SUMMARY NOTES:

I-METHOD TO STUDY GLOBAL WELL-POSEDNESS FOR DISPERSIVE
EQUATION IN LOW REGULARITY

1. INTRODUCTION

In the paper [3], the authors Colliander, Keel, Staffilani, Takaoka, and Tao(I-team)
considered the Cauchy problem for the Korteweg-de Vries equations:

Oyu + Ou + %8w(u2) =0, (z,t)eRx][0,T],
u(0,7) = uo(z) € H*(R),

(1.1)

where u is an unknown real function defined on R x [0,7]. In this paper, they introduced
the I-method to study the global well-posedness for dispersive equations in low regularity.
They proved the global well-posedness of (1.1) in H*(R) for any s > —% in this
paper. This result is sharp expect the endpoint case. See [5, 7] for endpoint case, see [2] for

ill-posedness for s < —% in sense of uniformly continuous.

The problem (1.1) obeys the mass conservation law,

[u(®)]lz2 = [Juoll2-

However, for the global well-posedness in H®, s < 0, we need a priori estimate on

[u(®)]

Hs-
To this end, we apply the [-operator.

Definition 1.1 (I-operator). Let N > 1 be fized, and the Fourier multiplier operator I = In s
be defined as

I(&) = m(€)f(©). (1.2)
Here the multiplier m = my +(§) is a smooth, monotone function satisfying 0 < m(§) <1
and

_JL Sl < N,
m(f) - { N1_5|§|S_1, |£’ > 2N. (13)
One may find that
o [:HR)w— L*(R). Indeed,
1 llms S N f e S N7l e (1.4)

e [ is an identity approximate operator: I — Id, as N — oo.
Using [-operator, we have

1
Odu + 02 Tu + §3xf(u2) =0,

Tu(0,7) = Tug(x) € L*(R),
1
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Also, it is reasonable to establish
[ Tu(t)||22 = |[Tuol|22 + O(N™P)  for local time. (Almost conservation law) (1.5)
If (1.5) is done, then the global result can be obtained by iteration. Moreover, larger (3 leads
better global result.

2. PRELIMINARY

2.1. Bourgain Space.
Definition 2.1 (Bourgain Space). We define the space Xsp by the norm,

X 26 7 =€ 7] .

[l

u

=|le HyHY'

The definition is not important to study the global theory (in general), we only focus
our attention on its properties.

Lemma 2.1. e (Strichartz estimate)For % + % = %,a = % — 117, 1<p,q< o0, —}l <
a <1,
« tO0zza <
| D (€= ug)| e S luollzz.
e (Bilinear Strichartz estimate) Let
— 1 A
e = [  |8-gliee
§1+&2=¢
then
H[(et&”“uo,etamvo)HLit S lluoll 22 ||lvo[ ze-
Then we have
Corollary 2.1.
HDauHLng §|’uHXo7%+’ (21>
17680, Slhellx, ol . (22)
2.2. Normalization. [u is too large, indeed, by (1.4),
[Tuol[r2 < N7*[uol| o=
We normalize it by rescaling. Note that if u is a solution of (1.1), then so is
t
ux(z,t) = )\’Qu(%, ﬁ)’ with ug\(2) = )\’2u0(§). (2.3)

Moreover, u exists on [0, T if and only if u, exists [0, A3T]. Now by rescaling, and I-operator,
we consider the following problem for instead,

1
Oiluy + 02 Tuy + Elﬁm(ui) =0,
Tuy(0,2) = Tug, (x) € L*(R).

(2.4)

In particular,

| Twoalle S N7 lluoalls S N7°A72,
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Therefore, fixing small g9 > 0, selecting suitably
A~ N755, (2.5)

we have
||IUO,)\HL2 S £o-

From now on, we drop the subscript A.

2.3. Local theorey for rescaled problem (2.4).

Lemma 2.2. Let s > —32_ ||[Tu(ty)||z2 < 220, then the problem (2.4) is local well-posedness
on the time interval [to,to + 1]. Moreover,

HIUHX e ([to,to+1]) ~ S L

Proof. 1t is standard. One may prove it by multilinear estimates as the manner of the original
problem (1.1), see cf. [6]. Tt may be necessary in the study of the problem lack of scaling
invariance (fine estimate on the lifespan should be considered). One also may prove it by
using the multilinear estimate from [6] and a general estimate on I obtained in [4]. O

3. ALMOST CONSERVATION LAW

Consider (1.5). Indeed, by the equation (2.4), we have
d
—|[Tu(®)||3: = /I(u2) O Tudz
dt
= / m(fl)Zflﬂ(fl)@(&)@(fs) d&d&s
§1+&2+E3=

= /€+§ e 3[ m(&0)%61 + m(&) % + m(Es) & a(€1)a(&)a(Es) déyde,. (3.1)

Here we have symmetrized the multipliers, which is important. For simplicity, we denote it
as []sym, for example,

1
[m<51)251]sym =3 [m(§1)2£1 +m(&)*6 + m(§3)253}-
Except symmetry, it has two other advantages:

i [m(§1)251]sym = 07 when |€1|7 ’SQla |§3| S N.
e It gives a lower upper bound than non-symmetry form Indeed, assume that |&;] >

|€2] > |€3] by symmetries, then | (&) sym‘ < m?(&3)163]-
By (3.1), we have

| Tu(t) 2 = |[Tu(to) 2 + / /{ )i iE) s

Therefore, to establish the type estimate as (1.5), the key is to estimate

to+1
/ / [m(gl>2£l]syma<§1)a(£2>@(§3) dédésds = 11
§1+82+E3
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Lemma 3.1. Suppose that ||IUHX0,%+[150¢0+1} < 1, then
I[I| < Nt
Proof. By several reductions (see [3] or [1]), it is sufficient to show

N X N 3

)/ [12(€0)%€1]sym (€1, T)U(E2, T2) (85, 73) d€ydEa dmidra| S N7 Tull} . (3.2)
§1+82+63=0 0,1+
T1+72+73=0

We may assume @(€,7) is positive,since it is invariance under Xj,-norm. Assume |&] >

|&2] > |&3| by symmetries and |&;] ~ |&] 2 N, then

LHS Of (32) 5 £1+§2+£3:0 m2(§3)|£3|11(§1, 7'1)12(62, 7'2)’&(53, ’7'3) dfldgz dTld’TQ
T1+712+713=0

< Z N3/ uy (z, t)us(z, t) Tuz(x, t) dzdt,
N1>N2>Ns R?
where we denote u; = Py,u. Now we write
uj = Ué + u?, where u? = UjX|r—£3|>N; NaN3 -
Note that we have
leitllzz, S (NiNaNo) s,

Since

[T — & + 7o — & + 73 — & = 3&u|Ga|&s| ~ NiNyNs.
there is at least one of j = 1,2, 3 such that u; = u? We only consider the case, u; = u?,
then by Strichartz estimates,

LHS of (32) < > Nsllufllze, luzll s, | Tus| 12,

N1>N2>N3
_1 —% -5
SJ Z Ng(N1N2N3) 2||u?||X07%N2 8||U2||X0,%+N3 8||IU3“X0,§+
N12N22N3
1l g _5_g 3
SNQS Z N1 : SNQ : SN?)S||u1||X0,l+||u2||Xo,l+HIU?’HXOvlJr
N1>N22>N3 ) 2 2
SN
O
Now suppose that
sup Tu®)z» < 2, 83)

t€[0,J]

then by Lemma 2.2, [|Tu]|x, 1 ltoto+1) S 1 for any o € 0, J], and thus by Lemma 3.1,

[Tu()||72 < [ Tu(0)|7: + CJN™3*, forany J<t< J+1.
Thus for any J < N%’,

sup |[Tu(t)||z2 < 2.
te[0,J+1]

This extends (3.3). By iteration, we obtain that the solution of (2.4) exists on [0, N1~]. This
implies that the solution of (1.1) exists on [0,7] for T = A3Ni~. Suppose that T > N°*,
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then wu exists for arbitrary time by choosing large N, and proves the global well-posedness.
Now

T > N & cA3N3Hi~ = cN~ s Ni— > NOF,
which holds for any s > —%. But this is far away from expectation. To improve the result,
we need some new ideas.

4. MODIFIED ENERGIES

Consider again,

d
Sl = [ [m(Pe],,, i) dads (@)
dt €1-+H62+63=0 v
Let f(x,t) = e tweaq(x,t), then
et = Pt Bft) = —e Lo, ). (42)
By this, we rewrite
LHS of (L) = [ (@) Glane “fEf@F G dadss (43
&1+624+€3=0
where o, = & + -+ + &} In particular,
oz = —3618283;

oy = 3(&1&8s + £16260 + &1&38 + £26360) = 3(& + &2) (& + &3) (& + &a).

Now we use the identity
1

—iOég

—tast

8,5 (e_i%t) .

e
Then by (4.2), we have
2 A ~ ~
3= [ ) ke (i (e, f(6) F65) di
§1+E€2+£3=0 tas

2 A A ~
=0 / Meﬂagtf(fl)f(fz)f(fs) d&1dés
&1+&2+E€3=0

—’iOé3

- / &) o —iostg [ () () )] derde
E14+€2+E3=0

—iOég

—103

2
o, / &) Gl e vaey)in(es) derdes
&1+€2+63=0

+ / My(€0, 60, €9, E)(E) - - - (Er) dEvdeadts,
&1+E€2+E3+E€4=0

where
m(&)261 + m(&)?E + m(&s + €4)* (& + &)
ias(&1, 62,63 + &)

My(&1y -+, 6) = [

In this precess, one should check that

[m(€1)2€1]sym

ag

(6 + &)

sym

makes sense!
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We define a new modified energy E?%(t) by

[m(§1)251]sym .

ﬁwzwww;—/ a6 E)alEs) dérde,

§1+E2+E€3=0 _ia?’
Then

d

%E?(t) = / My(&1, 62,83, Ea) (&) - - - u(Ey) dE1dEadEs.
&1+-+E4=0

Lemma 4.1.

—ZCK3

\/ & Ekom iy, (s, ) dend]| S N u(o)
§1+&+E3=

Proof. Assume |&;| > |&2| > |€3| by symmetries and |§;] ~ |&2| 2 N, then

‘[ m(£1)°¢1] wm) < m(&s)*I&s|
—iag 1&11[62]1¢5] <

We assume that @(,t) is positive, then

m(&s)]6 ] &

| / fi Sl a6, a6, 1) derds
&1+&a+E3= 103

5‘/ P>nyD™ U(x,t)} Tu(z,t) dm)

SN Pen D™ 2 | Tul| 22

SN2 Tu(t)|[..

This lemma implies that
| E7(t) = [Tu(t)]72] < N7 Tut)l|z.
Lemma 4.2 (Pointwise estimate on Multiplier).

|CY4|

RS AR AR Ey)

‘M4(§1; e 7£4>

Proof. Since ag = —3£1£:€3, then

m(&1)26 + m(&)*E +m(&s + &) (& + 54)]
5152 sym

My(&1,- -+ 5 64) :C[

:20[

m(&)? m(&s 4 £4)% (€3 + &)
£ Lym + c[ €165 Lym'
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First,
1 1
|: :|sym 3 [ 64):| sym
1 11 1 rm(&)?
_5[ 53+5_4)Lym_§[ 3 Lym
1 QY
=@&@ﬁj @)+m@f+m@?+m@ﬂ
m(&)® | m(&)? | m(&)? | m(&)?
B e
Second,
m(&s + €)% (€5 + 54)] [ m(& + €)% (& + 52)}
§162 sym §162 sym
. 1[ m(§1 + €)% (& + &) n m (& + &) (€ + 54)]
2 5162 5364 sym
1 1 1 1
—slererg g gl
== %8% |:m(£1 + &)+ m(& + &)+ m(& + 54)2]-
Therefore,
My(&y, -+, 64) =c = [m(fl)z +m(&)? +m(&s)? + m(&)” —m(& + &) —m(& +&)°
1828384
3 o] o [m(&)? m(&)?  m(&)? | m(&)’
R B e o o
Using this formula, the desirable estimate becomes easy. Assume || > [&] > - | |
and divide into several cases: 1, |&| — |&4| < &5 2, [&1] — [&] 2 |€ | €51, |§|

&3] = N, |&] < N; 4. |&] < N.

By this lemma, one may find that
M,y
iy

makes sense!

This means that we can argue as above and define a new modified energy. Indeed, one may
define E3(t) as

M .
@w=ww—l%%o4gﬁywwmmmm%mm&
then
GEO= [ M )6 i) s
where

My(&r,- - &+ &)
iy (&1, 62, 63,64 + &5)

Mot = |

Similar as (4.4), we also have

(&4 + 55)]

sym

| Ej(t) = Ef (t)| < N[ Tu(t)]|z-. (4.5)
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Moreover,
Lemma 4.3. Assume that || > [&| > -+ > |&|. Then
1
(N + &NV + (&) (N +[€5])

Using this lemma and by a similar manner as the proof in Lemma 3.1, we have
<1, then

Y

|Ms| <

Lemma 4.4. Suppose that ||Iu||X0‘%+[t07tO+1}

to+1 3
’/ / Ms(&r, o, &5)0(&) -+ 0(&s) d€y - - - déads| S NP7t (4.6)
to €14 tE5=0

Moreover,
| B} (o +1) — Ef(to)| S N7

Proof. By the reduction as the proof in Lemma 3.1, we have for any s > —%,

1
(N + N3)(N + Ny)(N + Ns) /11@2 uy(w,t) - - us(w,t) dedt

LHS of (4.6) < >

Np2>-->Ns

1
< I(uy,u Us || foo 2|1 oo || oo
NN1>Z>N5 (N+N3)(N+N4)(N+N5)” (ur,us) 2 luall oo 2 |ual| Laree [|uall

1 1
<y NINGINSN
~ (N + N3)(N 4 Nyg)(N + N5

lhall g, -+ sllx,
Ni2>-->Ns

SN |u|% |

5. CONCLUSION

Suppose that

sup |[Tu(t)||7: < 2¢0. (5.1)
tel0,J]

Then by local theory Lemma 2.2, we have ||[ullx , (tot+1) S 1 for any to € [0, J]. Now by
2
(4.4), (4.5) and Lemma 4.4, for any t € [J,J + 1],
[Tu(t)l7: <EF(t) + CN ([ Tu(t)l|7> + [ Tu(t)]l72)
<E}0) + ON*(|[Tu(®)[[32 + | Tu(®)f2) + J - N>

9 P
Sg&“o + CNO*(HIu(t)H%z + HIU(Zf)H4L2) +J- N737%+.

If .
NI <
J-N 47 < 1680,

then

5 _
()72 <ze0 + CNO([Hu(@®)llzz + [Tu(®)l]72)-
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Thus by continuity and choosing N large enough, we have

This extends the assumption (5.1) to the interval [0, J + 1] until J < ¢N3+i~ for some small
¢ > 0. Thus by iteration, we prove that

sup  [Tu(t)]2 < 2,
te[o,cN“%*}

which implies that the solution of (2.4) exists on [O,CN:H_%_]. Recall that u = uy is the
rescaled solution, which implies that the solution u of the original problem (1.1) exists on

[0, 7] with T = ¢A\3N3t1~. Suppose that 7' > N, then u exists for arbitrary time by
choosing large N, and proves the global well-posedness. Now

T > N o cA3N3+Hi— = N3t N3+Hi- > N0+

which holds for any s > —%. This proves the theorem.
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