Talk about "Burq, N., Gérard, P., and Tzvetkov, N., Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geometric And Functional Analysis, 13(1), 1-19".

Yohei Yamazaki

1 introduction

In this talk, we study "Burq, N., Gérard, P., and Tzvetkov, N., Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geometric And Functional Analysis, 13(1), 1-19.".

We consider the following the cubic, focusing nonlinear Schrödinger equation (NLS), posed on Ω
(NLS)

$$
\left(i \partial_{t}+\Delta\right) u=-|u|^{2} u, \quad \text { in } \mathbb{R} \times \Omega
$$

with initial data

$$
u(0, x)=u_{0}(x), \quad x \in \Omega
$$

and Dirichlet boundary conditions

$$
u(t, x)=0 \quad(t, x) \in \mathbb{R} \times \partial \Omega
$$

where Ω is a domain of \mathbb{R}^{2}.
First, we define the local well-posedness in $H^{s}(\Omega)$ with uniformly continuous flow map for data in any ball of $H^{s}(\Omega)$.

Definition 1.1. (see [5, 9]) We say that the Cauchy problem (NLS) is locally well-posed in $H^{s}(\Omega)$ with uniformly continuous flow map for data in any ball of $H^{s}(\Omega)$ if for any $R>0$ there exist $T>0$ and a functional space X_{T} continuously embedded in $C\left([-T, T], H^{s}(\Omega)\right)$ such that for every

$$
u_{0} \in B_{R}:=\left\{u_{0} \in H^{s}(\Omega):\left\|u_{0}\right\|_{H^{s}}<R\right\}
$$

the Cauchy problem (NLS) has a unique solution $u \in X_{T}$. Moreover

1. The map $u_{0} \rightarrow u$ is uniformly continuous form B_{R} to $C\left([-T, T], H^{s}(\Omega)\right)$.
2. If $u_{0} \in H^{1}(\Omega), u \in C\left([-T, T], H^{1}(\Omega)\right)$ and satisfies the usual conservation laws

$$
\|u(t)\|_{L^{2}}=\left\|u_{0}\right\|_{L^{2}}
$$

$$
\|\nabla u(t)\|_{L^{2}}^{2}-\frac{1}{2}\|u(t)\|_{L^{4}}^{4}=\text { const } .
$$

Next, we define the ground state Q on \mathbb{R}^{2} as the unique positive radial solution of

$$
\left(-\Delta_{\mathbb{R}^{2}}+1\right) Q=|Q|^{2} Q \quad \text { in } \mathbb{R}^{2}
$$

(see $[1,10]$.)

2 Known results

1. the case of $\Omega=\mathbb{R}^{2}$
(a) If $s>0$, then (NLS) is locally well-posed in $H^{s}\left(\mathbb{R}^{2}\right)$ with uniformly continuous flow map for data in any ball of $H^{s}\left(\mathbb{R}^{2}\right)$ (see Cazenave-Weissler [7]).
(b) (NLS) is globally well-posed for initial data with L^{2} norm smaller than the L^{2} norm of the ground state Q (see Weinstein [12].)
(c) If $\|\varphi\|_{L^{2}}=\|Q\|_{L^{2}}$ and the solution u with $u(0)=\varphi$ is blow-up in finite time $T>0$, then there exist $\theta \in \mathbb{R}, \omega>0, x_{0} \in \mathbb{R}^{2}$ and $x_{1} \in \mathbb{R}^{2}$ such that for $t<T$

$$
\begin{aligned}
u(t, x) & =\frac{\omega}{T-t} e^{i \theta+i\left|x-x_{0}\right|^{2} / 4(t-T)-i \omega^{2} /(t-T)} Q\left(\frac{\omega}{T-t}\left(x-x_{0}\right)-x_{1}\right) \\
\text { and }\|\nabla u(t, \cdot)\|_{L^{2}}^{2} & =\frac{\omega^{2}}{(T-t)^{2}}\|\nabla Q\|_{L^{2}}^{2}+\operatorname{Re} \int_{\mathbb{R}^{2}} \frac{i x}{T-t} \cdot(\nabla Q) Q+\int_{\mathbb{R}^{2}} \frac{|x|^{2}}{4 \omega^{2}} Q^{2} d x . \quad \text { (see [11]). }
\end{aligned}
$$

2. If $\Omega=\mathbb{T}^{2}$ or a square and $s>0$, then (NLS) is locally well-posed in $H^{s}(\Omega)$ with uniformly continuous flow map for data in any ball of $H^{s}(\Omega)$ (see Bourgain [3] and Burq-GérardTzvetkov [6]).
3. If Ω is a compact 2-dimensional smooth Riemannian manifold with boundary and $s>1 / 2$, then (NLS) is locally well-posed in $H^{2}\left(\mathbb{R}^{2}\right)$ with uniformly continuous flow map for data in any ball of $H^{s}(\Omega)$ (see Burq-Gérard-Tzvetkov [4] and Blair-Smith-Sogge [2].)
4. If $\Omega=S^{2}$ and $s \in\left[0, \frac{1}{4}\left[\right.\right.$, then (NLS) is not locally well-posed in $H^{s}(\Omega)$ with uniformly continuous flow map for data in any ball of $H^{s}(\Omega)$ (see Burq-Gérard-Tzvetkov [5].)

3 Main results

We show the following results.
Theorem 3.1. ([6]) Let Ω be a smooth bounded domain of \mathbb{R}^{2}. Let $x_{0} \in \Omega$ with $\psi \in C_{0}^{\infty}(\Omega)$, $\psi=1$ in a neighborhood of x_{0}. Then there exist $\kappa>0, \lambda_{0}>0$ such that for every $\lambda>\lambda_{0}$ there exist $T_{\lambda}>0$ and a family $\left\{r_{\lambda}\right\}$ of functions define on $\left[0, T_{\lambda}[\times \Omega\right.$ satisfying

$$
\begin{equation*}
\left\|r_{\lambda}(t, \cdot)\right\|_{H^{2}} \leq c e^{-\frac{\kappa}{\lambda\left(T_{\lambda}-t\right)}}, \quad t \in\left[0, T_{\lambda}[\right. \tag{3.1}
\end{equation*}
$$

such that

$$
\begin{equation*}
u_{\lambda}(t, x)=\frac{1}{\lambda\left(T_{\lambda}-t\right)} \psi(x) e^{\frac{i\left(4-\lambda^{2}\left(x-x_{0}\right)^{2}\right)}{4 \lambda^{2}\left(T_{\lambda}-t\right)}} Q\left(\frac{x-x_{0}}{\lambda\left(T_{\lambda}-t\right)}\right)+r_{\lambda}(t, x), \quad x \in \Omega, t \in\left[0, T_{\lambda}[\right. \tag{3.2}
\end{equation*}
$$

are solutions of (NLS), satisfying the Dirichlet boundary conditions, which blow-up at x_{0} in time T_{λ} in the energy space H^{1} with blow up speed $\left(T_{\lambda}-t\right)^{-1}$. Moreover, $\left\|u_{\lambda}(t, \cdot)\right\|_{L^{2}}=\|Q\|_{L^{2}}$.

Remark 1. If $u_{0} \in H^{1}(\Omega)$ and $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$, then the local solution of (NLS) with initial data u_{0} can be extended to the whole real line in time t.

Theorem 3.2. ([6]) Let $D=\left\{x \in \mathbb{R}^{2}:|x|<1\right\}$ be the unit disc in \mathbb{R}^{2} and Δ_{D} be the Laplace operator on D with Dirichlet boundary conditions. Fix $\kappa>0$ and $s \in] 1 / 5,1 / 2[$. Then there exists a sequence $\phi_{n}(x)$ of eigenfunctions of $-\Delta_{D}$ with corresponding eigenvalues $\zeta_{n}\left(\lim _{n \rightarrow \infty} \zeta_{n}=\infty\right)$ such that $\left\|\phi_{n}\right\|_{H^{s}} \approx 1$ and equation (NLS) with Cauchy data $\kappa \phi_{n}(x)$, has, for $n \gg 1$, a unique global solution $u_{n}(t, x)$ which can be represented as

$$
\begin{equation*}
u_{n}(t, x)=\kappa e^{-i t\left(\zeta_{n}-\kappa^{2} \omega_{n}\right)}\left(\phi_{n}(x)+r_{n}(t, x)\right), \tag{3.3}
\end{equation*}
$$

where $\omega \approx n^{\frac{2}{3}-2 s}$ and $r_{n}(t, x)$ satisfies for any $T>0$, n large enough and $t \in[0, T]$

$$
\begin{equation*}
\left\|r_{n}(t, \cdot)\right\|_{H^{s}} \leq C n^{-\delta} \tag{3.4}
\end{equation*}
$$

where $\delta>0$ and C is independent of n. Moreover, if $0<\kappa<1$

$$
\begin{equation*}
\left\|u_{n}\right\|_{L^{\infty}\left(\mathbb{R}, H^{s}(D)\right)} \leq C \kappa \tag{3.5}
\end{equation*}
$$

Remark 2. By Theorem 3.2, the Cauchy problem associated to (NLS) is not locally well-posed in $H^{s}(D)$ with uniformly continuous flow map for data in any ball of $H^{s}(D)$ for $\left.s \in\right] 1 / 5,1 / 3[$. Indeed, we fix $s \in] 1 / 5,1 / 3\left[, \kappa>0\right.$ and a sequence $\left\{\kappa_{n}\right\}$ tending to κ. Denote by $u_{\kappa, n}$ (resp. $u_{\kappa_{n}, n}$) the solution of (NLS) with initial data $\kappa \phi_{n}$ (resp. $\kappa_{n} \phi_{n}$.) Then, $\left\|\kappa \phi_{n}-\kappa_{n} \phi_{n}\right\|_{H^{s}} \rightarrow 0$ as $n \rightarrow \infty$. On the other hand,

$$
\left\|u_{\kappa, n}(t, \cdot)-u_{\kappa_{n}, n}(t, \cdot)\right\|_{H^{s}} \geq C\left|e^{i t \omega_{n}\left(\kappa^{2}-\kappa_{n}^{2}\right)}-1\right|-C n^{-\delta}
$$

where $\delta>0$. Then, if $\kappa_{n}^{2}=\kappa^{2}+\left|\omega_{n}\right|^{-1 / 2}$, then for $n \gg 1$ there exists $c>0$ such that $\left\|u_{\kappa, n}\left(t_{n}, \cdot\right)-u_{\kappa_{n}, n}\left(t_{n}, \cdot\right)\right\|_{H^{s}}>c$, where $t_{n}=\pi /\left(2 \omega_{n}\left(\kappa^{2}-\kappa_{n}^{2}\right)\right)$. Since $\omega_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then $t_{n} \rightarrow 0$ as $n \rightarrow \infty$ and the flow map is not uniformly continuous.

4 Proof of Theorem 3.1

Let $T>0$ and $\lambda>0$. We define

$$
\tilde{R}_{\lambda}(t, x)=\frac{1}{\lambda(T-t)} e^{\frac{i\left(4-\lambda^{2}\left(x-x_{0}\right)^{2}\right)}{4 \lambda^{2}(T-t)}} Q\left(\frac{x-x_{0}}{\lambda(T-t)}\right), \quad(t, x) \in\left[0, T\left[\times \mathbb{R}^{2}\right.\right.
$$

We set $R_{\lambda}(t, x):=\psi(x) \tilde{R}_{\lambda}(t, x)$. Constructing a smooth correction $r_{\lambda}(t, x)$ and choosing T, we make a solution $R_{\lambda}(t, x)+r_{\lambda}(t, x)$ of (NLS) by using the contraction mapping principle. Since $\tilde{R}_{\lambda}(t, x)$ is a solution of (NLS) on \mathbb{R}^{2}, we have

$$
\left(i \partial_{t}+\Delta\right) R_{\lambda}=-\psi\left|\tilde{R}_{\lambda}\right|^{2} \tilde{R}_{\lambda}+2 \nabla \psi \nabla \tilde{R}_{\lambda}+(\Delta \psi) \tilde{R}_{\lambda}
$$

Then, we look for a solution $v \in C\left(\left[0, T\left[, H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)\right.\right.$ such that

$$
\left\{\begin{array}{l}
\left(i \partial_{t}+\Delta\right) v=-\left|R_{\lambda}+v\right|^{2}\left(R_{\lambda}+v\right)+\psi\left|\tilde{R}_{\lambda}\right|^{2} \tilde{R}_{\lambda}-2 \nabla \psi \nabla \tilde{R}_{\lambda}-(\Delta \psi) \tilde{R}_{\lambda} \tag{4.1}\\
v(t) \rightarrow 0 \text { as } t \rightarrow T(t<T) \text { in } H^{2}(\Omega) \cap H_{0}^{1}(\Omega)
\end{array}\right.
$$

Set

$$
-\left|R_{\lambda}+v\right|^{2}\left(R_{\lambda}+v\right)+\psi\left|\tilde{R}_{\lambda}\right|^{2} \tilde{R}_{\lambda}-2 \nabla \psi \nabla \tilde{R}_{\lambda}-\Delta \psi \tilde{R}_{\lambda}=Q_{0}+Q_{1}(v)+Q_{2}(v)+Q_{3}(v)
$$

where

$$
\left\{\begin{array}{l}
Q_{0}=\psi\left(1-|\psi|^{2}\right)\left|\tilde{R}_{\lambda}\right|^{2} \tilde{R}_{\lambda}-2 \nabla \psi \nabla \tilde{R}_{\lambda}-(\Delta \psi) \tilde{R}_{\lambda} \\
Q_{1}(v)=-R_{\lambda}^{2} \bar{v}-2\left|R_{\lambda}\right|^{2} v \\
Q_{2}(v)=-\bar{R}_{\lambda} v^{2}-2 R_{\lambda}|v|^{2} \\
Q_{3}(v)=-|v|^{2} v
\end{array}\right.
$$

Then, since there exists $\delta_{0}>0$ such that $\left\|e^{\delta_{0}|\cdot|} Q\right\|_{W^{\infty, 3\left(\mathbb{R}^{2}\right)}}<\infty$, there exists $C, \delta>0$ such that

$$
\begin{equation*}
\left\|Q_{0}(t, \cdot)\right\|_{H^{2}(\Omega)} \leq C e^{-\frac{\delta}{\lambda(T-t)}} \tag{4.2}
\end{equation*}
$$

Indeed, for example there exists $\varepsilon>0$ such that

$$
\begin{aligned}
\left\|\psi\left(1-|\psi|^{2}\right)\left|\tilde{R}_{\lambda}\right|^{2} \tilde{R}_{\lambda}\right\|_{L^{2}(\Omega)}^{2} & \leq \frac{C}{(\lambda(T-t))^{6}} \int_{\varepsilon}^{\infty} r e^{\frac{-6 \delta_{0} r}{\lambda(T-t)}} d r \\
& \leq \frac{C}{(\lambda(T-t))^{5}} e^{\frac{-3 \delta_{0} \varepsilon}{\lambda(T-t)}} \\
& \leq C e^{\frac{-\delta_{0} \varepsilon}{\lambda(T-t)}}
\end{aligned}
$$

Here we used that for $c, \varepsilon>0$

$$
\begin{equation*}
|x| e^{-|c x|} \leq C_{c, \varepsilon} e^{-\frac{|c x|}{1+\varepsilon}}, \tag{4.3}
\end{equation*}
$$

where $C_{c, \varepsilon}$ is independent of x. We look for solutions of (4.1) in the space

$$
X_{T}=\left\{v \in C \left(\left[0, T\left[, H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right):\|v\|_{X_{T}}<\infty\right\}\right.\right.
$$

where

$$
\|v\|_{X_{T}}=\sup _{t \in[0, T[}\left\{e^{\frac{\delta}{2 \lambda(T-t)}}\|v(t)\|_{L^{2}(\Omega)}+e^{\frac{\delta}{3 \lambda(T-t)}}\|v(t)\|_{H^{2}(\Omega)}\right\}
$$

We define

$$
\begin{gathered}
\Phi(v)(t)=\int_{t}^{T} S(t-\tau) Q_{0}(\tau) d \tau+\sum_{j=1}^{3} \int_{t}^{T} S(t-\tau) Q_{j}(v(\tau)) d \tau \\
I_{0}(t)=\int_{t}^{T} S(t-\tau) Q_{0}(\tau) d \tau
\end{gathered}
$$

and for $j=1,2,3$

$$
I_{j}(v)(t)=\int_{t}^{T} S(t-\tau) Q_{j}(v(\tau)) d \tau
$$

where $S(t)$ is the unitary group which defines the free evolution of the Schrödinger equation on Ω with Dirichlet boundary conditions. Then, we estimate $\left\|I_{j}\right\|_{X_{T}}$ for $j=0,1,2,3$ and $\left\|I_{j}(v)-I_{j}(w)\right\|$ for $j=1,2,3$.

Estimate for I_{0}. By the estimate of the source therm (4.2),

$$
\begin{equation*}
\left\|I_{0}\right\|_{X_{T}} \leq C T \tag{4.4}
\end{equation*}
$$

Estimate for $I_{1}(v)$. Recall $Q_{1}(v)=-R_{\lambda}^{2} \bar{v}-2\left|R_{\lambda}\right|^{2} v$. For $t \in[0, T[$

$$
\begin{aligned}
\left\|I_{1}(v)(t)\right\|_{L^{2}} & \leq C \int_{t}^{T}\left\|R_{\lambda}(\tau)\right\|_{L^{\infty}}^{2}\|v(\tau)\|_{L^{2}} d \tau \\
& \leq C\|v\|_{X_{T}} \int_{t}^{T} \frac{1}{(\lambda(T-\tau))^{2}} e^{-\frac{\delta}{2 \lambda(T-\tau)}} d \tau \\
& \leq C \frac{\|v\|_{X_{T}}}{\lambda^{2}} \frac{2 \lambda}{\delta} e^{-\frac{\delta}{2 \lambda(T-t)}}=\frac{C}{\lambda} e^{-\frac{\delta}{2 \lambda(T-t)}}\|v\|_{X_{T}} .
\end{aligned}
$$

For $t \in[0, T[$

$$
\begin{aligned}
\left\|I_{1}(v)(t)\right\|_{H^{2}} \leq & C \int_{t}^{T}\left\|\nabla^{2} Q_{1}(v(\tau))\right\|_{L^{2}} d \tau+C\left\|I_{1}(t)\right\|_{L^{2}} \\
\leq & C \int_{t}^{T}\left\|\nabla^{2}\left(R_{\lambda}^{2}\right)(\tau)\right\|_{L^{\infty}}\|v(\tau)\|_{L^{2}} d \tau \\
& +C \int_{t}^{T}\left\|\nabla\left(R_{\lambda}^{2}\right)(\tau)\right\|_{L^{\infty}}\|\nabla v(\tau)\|_{L^{2}} d \tau \\
& +C \int_{t}^{T}\left\|\left(R_{\lambda}^{2}\right)(\tau)\right\|_{L^{\infty}}\left\|\nabla^{2} v(\tau)\right\|_{L^{2}} d \tau+\frac{C}{\lambda} e^{-\frac{\delta}{2 \lambda(T-t)}\|v\|_{X_{T}}}
\end{aligned}
$$

Since

$$
\nabla \tilde{R}_{\lambda}(\tau, x)=\frac{-i\left(x-x_{0}\right)}{2(T-\tau)} \tilde{R}_{\lambda}(\tau, x)+\frac{1}{(\lambda(T-\tau))^{2}} e^{\frac{i\left(4-\lambda^{2}\left(x-x_{0}\right)^{2}\right)}{4 \lambda^{2}(T-\tau)}}(\nabla Q)\left(\frac{x-x_{0}}{\lambda(T-\tau)}\right)
$$

we have

$$
\begin{equation*}
\left\|\nabla^{k}\left(\left(R_{\lambda}\right)^{2}(\tau)\right)\right\|_{L^{\infty}} \leq \frac{C\left(1+\lambda^{k}\right)}{(\lambda(T-\tau))^{k+2}}, \quad k=0,1,2, \quad \tau \in[0, T[\tag{4.5}
\end{equation*}
$$

Using the inequalities

$$
\|\nabla v(\tau)\|_{L^{2}} \leq\left\|\nabla^{2} v(\tau)\right\|_{L^{2}}^{1 / 2}\|v(\tau)\|_{L^{2}}^{1 / 2}
$$

, (4.3) and (4.5), we obtain for $\lambda \geq 1$ and $T \leq 1$,

$$
\begin{aligned}
\left\|I_{1}(v)(t)\right\|_{H^{2}} \leq & C\|v\|_{X_{T}}\left\{\frac{1}{\lambda} e^{-\frac{\delta}{2 \lambda(T-t)}}+\int_{t}^{T} \frac{1+\lambda^{2}}{(\lambda(T-\tau))^{4}} e^{-\frac{\delta}{2 \lambda(T-\tau)}} d \tau\right. \\
& \left.+\int_{t}^{T} \frac{1+\lambda}{(\lambda(T-\tau))^{3}} e^{-\frac{1}{2}\left(\frac{\delta}{2 \lambda(T-\tau)}+\frac{\delta}{3 \lambda(T-\tau)}\right)} d \tau+\int_{t}^{T} \frac{1}{(\lambda(T-\tau))^{2}} e^{-\frac{\delta}{3 \lambda(T-\tau)}} d \tau\right\} \\
\leq & C\|v\|_{X_{T}}\left\{\frac{1}{\lambda} e^{-\frac{\delta}{2 \lambda(T-t)}}+\int_{t}^{T} \frac{1+\lambda^{2}}{(\lambda(T-\tau))^{2}} e^{-\frac{\delta}{3 \lambda(T-\tau)}} d \tau\right. \\
& \left.+\int_{t}^{T} \frac{1+\lambda}{(\lambda(T-\tau))^{2}} e^{-\frac{\delta}{3 \lambda(T-\tau)}} d \tau+\int_{t}^{T} \frac{1}{(\lambda(T-\tau))^{2}} e^{-\frac{\delta}{3 \lambda(T-\tau)}} d \tau\right\} \\
\leq & C\left(\frac{1}{\lambda}+\lambda^{2} T\right) e^{-\frac{\delta}{3 \lambda(T-t)}}\|v\|_{X_{T}}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\|I_{1}(v)\right\|_{X_{T}} \leq C\left(\frac{1}{\lambda}+T^{1 / 2}\right)\|v\|_{X_{T}} \tag{4.6}
\end{equation*}
$$

provided $\lambda^{2} T^{1 / 2} \leq 1, \lambda \geq 1$.
Estimate for $I_{1}(v)-I_{1}(w)$. Similarly, we obtain

$$
\begin{equation*}
\left\|I_{1}(v)-I_{1}(w)\right\|_{X_{T}} \leq C\left(\frac{1}{\lambda}+T^{1 / 2}\right)\|v-w\|_{X_{T}} \tag{4.7}
\end{equation*}
$$

provided $\lambda^{2} T^{1 / 2} \leq 1, \lambda \geq 1$.
Estimate for $I_{2}(v)$. Recall that $Q_{2}(v)=-\bar{R}_{\lambda}^{2}-2 R_{\lambda}|v|^{2}$. Using the inequality

$$
\left\|R_{\lambda}(\tau)\right\|_{H^{2}} \leq \frac{C\left(1+\lambda^{2}\right)}{(\lambda(T-\tau))^{2}}
$$

and (4.3), we obtain

$$
\begin{aligned}
\left\|I_{2}(v)(t)\right\|_{H^{2}} & \leq C \int_{t}^{T}\left\|R_{\lambda}(\tau)\right\|_{H^{2}}\|v(\tau)\|_{H^{2}}^{2} d \tau \\
& \leq C\left(\int_{t}^{T} \frac{1+\lambda^{2}}{(\lambda(T-\tau))^{2}} e^{-\frac{2 \delta}{3 \lambda(T-\tau)}} d \tau\right)\|v\|_{X_{T}}^{2} \\
& \leq C T\left(1+\lambda^{2}\right) e^{-\frac{\delta}{2 \lambda(T-t)}}\|v\|_{X_{T}}^{2}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left\|I_{2}(v)\right\|_{X_{T}} \leq C T^{1 / 2}\|v\|_{X_{T}}^{2} \tag{4.8}
\end{equation*}
$$

provided $\lambda^{2} T^{1 / 2} \leq 1, \lambda \geq 1$.
Estimate for $I_{2}(v)-I_{2}(w)$. Similarly, we obtain

$$
\begin{equation*}
\left\|I_{2}(v)-I_{2}(w)\right\|_{X_{T}} \leq C T^{1 / 2}\left(\|v\|_{X_{T}}+\|w\|_{X_{T}}\right)\|v-w\|_{X_{T}} \tag{4.9}
\end{equation*}
$$

provided $\lambda^{2} T^{1 / 2} \leq 1, \lambda \geq 1$.

Estimate for $I_{3}(v)$. Recall that $Q_{3}(v)=-|v|^{2} v$. We obtain

$$
\begin{aligned}
\left\|I_{3}(t)\right\|_{H^{2}} & \leq C \int_{t}^{T}\|v(\tau)\|_{H^{2}}^{3} d \tau \\
& \leq\|v\|_{X_{T}}^{3} \int_{t}^{T} e^{-\frac{\delta}{\lambda(T-\tau)}} d \tau \\
& \leq C T e^{-\frac{\delta}{3 \lambda(T-t)}}\|v\|_{X_{T}}^{3}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\left\|I_{3}(v)\right\|_{X_{T}} \leq C T\|v\|_{X_{T}}^{3} \tag{4.10}
\end{equation*}
$$

Estimate for $I_{3}(v)-I_{3}(w)$. Similarly, we obtain

$$
\begin{equation*}
\left\|I_{3}(v)-I_{3}(w)\right\|_{X_{T}} \leq C T\left(\|v\|_{X_{T}}^{2}+\|w\|_{X_{T}}^{2}\right)\|v-w\|_{X_{T}} \tag{4.11}
\end{equation*}
$$

By (4.4)-(4.11), Φ is a contraction map if $\lambda \gg 1, T \ll 1$ and $\lambda^{2} T^{1 / 2} \leq 1$. Therefore, there exists $\lambda_{0}>0$ such that for $\lambda>\lambda_{0}$ there exist $T_{\lambda}>0$ and the unique solution r_{λ} of (4.1) such that

$$
\left\|r_{\lambda}(t, \cdot)\right\|_{H^{2}} \leq c e^{-\frac{\kappa}{\lambda\left(T_{\lambda}-t\right)}}, \quad t \in\left[0, T_{\lambda}[\right.
$$

and $u_{\lambda}(t, x):=R_{\lambda}(t, x)+r_{\lambda}(t, x)$ is a solution of (NLS). Moreover, for $t_{0} \in\left[0, T_{\lambda}[\right.$

$$
\left\|u_{\lambda}\left(t_{0}, \cdot\right)\right\|_{L^{2}}=\lim _{t \rightarrow T_{\lambda}}\left\|u_{\lambda}(t, \cdot)\right\|_{L^{2}}=\lim _{t \rightarrow T_{\lambda}}\left\|R_{\lambda}(t, \cdot)\right\|_{L^{2}}=\|Q\|_{L^{2}}
$$

5 Proof of Theorem 2

The Bessel function of order n is defined as follows

$$
J_{n}(z)=\left(\frac{z}{2}\right)^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{z}{2}\right)^{2 k}}{k!(n+k)!}
$$

Let $z_{n 1}<z_{n 2}<z_{n 3}<\cdots$ be the sequence of the positive zeros of $J_{n}(z)$. In the following lemma, we get the order of a positive zero of $J_{n}(z)$.

Lemma 5.1. Let $n \geq 1$. Then there exists a constant α, independent of n, such that $z_{n 1}=$ $n+\alpha n^{1 / 3}+O\left(n^{\lambda}\right)$, for any $\lambda>1 / 6$. Moreover $z_{n 2}-z_{n 1} \geq C n^{1 / 3}$.

In this talk, we do not prove this lemma (see $[6,8]$.)
We consider the equation (NLS) on $\Omega=D:=\left\{x \in \mathbb{R}^{2}:|x|<1\right\}$. By introducing polar coordinates $x_{1}=r \cos \theta, x_{2}=r \sin \theta$, we can get that $f_{n k}(r, \theta):=J_{n}\left(z_{n k} r\right) e^{i n \theta}$ is an orthogonal basis of $L^{2}(D)$ of eigenfunctions for $-\Delta_{D}$ with corresponding eigenvalue $z_{n k}^{2}$. Then for $s \in[0,1 / 2[$ and $u \in L^{2}(D)$, there exists $c_{n k} \in \mathbb{C}$ such that $u=\sum_{n, k} c_{n k} f_{n k}$ and $u \in H^{s}(D)$ if and only if

$$
\begin{equation*}
\|u\|_{H^{s}(D)} \approx\left\{\sum_{n, k} z_{n k}^{2 s}\left|c_{n k}\right|^{2}\right\}^{1 / 2}<\infty \tag{5.1}
\end{equation*}
$$

If $s \geq 1 / 2$, the space defined by (5.1) will be denote by $H_{0}^{s}(D)$. Moreover, for a positive integer n and $u \in L^{2}$

$$
\begin{equation*}
\left(\forall(r, \theta) \in D, u(r, \theta)=e^{i n \theta} u(r, 0)\right) \Leftrightarrow u=\sum_{k \geq 1} c_{n k} f_{n k} \tag{5.2}
\end{equation*}
$$

The following lemma show the asymptotics for the L^{p} norms of $f_{n 1}$.
Lemma 5.2. Let $p \in[2, \infty]$. Then $\left\|f_{n 1}\right\|_{L^{p}(D)} \approx n^{-\frac{2}{3 p}-\frac{1}{3}}$.
To prove this lemma, we use the properties of the Bessel function. In this talk, we do not show this lemma (see $[6,8]$.)

Let $\kappa>0$ and $s \in] 1 / 5,1 / 2[$. Set

$$
\phi_{n}=n^{\frac{2}{3}-s} f_{n 1},
$$

and

$$
\omega_{n}=\frac{\left\|\phi_{n}\right\|_{L^{4}}^{4}}{\left\|\phi_{n}\right\|_{L^{2}}^{2}} .
$$

By Lemma 5.1 and Lemma 5.2, we have that

$$
\left\|\phi_{n}\right\|_{H^{s}} \approx 1, \quad\left\|\phi_{n}\right\|_{L^{2}} \approx n^{-s}, \quad \omega_{n} \approx n^{\frac{2}{3}-2 s} .
$$

If $n \gg 1$, then there exists a unique global solution $u_{n}(t)$ of (NLS) with the initial data $\kappa \phi_{n}$. By the L^{2} conservation law, we have $\left\|u_{n}(t, \cdot)\right\|_{L^{2}}=C \kappa n^{-s}$. By the energy conservation law and the Gagliardo-Nirenberg inequality,

$$
\begin{aligned}
\left\|\nabla u_{n}(t, \cdot)\right\|_{L^{2}}^{2} & \leq-\left\|\nabla u_{n}(t, \cdot)\right\|_{L^{2}}^{2}+\left\|u_{n}(t, \cdot)\right\|_{L^{4}}^{4}+2\left\|\nabla \kappa \phi_{n}\right\|_{L^{2}}^{2}-\left\|\kappa \phi_{n}\right\|_{L^{4}}^{4}, \\
& \leq-\left\|\nabla u_{n}(t, \cdot)\right\|_{L^{2}}^{2}+C\left\|\nabla u_{n}(t, \cdot)\right\|_{L^{2}}^{2}\left\|u_{n}(t, \cdot)\right\|_{L^{2}}^{2}+2\left\|\nabla \kappa \phi_{n}\right\|_{L^{2}}^{2}-\left\|\kappa \phi_{n}\right\|_{L^{4}}^{4}, \\
& \leq-\left\|\nabla u_{n}(t, \cdot)\right\|_{L^{2}}^{2}+C n^{-2 s} \kappa^{2}\left\|\nabla u_{n}(t, \cdot)\right\|_{L^{2}}^{2}+C \kappa^{2} n^{2-2 s}+C \kappa^{4} n^{\frac{2}{3}-4 s} .
\end{aligned}
$$

Thus, if $n \gg 1$, then $\left\|u_{n}(t, \cdot)\right\|_{H_{0}^{1}} \leq C \kappa n^{1-s}$. By an interpolation,

$$
\left\|u_{n}(t, \cdot)\right\|_{H^{s}} \leq\left\|u_{n}(t, \cdot)\right\|_{H_{0}^{1}}^{s}\left\|u_{n}(t, \cdot)\right\|_{L^{2}}^{1-s} \leq C \kappa .
$$

Since $\left|\phi_{n}(r, \theta)\right|^{2} \phi_{n}(r, \theta)=e^{i n \theta}\left|\phi_{n}(r, 0)\right|^{2} \phi_{n}(r, 0)$, by (5.2) $\left|\phi_{n}\right|^{2} \phi_{n}=\omega_{n} \phi_{n}+r_{n}$, where $r_{n}=$ $\sum_{k \geq 2} c_{k} f_{n k}$. Set

$$
\begin{equation*}
u_{n}(t, x)=\kappa \exp \left(-i t\left(z_{n 1}^{2}-\kappa^{2} \omega_{n}\right)\right)\left(\phi_{n}(x)+w_{n}(t, x)\right) . \tag{5.3}
\end{equation*}
$$

Then w_{n} satisfied the following equation

$$
\left\{\begin{array}{l}
\left(i \partial_{t}+\Delta+z_{n 1}^{2}-\kappa^{2} \omega_{n}\right) w_{n}=-\kappa\left(\left|\phi_{n}+w_{n}\right|^{2}\left(\phi_{n}+w_{n}\right)-\left|\phi_{n}\right|^{2} \phi_{n}+r_{n}\right) \tag{5.4}\\
w_{n}(0, x)=0, \quad x \in D
\end{array}\right.
$$

Here we estimate the H^{s} norms of w_{n}. We decompose

$$
w_{n}(t, x)=\lambda_{n}(t) \phi_{n}(x)+q_{n}(t, x),
$$

where

$$
\begin{equation*}
q_{n}(t, x)=\sum_{k \geq 2} c_{k}(t) f_{n k}(x) . \tag{5.5}
\end{equation*}
$$

Estimate of $\left\|q_{n}\right\|_{H^{s}}$. By conservation law of u_{n}, we have

$$
\begin{equation*}
\left|1+\lambda_{n}(t)\right|^{2}\left\|\phi_{n}\right\|_{L^{2}}^{2}+\left\|q_{n}(t)\right\|_{L^{2}}^{2}=\left\|\phi_{n}\right\|_{L^{2}}^{2}, \tag{5.6}
\end{equation*}
$$

while by the energy conservation law we have

$$
\begin{equation*}
\left|1+\lambda_{n}(t)\right|^{2}\left\|\nabla \phi_{n}\right\|_{L^{2}}^{2}+\left\|\nabla q_{n}(t)\right\|_{L^{2}}^{2}-\frac{1}{2 \kappa^{2}}\left\|u_{n}(t)\right\|_{L^{4}}^{4}=\left\|\nabla \phi_{n}\right\|_{L^{2}}^{2}-\frac{\kappa^{2}}{2}\left\|\phi_{n}\right\|_{L^{4}}^{4} . \tag{5.7}
\end{equation*}
$$

Using $\left\|\nabla \phi_{n}\right\|_{L^{2}}^{2}=z_{n 1}^{2}\left\|\phi_{n}\right\|_{L^{2}}^{2}$ and calculating (5.7) $-z_{n 1}^{2}(5.6)$, we have

$$
\left\|\nabla q_{n}(t)\right\|_{L^{2}}^{2}-z_{n 1}^{2}\left\|q_{n}(t)\right\|_{L^{2}}^{2}=\frac{1}{2 \kappa^{2}}\left\|u_{n}(t)\right\|_{L^{4}}^{4}-\frac{\kappa^{2}}{2}\left\|\phi_{n}\right\|_{L^{4}}^{4} \leq \frac{1}{2 \kappa^{2}}\left\|u_{n}(t)\right\|_{L^{4}}^{4} .
$$

By (5.6), we have $\left|\lambda_{n}(t)\right| \leq 2$. Thus, by the equation (5.3)

$$
\begin{equation*}
\left|u_{n}(t, x)\right|^{4} \leq C \kappa^{4}\left(\left|\phi_{n}(x)\right|^{4}+\left|q_{n}(t, x)\right|^{4}\right), \quad t \in \mathbb{R}, \quad x \in D . \tag{5.8}
\end{equation*}
$$

Due to Lemma 5.1, for $k \geq 2$

$$
\begin{equation*}
z_{n k}^{2}-z_{n 1}^{2}=\left(z_{n k}-z_{n 1}\right)\left(z_{n k}+z_{n 1}\right) \geq C n^{1 / 3} z_{n k} . \tag{5.9}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left\|\phi_{n}\right\|_{L^{4}}^{4}=\omega_{n}\left\|\phi_{n}\right\|_{L^{2}}^{2} \approx n^{\frac{2}{3}-4 s} \tag{5.10}
\end{equation*}
$$

Using (5.8)-(5.10), we have

$$
\begin{aligned}
n^{1 / 3}\left\|q_{n}(t)\right\|_{H_{0}^{1 / 2}}^{2} & \leq C n^{1 / 3} \sum_{k \geq 2} z_{n k}\left\|c_{k}(t) f_{n k}\right\|_{L^{2}}^{2} \\
& \leq C \sum_{k \geq 2}\left(z_{n k}^{2}-z_{n 1}^{2}\right)\left\|c_{k}(t) f_{n k}\right\|_{L^{2}}^{2}, \\
& \leq C\left(\left\|\nabla q_{n}(t)\right\|_{L^{2}}^{2}-z_{n 1}^{2}\left\|q_{n}(t)\right\|_{L^{2}}^{2}\right) \\
& \leq \frac{C}{2 \kappa^{2}}\left\|u_{n}(t)\right\|_{L^{4}}^{4}, \\
& \leq C \kappa^{2}\left(\left\|\phi_{n}\right\|_{L^{4}}^{4}+\left\|q_{n}(t)\right\|_{L^{4}}^{4}\right) \leq C \kappa^{2} n^{\frac{2}{3}-4 s}+C \kappa^{2}\left\|q_{n}(t)\right\|_{H_{0}^{1 / 2}}^{4} .
\end{aligned}
$$

Since $q_{n}(0, \cdot)=0$, by a bootstrap argument we obtain

$$
\begin{equation*}
\left\|q_{n}(t)\right\|_{H_{0}^{1 / 2}} \leq C \kappa n^{\frac{1}{6}-2 s} . \tag{5.11}
\end{equation*}
$$

By the Sobolev embedding

$$
\begin{equation*}
\left\|q_{n}(t)\right\|_{L^{4}} \leq C \kappa n^{\frac{1}{6}-2 s} . \tag{5.12}
\end{equation*}
$$

Moreover, by (5.5) and (5.11)

$$
\begin{equation*}
\left\|q_{n}(t)\right\|_{L^{2}} \leq C z_{n 1}^{-1 / 2}\left\|q_{n}(t)\right\|_{H_{0}^{1 / 2}} \leq C \kappa n^{-\frac{1}{3}-2 s} . \tag{5.13}
\end{equation*}
$$

By an interpolation between (5.11) and (5.13), we obtain the estimate

$$
\begin{equation*}
\left\|q_{n}(t)\right\|_{H^{s}} \leq C\left\|q_{n}(t)\right\|_{H_{0}^{1 / 2}}^{2 s}\left\|q_{n}(t)\right\|_{L^{2}}^{1-2 s} \leq C \kappa n^{-\frac{1}{3}-s} . \tag{5.14}
\end{equation*}
$$

Estimate of $\lambda_{n}(t)$. We project the equation (5.4) on ϕ_{n}. Then we have

$$
\left\{\begin{array}{l}
\left(i \partial_{t}-\omega_{n} \kappa^{2}\right) \lambda_{n}=-\frac{\kappa}{\left\|\phi_{n}\right\|_{L^{2}}}\left\{\left(\left|\phi_{n}+w_{n}\right|^{2}\left(\phi_{n}+w_{n}\right), \phi_{n}\right)_{L^{2}}-\left(\left|\phi_{n}\right|^{2} \phi_{n}, \phi_{n}\right)_{L^{2}}\right\} \tag{5.15}\\
\lambda_{n}(0)=0 .
\end{array}\right.
$$

Since $w_{n}=\lambda_{n} \phi_{n}+q_{n},\left|\phi_{n}\right|^{2} \phi_{n}=\omega_{n} \phi_{n}+r_{n}$ and

$$
\begin{aligned}
& \left(\left|\phi_{n}+w_{n}\right|^{2}\left(\phi_{n}+w_{n}\right), \phi_{n}\right)_{L^{2}}-\left(\left|\phi_{n}\right|^{2} \phi_{n}, \phi_{n}\right)_{L^{2}} \\
= & -\int\left(2\left|\phi_{n}\right|^{2} w_{n}+\phi_{n}^{2} \bar{w}_{n}\right) \bar{\phi}_{n}+\int\left(2 \operatorname{Re}\left(\bar{\phi}_{n} w_{n}\right) w_{n} \phi_{n}+\left|w_{n}\right|^{2}\left|\phi_{n}\right|^{2}+\left|w_{n}\right|^{2}\left|\phi_{n}\right|^{2}+\left|w_{n}\right|^{2} w_{n} \bar{\phi}_{n}\right),
\end{aligned}
$$

we decompose the nonlinear term of (5.15) as follows

$$
-\frac{\kappa}{\left\|\phi_{n}\right\|_{L^{2}}}\left\{\left(\left|\phi_{n}+w_{n}\right|^{2}\left(\phi_{n}+w_{n}\right), \phi_{n}\right)_{L^{2}}-\left(\left|\phi_{n}\right|^{2} \phi_{n}, \phi_{n}\right)_{L^{2}}\right\}=L_{1}+L_{2}+L_{3},
$$

where

$$
\begin{aligned}
& L_{1}=-\kappa^{2}\left(2 \omega_{n} \lambda_{n}+\omega_{n} \bar{\lambda}_{n}\right), \\
& L_{2}=\frac{\kappa^{2}}{\left\|\phi_{n}\right\|_{L^{2}}^{2}} O\left(\left|\lambda_{n}\right|^{2} \int\left|\phi_{n}\right|^{4}+\left|\lambda_{n}\right|^{3} \int\left|\phi_{n}\right|^{4}\right), \\
& L_{3}=\frac{\kappa^{2}}{\left\|\phi_{n}\right\|_{L^{2}}^{2}} O\left(\int\left|q_{n}\right|^{3}\left|\phi_{n}\right|+\int\left|q_{n}\right|^{2}\left|\phi_{n}\right|^{2}+\left|\left(q_{n}, r_{n}\right)_{L^{2}}\right|\right) .
\end{aligned}
$$

First, we estimate the source term L_{3}. By (5.12)

$$
\frac{\int\left|q_{n}\right|^{3}\left|\phi_{n}\right|}{\left\|\phi_{n}\right\|_{L^{2}}^{2}} \leq C n^{2 s}\left\|q_{n}\right\|_{L^{4}}^{3}\left\|\phi_{n}\right\|_{L^{4}} \leq C n^{2 s} n^{\frac{1}{2}-6 s} n^{\frac{1}{6}-s}=C n^{\frac{2}{3}-5 s} .
$$

Similarly, using (5.12) and (5.13), we obtain

$$
\frac{\int\left|q_{n}\right|^{2}\left|\phi_{n}\right|^{2}}{\left\|\phi_{n}\right\|_{L^{2}}^{2}} \leq C n^{2 s}\left\|q_{n}\right\|_{L^{2}}^{2}\left\|\phi_{n}\right\|_{L^{\infty}}^{2} \leq C n^{-4 s}
$$

and by $\left|\phi_{n}\right|^{2} \phi_{n}=\omega_{n} \phi_{n}+r_{n}$

$$
\frac{\left|\left(q_{n}, r_{n}\right)_{L^{2}}\right|}{\left\|\phi_{n}\right\|_{L^{2}}^{2}} \leq \frac{\left|\left(q_{n},\left|\phi_{n}\right|^{2} \phi_{n}\right)_{L^{2}}\right|}{\left\|\phi_{n}\right\|_{L^{2}}^{2}} \leq C n^{\frac{1}{3}-3 s} .
$$

Since $s \in] 1 / 5,1 / 2\left[\right.$, the equation for λ_{n} can be written as

$$
\left\{\begin{array}{l}
i \partial_{t} \lambda_{n}=-2 \omega_{n} \kappa^{2} \operatorname{Re}\left(\lambda_{n}\right)+O\left(\omega_{n}\left|\lambda_{n}\right|^{2}+\omega_{n}\left|\lambda_{n}\right|^{3}+n^{\frac{1}{3}-3 s}\right) \tag{5.16}\\
\lambda_{n}(0)=0
\end{array}\right.
$$

The L^{2} conservation law (5.6) yields

$$
-2 \operatorname{Re}\left(\lambda_{n}\right)-\left|\lambda_{n}\right|^{2}=1-\left|1+\lambda_{n}\right|^{2}=\frac{\left\|q_{n}(t)\right\|_{L^{2}}^{2}}{\left\|\phi_{n}\right\|_{L^{2}}^{2}}=O\left(n^{-\frac{1}{3}-3 s}\right)
$$

so we have

$$
\left\{\begin{array}{l}
i \partial_{t} \lambda_{n}=O\left(\omega_{n}\left|\lambda_{n}\right|^{2}+\omega_{n}\left|\lambda_{n}\right|^{3}+n^{\frac{1}{3}-3 s}\right) \tag{5.17}\\
\lambda_{n}(0)=0
\end{array}\right.
$$

Set $\gamma_{n}=n^{\frac{1}{3}-3 s}$ and $M_{n}(T):=\sup _{t \in[0, T[} \gamma_{n}^{-1}\left|\lambda_{n}\right|$. Then by integrating (5.17), we have that

$$
\begin{aligned}
M_{n}(T) & \left.\leq C T\left(1+\gamma_{n} \omega_{n}\left(M_{n}(T)\right)^{2}+\gamma_{n}^{2} \omega_{n}\left(M_{n}(T)\right)^{3}\right)\right) \\
& \leq C T\left(1+n^{1-5 s}\left(\left(M_{n}(T)\right)^{2}+n^{\frac{3}{4}-7 s}\left(M_{n}(T)\right)^{3}\right)\right)
\end{aligned}
$$

Since $s>1 / 5$ and $M_{n}(0)=0$, we obtain that $M_{n}(T) \leq C T$ for n large enough with respect to T. Thus,

$$
\begin{equation*}
\left|\lambda_{n}(t)\right| \leq C T n^{1-5 s} \tag{5.18}
\end{equation*}
$$

Therefore, by (5.14) and (5.18) the proof Theorem 3.2 is complete.

References

[1] H. Berestycki, P.-L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in \mathbb{R}^{N}, Indiana Univ. Math. J. 30 (1981), no. 1, 141-157.
[2] M. D. Blair, F. H. Smith and C. D. Sogge, Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann. 354 (2012), no. 4, 1397-1430.
[3] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107-156.
[4] N. Burq, P. Gérard and N. Tzvetkov, The Schrodinger equation on a compact manifold: Strichartz estimates and applications, Journées "Équations aux Dérivées Partielles" (Plestin-les-Gréves, 2001), Exp. 5. Université de Nantes, Nantes, 2001.
[5] N. Burq, P. Gérard and N. Tzvetkov, An instability property of the nonlinear Schrödinger equation on S^{d}, Math. Res. Lett. 9 (2002), 323-335.
[6] N. Burq, P. Gérard and N. Tzvetkov, Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003), no. 1, 1-19. .
[7] T. Cazenave and F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in H^{s}, Nonlinear Anal. 14 (1990), no. 10, 807-826.
[8] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, 1983.
[9] C. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), 617-633.
[10] M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u P=0$ in \mathbb{R}^{N}, Arch. Rat. Mech. Ann. 105 (1989) 243-266.
[11] F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power, Duke Math. J. 69 (1993), 427-453.
[12] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567-576.

