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1 introduction

In this talk, we study “Burq, N., Gérard, P., and Tzvetkov, N., Two singular dynamics of the
nonlinear Schrödinger equation on a plane domain, Geometric And Functional Analysis, 13(1),
1-19.”.

We consider the following the cubic, focusing nonlinear Schrödinger equation (NLS), posed
on Ω

(NLS) (i∂t +∆)u = −|u|2u, in R× Ω

with initial data
u(0, x) = u0(x), x ∈ Ω,

and Dirichlet boundary conditions

u(t, x) = 0 (t, x) ∈ R× ∂Ω,

where Ω is a domain of R2.
First, we define the local well-posedness in Hs(Ω) with uniformly continuous flow map for

data in any ball of Hs(Ω).

Definition 1.1. (see [5, 9]) We say that the Cauchy problem (NLS) is locally well-posed in
Hs(Ω) with uniformly continuous flow map for data in any ball of Hs(Ω) if for any R > 0 there
exist T > 0 and a functional space XT continuously embedded in C([−T, T ],Hs(Ω)) such that
for every

u0 ∈ BR := {u0 ∈ Hs(Ω) : ‖u0‖Hs < R}

the Cauchy problem (NLS) has a unique solution u ∈ XT . Moreover

1. The map u0 → u is uniformly continuous form BR to C([−T, T ],Hs(Ω)).

2. If u0 ∈ H1(Ω), u ∈ C([−T, T ],H1(Ω)) and satisfies the usual conservation laws

‖u(t)‖L2 = ‖u0‖L2 ,

‖∇u(t)‖2L2 −
1

2
‖u(t)‖4L4 = const.

Next, we define the ground state Q on R2 as the unique positive radial solution of

(−∆R2 + 1)Q = |Q|2Q in R2,

(see [1, 10].)
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2 Known results

1. the case of Ω = R2

(a) If s > 0, then (NLS) is locally well-posed in Hs(R2) with uniformly continuous flow
map for data in any ball of Hs(R2) (see Cazenave-Weissler [7]).

(b) (NLS) is globally well-posed for initial data with L2 norm smaller than the L2 norm
of the ground state Q (see Weinstein [12].)

(c) If ‖ϕ‖L2 = ‖Q‖L2 and the solution u with u(0) = ϕ is blow-up in finite time T > 0,
then there exist θ ∈ R, ω > 0, x0 ∈ R2 and x1 ∈ R2 such that for t < T

u(t, x) =
ω

T − t
eiθ+i|x−x0|2/4(t−T )−iω2/(t−T )Q

(
ω

T − t
(x− x0)− x1

)
,

and ‖∇u(t, ·)‖2L2 = ω2

(T−t)2
‖∇Q‖2L2 +Re

∫
R2

ix
T−t · (∇Q)Q+

∫
R2

|x|2
4ω2Q

2dx. (see [11]).

2. If Ω = T2 or a square and s > 0, then (NLS) is locally well-posed in Hs(Ω) with uniformly
continuous flow map for data in any ball of Hs(Ω) (see Bourgain [3] and Burq-Gérard-
Tzvetkov [6]).

3. If Ω is a compact 2-dimensional smooth Riemannian manifold with boundary and s > 1/2,
then (NLS) is locally well-posed in H2(R2) with uniformly continuous flow map for data in
any ball of Hs(Ω) (see Burq-Gérard-Tzvetkov [4] and Blair-Smith-Sogge [2].)

4. If Ω = S2 and s ∈ [0, 14 [, then (NLS) is not locally well-posed in Hs(Ω) with uniformly
continuous flow map for data in any ball of Hs(Ω) (see Burq-Gérard-Tzvetkov [5].)

3 Main results

We show the following results.

Theorem 3.1. ([6]) Let Ω be a smooth bounded domain of R2. Let x0 ∈ Ω with ψ ∈ C∞
0 (Ω),

ψ = 1 in a neighborhood of x0. Then there exist κ > 0, λ0 > 0 such that for every λ > λ0 there
exist Tλ > 0 and a family {rλ} of functions define on [0, Tλ[×Ω satisfying

‖rλ(t, ·)‖H2 ≤ ce
− κ

λ(Tλ−t) , t ∈ [0, Tλ[ (3.1)

such that

uλ(t, x) =
1

λ(Tλ − t)
ψ(x)e

i(4−λ2(x−x0)
2)

4λ2(Tλ−t) Q

(
x− x0
λ(Tλ − t)

)
+ rλ(t, x), x ∈ Ω, t ∈ [0, Tλ[ (3.2)

are solutions of (NLS), satisfying the Dirichlet boundary conditions, which blow-up at x0 in time
Tλ in the energy space H1 with blow up speed (Tλ − t)−1. Moreover, ‖uλ(t, ·)‖L2 = ‖Q‖L2.

Remark 1. If u0 ∈ H1(Ω) and ‖u0‖L2 < ‖Q‖L2 , then the local solution of (NLS) with initial
data u0 can be extended to the whole real line in time t.

Theorem 3.2. ([6]) Let D = {x ∈ R2 : |x| < 1} be the unit disc in R2 and ∆D be the Laplace
operator on D with Dirichlet boundary conditions. Fix κ > 0 and s ∈]1/5, 1/2[. Then there exists
a sequence φn(x) of eigenfunctions of −∆D with corresponding eigenvalues ζn (limn→∞ ζn = ∞)
such that ‖φn‖Hs ≈ 1 and equation (NLS) with Cauchy data κφn(x), has, for n � 1, a unique
global solution un(t, x) which can be represented as

un(t, x) = κe−it(ζn−κ2ωn)(φn(x) + rn(t, x)), (3.3)
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where ω ≈ n
2
3
−2s and rn(t, x) satisfies for any T > 0, n large enough and t ∈ [0, T ]

‖rn(t, ·)‖Hs ≤ Cn−δ (3.4)

where δ > 0 and C is independent of n. Moreover, if 0 < κ < 1

‖un‖L∞(R,Hs(D)) ≤ Cκ. (3.5)

Remark 2. By Theorem 3.2, the Cauchy problem associated to (NLS) is not locally well-posed
in Hs(D) with uniformly continuous flow map for data in any ball of Hs(D) for s ∈]1/5, 1/3[.
Indeed, we fix s ∈]1/5, 1/3[, κ > 0 and a sequence {κn} tending to κ. Denote by uκ,n (resp.
uκn,n) the solution of (NLS) with initial data κφn (resp. κnφn.) Then, ‖κφn − κnφn‖Hs → 0 as
n→ ∞. On the other hand,

‖uκ,n(t, ·)− uκn,n(t, ·)‖Hs ≥ C|eitωn(κ2−κ2
n) − 1| − Cn−δ,

where δ > 0. Then, if κ2n = κ2 + |ωn|−1/2, then for n � 1 there exists c > 0 such that
‖uκ,n(tn, ·)− uκn,n(tn, ·)‖Hs > c, where tn = π/(2ωn(κ

2 − κ2n)). Since ωn → ∞ as n → ∞, then
tn → 0 as n→ ∞ and the flow map is not uniformly continuous.

4 Proof of Theorem 3.1

Let T > 0 and λ > 0. We define

R̃λ(t, x) =
1

λ(T − t)
e

i(4−λ2(x−x0)
2)

4λ2(T−t) Q

(
x− x0
λ(T − t)

)
, (t, x) ∈ [0, T [×R2.

We set Rλ(t, x) := ψ(x)R̃λ(t, x). Constructing a smooth correction rλ(t, x) and choosing T , we
make a solution Rλ(t, x) + rλ(t, x) of (NLS) by using the contraction mapping principle. Since
R̃λ(t, x) is a solution of (NLS) on R2, we have

(i∂t +∆)Rλ = −ψ|R̃λ|2R̃λ + 2∇ψ∇R̃λ + (∆ψ)R̃λ.

Then, we look for a solution v ∈ C([0, T [,H2(Ω) ∩H1
0 (Ω)) such that{

(i∂t +∆)v = −|Rλ + v|2(Rλ + v) + ψ|R̃λ|2R̃λ − 2∇ψ∇R̃λ − (∆ψ)R̃λ,

v(t) → 0 as t→ T (t < T ) in H2(Ω) ∩H1
0 (Ω).

(4.1)

Set

−|Rλ + v|2(Rλ + v) + ψ|R̃λ|2R̃λ − 2∇ψ∇R̃λ −∆ψR̃λ = Q0 +Q1(v) +Q2(v) +Q3(v),

where 
Q0 = ψ(1− |ψ|2)|R̃λ|2R̃λ − 2∇ψ∇R̃λ − (∆ψ)R̃λ,

Q1(v) = −R2
λv̄ − 2|Rλ|2v,

Q2(v) = −R̄λv
2 − 2Rλ|v|2,

Q3(v) = −|v|2v.

Then, since there exists δ0 > 0 such that
∥∥eδ0|·|Q∥∥

W∞,3(R2)
<∞, there exists C, δ > 0 such that

‖Q0(t, ·)‖H2(Ω) ≤ Ce
− δ

λ(T−t) . (4.2)

Indeed, for example there exists ε > 0 such that∥∥∥ψ(1− |ψ|2)|R̃λ|2R̃λ

∥∥∥2
L2(Ω)

≤ C

(λ(T − t))6

∫ ∞

ε
re

−6δ0r
λ(T−t)dr,

≤ C

(λ(T − t))5
e

−3δ0ε
λ(T−t) ,

≤ Ce
−δ0ε

λ(T−t) .
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Here we used that for c, ε > 0

|x|e−|cx| ≤ Cc,εe
− |cx|

1+ε , (4.3)

where Cc,ε is independent of x. We look for solutions of (4.1) in the space

XT = {v ∈ C([0, T [,H2(Ω) ∩H1
0 (Ω)) : ‖v‖XT

<∞}
where

‖v‖XT
= sup

t∈[0,T [
{e

δ
2λ(T−t) ‖v(t)‖L2(Ω) + e

δ
3λ(T−t) ‖v(t)‖H2(Ω)}.

We define

Φ(v)(t) =

∫ T

t
S(t− τ)Q0(τ)dτ +

3∑
j=1

∫ T

t
S(t− τ)Qj(v(τ))dτ,

I0(t) =

∫ T

t
S(t− τ)Q0(τ)dτ,

and for j = 1, 2, 3

Ij(v)(t) =

∫ T

t
S(t− τ)Qj(v(τ))dτ,

where S(t) is the unitary group which defines the free evolution of the Schrödinger equation
on Ω with Dirichlet boundary conditions. Then, we estimate ‖Ij‖XT

for j = 0, 1, 2, 3 and

‖Ij(v)− Ij(w)‖ for j = 1, 2, 3.

Estimate for I0. By the estimate of the source therm (4.2),

‖I0‖XT
≤ CT. (4.4)

Estimate for I1(v). Recall Q1(v) = −R2
λv̄ − 2|Rλ|2v. For t ∈ [0, T [

‖I1(v)(t)‖L2 ≤C
∫ T

t
‖Rλ(τ)‖2L∞‖v(τ)‖L2dτ,

≤C‖v‖XT

∫ T

t

1

(λ(T − τ))2
e
− δ

2λ(T−τ)dτ,

≤C
‖v‖XT

λ2
2λ

δ
e
− δ

2λ(T−t) =
C

λ
e
− δ

2λ(T−t) ‖v‖XT
.

For t ∈ [0, T [

‖I1(v)(t)‖H2 ≤C
∫ T

t

∥∥∇2Q1(v(τ))
∥∥
L2dτ + C‖I1(t)‖L2 ,

≤C
∫ T

t

∥∥∇2(R2
λ)(τ)

∥∥
L∞‖v(τ)‖L2dτ

+ C

∫ T

t

∥∥∇(R2
λ)(τ)

∥∥
L∞‖∇v(τ)‖L2dτ

+ C

∫ T

t

∥∥(R2
λ)(τ)

∥∥
L∞

∥∥∇2v(τ)
∥∥
L2dτ +

C

λ
e
− δ

2λ(T−t) ‖v‖XT
.

Since

∇R̃λ(τ, x) =
−i(x− x0)

2(T − τ)
R̃λ(τ, x) +

1

(λ(T − τ))2
e

i(4−λ2(x−x0)
2)

4λ2(T−τ) (∇Q)

(
x− x0
λ(T − τ)

)
,

we have ∥∥∥∇k((Rλ)
2(τ))

∥∥∥
L∞

≤ C(1 + λk)

(λ(T − τ))k+2
, k = 0, 1, 2, τ ∈ [0, T [. (4.5)
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Using the inequalities

‖∇v(τ)‖L2 ≤
∥∥∇2v(τ)

∥∥1/2
L2 ‖v(τ)‖

1/2
L2 ,

, (4.3) and (4.5), we obtain for λ ≥ 1 and T ≤ 1,

‖I1(v)(t)‖H2 ≤C‖v‖XT

{
1

λ
e
− δ

2λ(T−t) +

∫ T

t

1 + λ2

(λ(T − τ))4
e
− δ

2λ(T−τ)dτ

+

∫ T

t

1 + λ

(λ(T − τ))3
e
− 1

2
( δ
2λ(T−τ)

+ δ
3λ(T−τ)

)
dτ +

∫ T

t

1

(λ(T − τ))2
e
− δ

3λ(T−τ)dτ

}
,

≤C‖v‖XT

{
1

λ
e
− δ

2λ(T−t) +

∫ T

t

1 + λ2

(λ(T − τ))2
e
− δ

3λ(T−τ)dτ

+

∫ T

t

1 + λ

(λ(T − τ))2
e
− δ

3λ(T−τ)dτ +

∫ T

t

1

(λ(T − τ))2
e
− δ

3λ(T−τ)dτ

}
≤ C

(
1

λ
+ λ2T

)
e
− δ

3λ(T−t) ‖v‖XT
.

Therefore,

‖I1(v)‖XT
≤ C

(
1

λ
+ T 1/2

)
‖v‖XT

, (4.6)

provided λ2T 1/2 ≤ 1, λ ≥ 1.

Estimate for I1(v)− I1(w). Similarly, we obtain

‖I1(v)− I1(w)‖XT
≤ C

(
1

λ
+ T 1/2

)
‖v − w‖XT

, (4.7)

provided λ2T 1/2 ≤ 1, λ ≥ 1.

Estimate for I2(v). Recall that Q2(v) = −R̄2
λ − 2Rλ|v|2. Using the inequality

‖Rλ(τ)‖H2 ≤ C(1 + λ2)

(λ(T − τ))2
,

and (4.3), we obtain

‖I2(v)(t)‖H2 ≤C
∫ T

t
‖Rλ(τ)‖H2‖v(τ)‖2H2dτ,

≤C
(∫ T

t

1 + λ2

(λ(T − τ))2
e
− 2δ

3λ(T−τ)dτ

)
‖v‖2XT

,

≤CT (1 + λ2)e
− δ

2λ(T−t) ‖v‖2XT
.

Hence,
‖I2(v)‖XT

≤ CT 1/2‖v‖2XT
, (4.8)

provided λ2T 1/2 ≤ 1, λ ≥ 1.

Estimate for I2(v)− I2(w). Similarly, we obtain

‖I2(v)− I2(w)‖XT
≤ CT 1/2(‖v‖XT

+ ‖w‖XT
)‖v − w‖XT

, (4.9)

provided λ2T 1/2 ≤ 1, λ ≥ 1.
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Estimate for I3(v). Recall that Q3(v) = −|v|2v. We obtain

‖I3(t)‖H2 ≤C
∫ T

t
‖v(τ)‖3H2dτ,

≤‖v‖3XT

∫ T

t
e
− δ

λ(T−τ)dτ,

≤CTe−
δ

3λ(T−t) ‖v‖3XT
.

Thus,
‖I3(v)‖XT

≤ CT‖v‖3XT
. (4.10)

Estimate for I3(v)− I3(w). Similarly, we obtain

‖I3(v)− I3(w)‖XT
≤ CT (‖v‖2XT

+ ‖w‖2XT
)‖v − w‖XT

. (4.11)

By (4.4)-(4.11), Φ is a contraction map if λ� 1, T � 1 and λ2T 1/2 ≤ 1. Therefore, there exists
λ0 > 0 such that for λ > λ0 there exist Tλ > 0 and the unique solution rλ of (4.1) such that

‖rλ(t, ·)‖H2 ≤ ce
− κ

λ(Tλ−t) , t ∈ [0, Tλ[,

and uλ(t, x) := Rλ(t, x) + rλ(t, x) is a solution of (NLS). Moreover, for t0 ∈ [0, Tλ[

‖uλ(t0, ·)‖L2 = lim
t→Tλ

‖uλ(t, ·)‖L2 = lim
t→Tλ

‖Rλ(t, ·)‖L2 = ‖Q‖L2 .

5 Proof of Theorem 2

The Bessel function of order n is defined as follows

Jn(z) =
(z
2

)n
∞∑
k=0

(−1)k( z2)
2k

k!(n+ k)!
.

Let zn1 < zn2 < zn3 < · · · be the sequence of the positive zeros of Jn(z). In the following lemma,
we get the order of a positive zero of Jn(z).

Lemma 5.1. Let n ≥ 1. Then there exists a constant α, independent of n, such that zn1 =
n+ αn1/3 +O(nλ), for any λ > 1/6. Moreover zn2 − zn1 ≥ Cn1/3.

In this talk, we do not prove this lemma (see [6, 8].)
We consider the equation (NLS) on Ω = D := {x ∈ R2 : |x| < 1}. By introducing polar

coordinates x1 = r cos θ, x2 = r sin θ, we can get that fnk(r, θ) := Jn(znkr)e
inθ is an orthogonal

basis of L2(D) of eigenfunctions for −∆D with corresponding eigenvalue z2nk. Then for s ∈ [0, 1/2[
and u ∈ L2(D), there exists cnk ∈ C such that u =

∑
n,k cnkfnk and u ∈ Hs(D) if and only if

‖u‖Hs(D) ≈

∑
n,k

z2snk|cnk|2


1/2

<∞. (5.1)

If s ≥ 1/2, the space defined by (5.1) will be denote by Hs
0(D). Moreover, for a positive integer

n and u ∈ L2

(∀(r, θ) ∈ D, u(r, θ) = einθu(r, 0)) ⇔ u =
∑
k≥1

cnkfnk (5.2)

The following lemma show the asymptotics for the Lp norms of fn1.

Lemma 5.2. Let p ∈ [2,∞]. Then ‖fn1‖Lp(D) ≈ n
− 2

3p
− 1

3 .

To prove this lemma, we use the properties of the Bessel function. In this talk, we do not
show this lemma (see [6, 8].)
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Let κ > 0 and s ∈]1/5, 1/2[. Set
φn = n

2
3
−sfn1,

and

ωn =
‖φn‖4L4

‖φn‖2L2

.

By Lemma 5.1 and Lemma 5.2, we have that

‖φn‖Hs ≈ 1, ‖φn‖L2 ≈ n−s, ωn ≈ n
2
3
−2s.

If n� 1, then there exists a unique global solution un(t) of (NLS) with the initial data κφn. By
the L2 conservation law, we have ‖un(t, ·)‖L2 = Cκn−s. By the energy conservation law and the
Gagliardo-Nirenberg inequality,

‖∇un(t, ·)‖2L2 ≤ −‖∇un(t, ·)‖2L2 + ‖un(t, ·)‖4L4 + 2‖∇κφn‖2L2 − ‖κφn‖4L4 ,

≤ −‖∇un(t, ·)‖2L2 + C‖∇un(t, ·)‖2L2‖un(t, ·)‖2L2 + 2‖∇κφn‖2L2 − ‖κφn‖4L4 ,

≤ −‖∇un(t, ·)‖2L2 + Cn−2sκ2‖∇un(t, ·)‖2L2 + Cκ2n2−2s + Cκ4n
2
3
−4s.

Thus, if n� 1, then ‖un(t, ·)‖H1
0
≤ Cκn1−s. By an interpolation,

‖un(t, ·)‖Hs ≤ ‖un(t, ·)‖sH1
0
‖un(t, ·)‖1−s

L2 ≤ Cκ.

Since |φn(r, θ)|2φn(r, θ) = einθ|φn(r, 0)|2φn(r, 0), by (5.2) |φn|2φn = ωnφn + rn, where rn =∑
k≥2 ckfnk. Set

un(t, x) = κ exp(−it(z2n1 − κ2ωn))(φn(x) + wn(t, x)). (5.3)

Then wn satisfied the following equation{
(i∂t +∆+ z2n1 − κ2ωn)wn = −κ(|φn + wn|2(φn + wn)− |φn|2φn + rn)

wn(0, x) = 0, x ∈ D
(5.4)

Here we estimate the Hs norms of wn. We decompose

wn(t, x) = λn(t)φn(x) + qn(t, x),

where
qn(t, x) =

∑
k≥2

ck(t)fnk(x). (5.5)

Estimate of ‖qn‖Hs. By conservation law of un, we have

|1 + λn(t)|2‖φn‖2L2 + ‖qn(t)‖2L2 = ‖φn‖2L2 , (5.6)

while by the energy conservation law we have

|1 + λn(t)|2‖∇φn‖2L2 + ‖∇qn(t)‖2L2 −
1

2κ2
‖un(t)‖4L4 = ‖∇φn‖2L2 −

κ2

2
‖φn‖4L4 . (5.7)

Using ‖∇φn‖2L2 = z2n1‖φn‖
2
L2 and calculating (5.7)−z2n1(5.6), we have

‖∇qn(t)‖2L2 − z2n1‖qn(t)‖
2
L2 =

1

2κ2
‖un(t)‖4L4 −

κ2

2
‖φn‖4L4 ≤ 1

2κ2
‖un(t)‖4L4 .

By (5.6), we have |λn(t)| ≤ 2. Thus, by the equation (5.3)

|un(t, x)|4 ≤ Cκ4(|φn(x)|4 + |qn(t, x)|4), t ∈ R, x ∈ D. (5.8)

Due to Lemma 5.1, for k ≥ 2

z2nk − z2n1 = (znk − zn1)(znk + zn1) ≥ Cn1/3znk. (5.9)

Moreover,

‖φn‖4L4 = ωn‖φn‖2L2 ≈ n
2
3
−4s (5.10)
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Using (5.8)-(5.10), we have

n1/3‖qn(t)‖2H1/2
0

≤ Cn1/3
∑
k≥2

znk‖ck(t)fnk‖2L2 ,

≤ C
∑
k≥2

(z2nk − z2n1)‖ck(t)fnk‖
2
L2 ,

≤ C(‖∇qn(t)‖2L2 − z2n1‖qn(t)‖
2
L2),

≤ C

2κ2
‖un(t)‖4L4 ,

≤ Cκ2(‖φn‖4L4 + ‖qn(t)‖4L4) ≤ Cκ2n
2
3
−4s + Cκ2‖qn(t)‖4H1/2

0

.

Since qn(0, ·) = 0, by a bootstrap argument we obtain

‖qn(t)‖H1/2
0

≤ Cκn
1
6
−2s. (5.11)

By the Sobolev embedding

‖qn(t)‖L4 ≤ Cκn
1
6
−2s. (5.12)

Moreover, by (5.5) and (5.11)

‖qn(t)‖L2 ≤ Cz
−1/2
n1 ‖qn(t)‖H1/2

0

≤ Cκn−
1
3
−2s. (5.13)

By an interpolation between (5.11) and (5.13), we obtain the estimate

‖qn(t)‖Hs ≤ C‖qn(t)‖2sH1/2
0

‖qn(t)‖1−2s
L2 ≤ Cκn−

1
3
−s. (5.14)

Estimate of λn(t). We project the equation (5.4) on φn. Then we have{
(i∂t − ωnκ

2)λn = − κ
‖φn‖L2

{(|φn + wn|2(φn + wn), φn)L2 − (|φn|2φn, φn)L2}
λn(0) = 0.

(5.15)

Since wn = λnφn + qn, |φn|2φn = ωnφn + rn and

(|φn + wn|2(φn + wn), φn)L2 − (|φn|2φn, φn)L2

=−
∫

(2|φn|2wn + φ2nw̄n)φ̄n +

∫
(2Re(φ̄nwn)wnφn + |wn|2|φn|2 + |wn|2|φn|2 + |wn|2wnφ̄n),

we decompose the nonlinear term of (5.15) as follows

− κ

‖φn‖L2

{(|φn + wn|2(φn + wn), φn)L2 − (|φn|2φn, φn)L2} = L1 + L2 + L3,

where
L1 = −κ2(2ωnλn + ωnλ̄n),

L2 =
κ2

‖φn‖2L2

O

(
|λn|2

∫
|φn|4 + |λn|3

∫
|φn|4

)
,

L3 =
κ2

‖φn‖2L2

O

(∫
|qn|3|φn|+

∫
|qn|2|φn|2 + |(qn, rn)L2 |

)
.

First, we estimate the source term L3. By (5.12)∫
|qn|3|φn|
‖φn‖2L2

≤ Cn2s‖qn‖3L4‖φn‖L4 ≤ Cn2sn
1
2
−6sn

1
6
−s = Cn

2
3
−5s.

Similarly, using (5.12) and (5.13), we obtain∫
|qn|2|φn|2

‖φn‖2L2

≤ Cn2s‖qn‖2L2‖φn‖2L∞ ≤ Cn−4s,
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and by |φn|2φn = ωnφn + rn
|(qn, rn)L2 |
‖φn‖2L2

≤ |(qn, |φn|2φn)L2 |
‖φn‖2L2

≤ Cn
1
3
−3s.

Since s ∈]1/5, 1/2[, the equation for λn can be written as{
i∂tλn = −2ωnκ

2Re(λn) +O(ωn|λn|2 + ωn|λn|3 + n
1
3
−3s),

λn(0) = 0.
(5.16)

The L2 conservation law (5.6) yields

−2Re(λn)− |λn|2 = 1− |1 + λn|2 =
‖qn(t)‖2L2

‖φn‖2L2

= O(n−
1
3
−3s),

so we have {
i∂tλn = O(ωn|λn|2 + ωn|λn|3 + n

1
3
−3s),

λn(0) = 0.
(5.17)

Set γn = n
1
3
−3s and Mn(T ) := supt∈[0,T [ γ

−1
n |λn|. Then by integrating (5.17), we have that

Mn(T ) ≤ CT (1 + γnωn(Mn(T ))
2 + γ2nωn(Mn(T ))

3)),

≤ CT (1 + n1−5s((Mn(T ))
2 + n

3
4
−7s(Mn(T ))

3)).

Since s > 1/5 and Mn(0) = 0, we obtain that Mn(T ) ≤ CT for n large enough with respect to
T . Thus,

|λn(t)| ≤ CTn1−5s. (5.18)

Therefore, by (5.14) and (5.18) the proof Theorem 3.2 is complete.
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