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1 introduction

In this talk, we study “Burq, N., Gérard, P., and Tzvetkov, N., Two singular dynamics of the
nonlinear Schrodinger equation on a plane domain, Geometric And Functional Analysis, 13(1),
1-19.7.

We consider the following the cubic, focusing nonlinear Schrodinger equation (NLS), posed
on 2
(NLS) (10 + A)u = —|u|?u, in R xQ
with initial data

u(0,z) = up(z), =z € Q,
and Dirichlet boundary conditions
u(t,z) =0 (t,x) € R x 09,

where Q is a domain of R2.

First, we define the local well-posedness in H*(€2) with uniformly continuous flow map for
data in any ball of H*(Q2).

Definition 1.1. (see [5, 9]) We say that the Cauchy problem (NLS) is locally well-posed in
H*(Q) with uniformly continuous flow map for data in any ball of H*(Q) if for any R > 0 there
exist 7' > 0 and a functional space X7 continuously embedded in C([-T,T], H*(f2)) such that

for every
up € B :={uo € H*(Q) : |luo| g« < R}

the Cauchy problem (NLS) has a unique solution u € X7. Moreover
1. The map up — w is uniformly continuous form Bg to C([-T,T], H*(f2)).
2. Ifug € HY(Q), u € C([-T,T), H(Q2)) and satisfies the usual conservation laws
[z = lluoll 2,

1
IVu(®)|2: = Slu(®)lLe = const.

Next, we define the ground state @ on R? as the unique positive radial solution of
(—Ap +1)Q =|QPQ in R
(see [1, 10].)



2 Known results

1. the case of Q = R?
(a) If s > 0, then (NLS) is locally well-posed in H*®(R?) with uniformly continuous flow
map for data in any ball of H*(R?) (see Cazenave-Weissler [7]).

(b) (NLS) is globally well-posed for initial data with L? norm smaller than the L? norm
of the ground state @ (see Weinstein [12].)

(c) If ||l ;2 = ||Q]| ;2 and the solution u with u(0) = ¢ is blow-up in finite time 7" > 0,
then there exist # € R, w > 0, 29 € R? and z; € R? such that for t < T

_ Y iftile—aol?/4(t—T)—iw?/(t-T) w . _
u(t, x) T ¢ Q(T_t(a: xo) m1>,

. 332
and [Vu(t, )72 = 72552 [VQI72 + Re for 72 - (VQ)Q + fyo 12 Q%da. (see [11]).

2. If Q = T? or a square and s > 0, then (NLS) is locally well-posed in H*($2) with uniformly
continuous flow map for data in any ball of H*(2) (see Bourgain [3] and Burg-Gérard-
Tzvetkov [6]).

3. If Q is a compact 2-dimensional smooth Riemannian manifold with boundary and s > 1/2,
then (NLS) is locally well-posed in H?(R?) with uniformly continuous flow map for data in
any ball of H*(Q) (see Burg-Gérard-Tzvetkov [4] and Blair-Smith-Sogge [2].)

4. If @ = 5? and s € [0, [, then (NLS) is not locally well-posed in H*() with uniformly
continuous flow map for data in any ball of H*(f2) (see Burq-Gérard-Tzvetkov [5].)

3 Main results

We show the following results.

Theorem 3.1. ([6]) Let Q be a smooth bounded domain of R?. Let xg € Q with ¢ € C§°(Q),
¥ =1 in a neighborhood of xo. Then there exist k > 0, A\g > 0 such that for every A > Ao there
exist T > 0 and a family {r\} of functions define on [0, T\[xQ satisfying

Ira(t, e < ce X0, € [0,Ty[ (3.1)
such that
1 i(47)\22(zfzo))2) T — 0
t = — ATyt —_— t O,t T 2
n(t0) = ot T Q (ST ke, sente 0Dl (2

are solutions of (NLS), satisfying the Dirichlet boundary conditions, which blow-up at xq in time
T in the energy space H' with blow up speed (T\ —t)~. Moreover, |Jux(t, )|l 2 = ||Ql 2

Remark 1. If up € HY(Q) and |ugl/;2 < ||@]|z2, then the local solution of (NLS) with initial
data ug can be extended to the whole real line in time ¢.

Theorem 3.2. ([6]) Let D = {x € R? : |z| < 1} be the unit disc in R? and Ap be the Laplace
operator on D with Dirichlet boundary conditions. Fix k > 0 and s €]1/5,1/2[. Then there exists
a sequence ¢n(x) of eigenfunctions of —Ap with corresponding eigenvalues ¢, (limy, o0 ¢ = 00)
such that ||¢n|| s = 1 and equation (NLS) with Cauchy data kon(x), has, for n > 1, a unique
global solution u,(t,z) which can be represented as

Un(t, ) = ke ™) (6 () 41y (2, ), (3.3)



s

where w ~ 1325 and rn(t, ) satisfies for any T > 0, n large enough and t € [0,T]

[Pt M s < Cn™° (3.4)
where § > 0 and C is independent of n. Moreover, if 0 < k < 1
[tnl oo (m,115(p)) < O (3.5)

Remark 2. By Theorem 3.2, the Cauchy problem associated to (NLS) is not locally well-posed
in H*(D) with uniformly continuous flow map for data in any ball of H*(D) for s €]1/5,1/3[.
Indeed, we fix s €]1/5,1/3[, K > 0 and a sequence {ky} tending to x. Denote by ux, (resp.
Uk, n) the solution of (NLS) with initial data k¢, (resp. kn¢pn.) Then, ||kdp — Kndn| g — 0 as
n — 0o. On the other hand,
et ) = gt ) g > Cleent=m) — 1) — O™,

where § > 0. Then, if k2 = k% + |w,|~ Y2, then for n > 1 there exists ¢ > 0 such that
[t (tns ) = Wep o (tny )| s > ¢, Where t, = m/(2wn (k% — K2)). Since w, — 0o as n — oo, then
t, — 0 as n — oo and the flow map is not uniformly continuous.

4 Proof of Theorem 3.1

Let T'> 0 and A > 0. We define , ,
(A=A (z—x

Ra(t,z) = A(Tl_t)WQ <;ET—3>
We set Ry (t,z) := 9(x)Rx(t, z). Constructing a smooth correction ry(t,z) and choosing T' , we
make a solution Ry(t,x) + rx(t,z) of (NLS) by using the contraction mapping principle. Since
Ry\(t,z) is a solution of (NLS) on R?, we have

(i0; + A)Ry = —th|Ry|? Ry + 2V VR, + (AY)R).

Then, we look for a solution v € C([0,T[, H2(Q) N H()) such that

) , (t,z) € [0, T[xR?.

{(z’at + A)v = = [Ry + o (Rx +v) + YRRy = 2VYV Ry = (AY)R), (w1)
v(t) = 0ast— T(t<T)in H>(Q) N HL(Q). '
Set
—[Rx + v (Ra +0) + Y| RaP Ry — 2V V Ry — ARy = Qo + Q1(v) + Q2(v) + Q3(v),

where

Qo = (1 — [?)|RA|P Ry — 2V V Ry — (A9) Ry,

Qu(v) = —R35 — 2| Ry,

Q2(v) = —Ryv® — 2Ry |v?,

Q3(v) = —|v|?v.
Then, since there exists §yp > 0 such that H650|'|QHW0073(R2) < 00, there exists C,d > 0 such that

Qo(t, a2y < Ce 0. (42)

Indeed, for example there exists € > 0 such that
- PIRER|, < [ e
— - @ T—t
[ =PI, < g e o

—38pe
AT -t
e M )7

< -

AT =)y
—dpge

< CeXT-D),



Here we used that for c,e > 0
_ |cx|

|:E’€_|C$| < Ceee T2,

where C. . is independent of x. We look for solutions of (4.1) in the space
Xr = {v e C([0,T[, H*(Q) N Hy(Q)) : |vllx,. < oo}
where

- -
[0l = sup {e2TT|o()]| 120y + €T [[o(E)]| g2 () }-

)

We define
T 3 T
B(v)(t) = / St —1)Qo(r)dr + 3 / S(t = 1)Q, (v(r))dr,
t o

T
Ip(t) = /t S(t —71)Qo(7)dr,
and for j =1,2,3 .
1(w)(t) = / S(t — 7)Q;(u(r))dr,

where S(t) is the unitary group which defines the free evolution of the Schrodinger equation
on Q with Dirichlet boundary conditions. Then, we estimate ||| x, for j = 0,1,2,3 and

15(v) = Lj(w)]| for j = 1,2,3.

Estimate for [y. By the estimate of the source therm (4.2),
ol x, < CT.
Estimate for I1(v). Recall Q1(v) = —R30 — 2|R)|?v. For t € [0, T

T
11 (0) (@)1l 2 SC/t IBA(T) oo [0(7) | p2dr,

T
<CH1)H /16_%(16*—7)6[7-
R NT - 1)? ’

[Vl x, 20 —
T

5 C __ s
2XN(T—t) — X@ 2X(T—t) HUHXT

For t € [0,T]

T
IR <C [ T2 adr + IO
tT
<c / IV2(R2) ()| o () 2l
T
e / IV (B2 o V07 27

T C __s
+C [N = V20 | atr + T =0 .
Since
~ —i(x — x0) = 1 i(iij(ﬂ T — 70
= — e — (T—7)
VENT ) = Sy B e VO \NT—n)
we have
C(1+ Ak)

Hvk((RAP(T))HLm < T

k=0,1,2, 7€[0,T].

(4.4)

(4.5)



Using the inequalities
Vo)l < IV @) Il @2
, (4.3) and (4.5), we obtain for A > 1 and T < 1,

||I1(v)(t)\| 5 <CHU|| 16_2A(’16"—t) +/T ie_zx(qé—f)dT
SR O . T

T T

1+A S Y S - / 1 s }

_|_/ — e 2\ BT BT/ dr 4 — e AT dry,
¢ AT =7)° ¢ AT =7))?

1 s T 14N s
<Clpllgy { 3otz 4 [ LEX o star

T 14+ )\ s T 1 s
+/ e 3NT-7) dr +/ e AT dT}
¢ (AT =7))? ¢ (MT=7))?
)
<C ( + \2T > e ATy .
Therefore,

In@)ly, <€ (5 +7) ol
provided \2T/2 <1, A > 1.
Estimate for I(v) — I;(w). Similarly, we obtain
1) = b, <€ (5 +7) o= wly,,
provided \2T/2 <1, A > 1.

Estimate for I5(v). Recall that Q2(v) = —R3 — 2R, |v|?>. Using the inequality

C(1+A?)
[BA(T) | g2 < m,

and (4.3), we obtain

T
1) (8) |52 <C / IRA) gl o,

T 2
14+ A __2 9
<C e m{I-N(d
N (/ AT =72 ) ol

o)
<CT(1+A)e XT=0 ||v|[%,,
Hence,
I2(0)llx, < CT?|lv]l%,.,
provided \2T%/2 <1, A > 1.

Estimate for I5(v) — Io(w). Similarly, we obtain

12(v) = Ia(w) ]| x,, < CTY2([[0llx,, + [0l x, ) 0 = wllx,.
provided \2T/2 <1, X\ > 1.

(4.6)

(4.7)

(4.8)



Estimate for I3(v). Recall that Q3(v) = —|v|?v. We obtain

T
Hhuwﬂzscliuwrwzmﬂ

- T 5
snvuiqu‘ ¢ 3T dr,

)
<CTe 35T ||v||%,.-
Thus,
3
[I5(v)l x, < CTv],- (4.10)

Estimate for I3(v) — I3(w). Similarly, we obtain
1s5(v) = Is(w) x,. < CT(0ll%, + Il o = wlly, (4.11)
By (4.4)-(4.11), ® is a contraction map if A > 1, T < 1 and A\*T"/? < 1. Therefore, there exists
Ao > 0 such that for A > \g there exist T > 0 and the unique solution 7 of (4.1) such that
Irats Mgz < ce” ™70, 1€ [0, 73]
and uy(t,x) := Ry(t,x) + ra(t,z) is a solution of (NLS). Moreover, for ¢t € [0, T)[
Jurtto, Mz = Jim r(t, )l = Jim 1R C )2 = QI

5 Proof of Theorem 2

The Bessel function of order n is defined as follows
ron (CDHGP
ni = (2) S UG
2/ = El(n + k)!
Let 2,1 < zp2 < zp3 < -+ be the sequence of the positive zeros of J,,(z). In the following lemma,
we get the order of a positive zero of Jp,(z).

Lemma 5.1. Let n > 1. Then there exists a constant «, independent of n, such that z,1 =
n+anl/? + O(n?), for any A > 1/6. Moreover zps — zn1 > Cnl/3.

In this talk, we do not prove this lemma (see [6, 8].)

We consider the equation (NLS) on Q@ = D := {z € R? : |z| < 1}. By introducing polar
coordinates x; = rcosf, xo = rsinf, we can get that f,x(r,0) := Jn(znkr)eme is an orthogonal
basis of L?(D) of eigenfunctions for —Ap with corresponding eigenvalue z2,. Then for s € [0,1/2]
and u € L?(D), there exists ¢, € C such that u = an Cnk [k and u € H*(D) if and only if

1/2
[ull ooy = D 2rilenkl® p - < 0. (5.1)
n.k

If s > 1/2, the space defined by (5.1) will be denote by Hj(D). Moreover, for a positive integer
n and u € L? '
(V(r,0) € D, u(r,0) = e™u(r,0)) < u = Z Cnk frk (5.2)
k>1
The following lemma show the asymptotics for the LP norms of f,1.

1

Lemma 5.2. Let p € [2,00]. Then || fu1llpo(p) & N8

To prove this lemma, we use the properties of the Bessel function. In this talk, we do not
show this lemma (see [6, 8].)



Let k > 0 and s €]1/5,1/2[. Set
2_
Gn =n3""fn1,

and
_ ligullts
" lgallze
By Lemma 5.1 and Lemma 5.2, we have that
|nllgs =1, |onllz 0™ wp = ni-2s.

If n > 1, then there exists a unique global solution wu,(t) of (NLS) with the initial data k¢,. By
the L? conservation law, we have ||un(t,-)||;2 = Ckn™°. By the energy conservation law and the
Gagliardo-Nirenberg inequality,

IVun(t, )72 < =IVun(t, )72 + lunlt, )lze + 21 Vadal72 — 560l 74,
< —[[Vun(t, )72 + CllVun(t, )72 un(t, )72 + 21 Vadal 72 — 56014,
< | Vun(t, )22 + Cn 262 |V (1, )22 + Ck?2n®% + Or'ns .
Thus, if n > 1, then ||uy(t, )||H1 < Ckn'~%. By an interpolation,
et (8 ) e < Mln (s ) gl (t, )l 2" < Cr.
Since |¢n (7, 0)|2Pn(r,0) = €™|p,(r,0)[2dn(r,0), by (5.2) |dn|?dn = wnon + rn, where r, =
Ek22 Ckfnk. Set
Un (t, ) = rexp(—it(22] — K2wn))(n(2) + wn(t, ). (5.3)
Then w, satisfied the following equation
(i + A+ 221 — K2wn)wn = —K(|¢n + wnl*(n + wn) = [Gnl*n + 74)
{wn(O,x) =0, z€D
Here we estimate the H® norms of w,. We decompose
wn(t, ) = An(t)n () + an(t, 7),

2) =Y cr(t) fur (). (5.5)

k>2

(5.4)

where

Estimate of ||¢,|| ;.. By conservation law of u,, we have

1+ ()Pl 9nllz2 + lan(@)lIZ2 = IénllZz, (5.6)
while by the energy conservation law we have
1 K2
11+ M OPIVull72 + Van(®)lI72 — ﬁl!un(t)llizi = Va7 — 7ll¢n\|i4. (5.7)

Using ||V, |72 = 22,||¢nl72 and calculating (5.7)—z2,(5.6), we have

1 K2 1
2 2 4 4 4
IVan @Iz = zalan @Iz = 55 llun®)l2s = Fl10nllzs < 5 llun ()]s

By (5.6), we have |\, (t)| < 2. Thus, by the equation (5.3)

lun(t,2)|* < Cr*(|pn(z)|* + |gu(t,2)|), t€R, z€D. (5.8)
Due to Lemma 5.1, for k£ > 2
2 — 2 = (znk — 2n1) (Znk + 2n1) = O P2y (5.9)
Moreover,
Iénllzs = wallgnllzz ~ns = (5.10)



Using (5.8)-(5.10), we have

P lan ()52 < Ot znellen(t) furllZz:
k>2

< CY (=2 — 22D ller(®) furl1Z 2,

k>2
2 2
< ClIVan(®) 2 = 2 llan(®)l72).
4
< osllun (s,
2_
< CR(I0ullfs + lan(®lIE2) < Cx*n3 1 4+ Crllgn(®) 4o

Since ¢,(0,-) = 0, by a bootstrap argument we obtain

lgn ()]l 12 < Crms =2, (5.11)
0
By the Sobolev embedding
L_9s
lan(t)l[ 4 < Crno™". (5.12)
Moreover, by (5.5) and (5.11)
lan(®)llz2 < Ozt *llan(®)l /2 < Crn =572, (5.13)
By an interpolation between (5.11) and (5.13), we obtain the estimate
1
lan(®)ll s < Cllan(t )HQsl/qun( )12 < Crn™37%, (5.14)

Estimate of \,(t). We project the equatlon (5.4) on ¢,,. Then we have
{(iat —wpk?) Ay = _m{(‘d)n + wnl*(Pn + wn), )2 — (|6n]*dn, ¢n) 2}
An(0) = 0.
Since wyn, = A\bn + Gn, |Pnl?Pn = wndn + 1, and
(|én + wn’2(¢n +wn), ¢n)r2 — (‘d’n’zﬁbm $n)r2

- /(2¢n|2wn + Qf)iﬂ)n)ngn + /(QRe(Q_Snwn)anZ)n + ’wn|2’¢n|2 + |wn|2|¢n|2 + |wn‘2wn¢§n)a
we decompose the nonlinear term of (5.15) as follows
{(|¢n + wn|2(¢n + wn)7 ¢n)L2 - (’¢n|2¢n’ an)LQ} = L1+ Lo+ Ls,

(5.15)

R
[énll 22

L= —m2(2wn)\n + WiAn),

K2 ( 2 4 3 4>
’ ||¢n\|12 | \/w | |/|¢\
2
||<z>n||L2 (/’q"‘ ‘¢n’+/!qn\ 6l +y<qn,7«n>L2|>,

First, we estimate the source term L3. By (5.12)
[ 1an]*|¢n]

2
[ fnllZ2
Similarly, using (5.12) and (5.13), we obtain

f |Qn|2|¢n|2
2
P ll72

where

L3 =
< Cn®|gn| 34 [ énll s < Cn**nz=0ns = = Cni=5.

< Cn®|gn 32l dnll7 e < O,



and by ‘¢n|2¢n = WnOn +Tn
|(anrn)L2| < ‘(Qn7|¢n|2¢n)L2|

2 = 2
1 fnllZ2 [[énllZ2
Since s €]1/5,1/2[, the equation for A, can be written as

< Cn3=3s,

i = —2wnk?Re(An) 4+ O(wn|An|2 + wnl An > + 13739, (5.16)
An(0) = 0. '
The L? conservation law (5.6) yields
n(t)1
“3Re(An) — At = 1= 14 A 2 = 1 ONLz -
[ fnllZ2
so we have .
104 An, = O(wn|An|? + wp| An | + n373%), (5.17)
An(0) = 0.

Set v, = n3=3 and M, (T') = supse(o,7] T Y \n|. Then by integrating (5.17), we have that
Mp(T) < CT(1 + Ynwon(Mn(T)? + yawn(Ma(T)))),

< CT(1+n' =% ((M,(T))? + 01~ (M,(T))%)).
0,

)
Since s > 1/5 and M, (0) = 0, we obtain that M, (T) < CT for n large enough with respect to
T. Thus,

|An(t)] < CTRI5%, (5.18)
Therefore, by (5.14) and (5.18) the proof Theorem 3.2 is complete.
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