG, Y 〉+ i〈∂ξG, Y 〉+ (g-term).

We can neglect g-term because its spacetime norm can be estimated by some
small quantity. (Actually, this combines spacetime norm estimates of f and ξ
in the bootstrap argument, but we will not get into this.) We then normalize
the equation as follows. Substituting the formula of Y and G (and neglecting
g-term), we have

ξ̇ = −iwξ − i∂ξZ0 + i
∑

ν−µ∈M
µ′−ν′∈M

(
νξµ+µ′ ξ̄ν

′+ν−1cµνµ′ν′ + µξ̄µ+µ′−1ξν
′+νcµνµ′ν′

)
,

where

M := {µ ∈ N0 : wµ > 1, 2 ≤ µ ≤ 2N + 3},
cµνµ′ν′ := 〈Φµν , R

+
µ′ν′Φν′µ′〉,

From the formula of cµνµ′ν′ , one see that the summation is indeed finite. In
the above summation, we may assume that µ = ν ′ = 0. Roughly, this is
because any terms having nonzero µ or ν ′ correspond to some lower order
term, which is typically larger. Therefore, we assume µ = ν ′ = 0 and further
simplify the equation as follows.

ξ̇ = −iwξ − i∂ξZ0 + G0(ξ),

G0(ξ) := i
∑
µ,ν∈M

νξµξ̄ν−1c0νµ0.

We already know that ∂ξZ0 is resonant (with respect to w|ξ|2), so we apply
the normal form transformation to eliminate nonresonant terms in G0(ξ). We
let

η := ξ +
∑
µ,ν∈M

w(µ−ν)6=0

1

iw(µ− ν)
νξµξ̄ν−1c0νµ0,

N (η) := i
∑
µ,ν∈M

w(µ−ν)=0

νηµη̄ν−1c0νµ0,
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and obtain
η̇ = Ξ(η, η) := −iwη − i∂ηZ0 +N (η).

To observe energy leaking, it is natural to compute the Lie derivative LΞ(w|η|2).
To this end, we will use the Plamelji formula

R±µ0 = PV (B − wµ)−1 ± iπδ(B − wµ).

The distribution can be understood as follows. When V ≡ 0, we have

δ(B − wµ)Ψ(x) = c

ˆ
λ>0

ˆ
|θ|=1

δ(
√
λ2 + 1− wµ)Ψ̂(λθ)eiλθ·xλ2dσ(θ)dλ

= c(wµ)k

ˆ
|θ|=1

Ψ̂(kθ)eikθ·xdσ(θ),

and

〈Ψ, δ(B − wµ)Ψ〉 = c(wµ)k

ˆ
|θ|=1

Ψ̂(kθ)

ˆ
R3

Ψ(x)eikθ·xdxdσ(θ)

= c(wµ)k

ˆ
|θ|=1

|Ψ(kθ)|2dσ(θ), (2.1)

where c is the constant for the Fourier inversion and k2 = (wµ)2−1. When V
is nontrivial, the same formula holds where Ψ̂ should be understood by means
of the distorted Fourier transform and eikθ·x should be changed appropriately.
Keeping this in mind, let us introduce the following notions:

Λ :=
⋃
µ∈M

{w · µ}

Mλ := {µ ∈M : w · µ = λ} for λ ∈ Λ

Fλ :=
∑
µ∈Mλ

η̄µΦ0µ,

Bλ := πδ(B − λ).

With this notation, we now see that the leakage of energy occurs in our
normalized system.

Lemma 2.1 (Leakage of Energy). The following formula holds

LΞ(w|η|2) = −
∑
λ∈Λ

λ〈Fλ;BλF λ〉.

Moreover, the RHS is negative-semidefinite.
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Proof. As−iwη and i∂ηZ0 are resonant terms, it suffices to compute LN (w|η|2).
Observe that

LN (w|η|2) = wηN (η) + wηN (η)

= −Im
( ∑

µ,ν∈M
w(µ−ν)=0

wνηµη̄ν〈Φ0ν , (B − wµ− i0)−1Φ0µ〉
)

= −
∑
λ∈Λ

λIm〈Fλ, (B − λ− i0)−1F λ〉.

By the Plamelji formula, we obtain

LΞ(w|η|2) = −
∑
λ∈Λ

λ〈Fλ;BλF λ〉.

This quantity is negative-semidefinite because

λ〈Fλ;BλF λ〉 = cλk

ˆ
|θ|=1

|Ψ̂(kθ)|2dσ(θ),

with k2 = λ2 − 1 by the equation (2.1).

The nondegeneracy condition: there exists a positive constant C and a
sufficiently small δ0 > 0 such that for all |η| < δ0,∑

λ∈Λ

λ〈Fλ;BλF λ〉 ≥ C
∑
µ∈M

|ηµ|2. (2.2)

A Distorted Fourier Transform

Most of the results in this section are brought from [1]. Suppose that V ∈
S(R3;R) be our potential.

Theorem A.1 (Limiting Absorption Principle). Let k2 > 0 and s > 1
2
be

given. Then,
R±−∆+V (k2) := lim

ε→0+
R−∆+V (k2 ± iε)

is well-defined in the norm topology of B(L2,s, H2,−s). Moreover, if f ∈ L2,s,
then u± := R±−∆+V (k2)f solve

(−∆ + V − k2)u± = f.
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Using the limiting absorption principle, we can naturally choose a substitute
φ(ξ, x) of plane waves eiξ·x. We express φ±(ξ, x) = eiξ·x+v±(ξ, x) and require
φ to satisfy

(−∆ + V − |ξ|2)φ±(ξ, x) = 0.

This is equivalent to

(−∆ + V − |ξ|2)v±(ξ, x) = −V (x)eiξ·x.

Hence we define
v±(ξ, x) := R±−∆+V (|ξ|2)[V (x)eiξ·x].

This allows us to define the distorted Fourier transform with respect to V .

Theorem A.2 (Distorted Fourier Transform). There exist two unitary maps
F± : L2

ac(R3)→ L2(R3) such that the following diagram commutes.

H2 ∩ L2
ac

F± //

−∆+V
��

H2

|ξ|2 mult.
��

L2
ac

F± // L2

Remark. The scattering map W± satisfies the formula

W± = F∗±F

where F is the usual Fourier transform.

References

[1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 2, 151–218. MR0397194

[2] D. Bambusi and S. Cuccagna, On dispersion of small energy solutions to the nonlinear
Klein Gordon equation with a potential, Amer. J. Math. 133 (2011), no. 5, 1421–1468.
MR2843104

10


	Normal Form Transformation of NLKG
	Assumptions and the Goal
	Original Hamiltonian Structure
	Spectral Decomposition of -+V
	Normal Form Transformation

	Dynamics of the Normal form
	Decoupling Variables  and f
	Leakage of Energy and Nondegeneracy Condition

	Distorted Fourier Transform

