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Plan of the talk

As Hirayama mentioned yesterday, the main idea used in [BIT]
is the normal form reduction. In this talk, | would like to talk
on related topics as follows:

@ time resonances set ([GMS], [S])
@ |-method ([lteam])
e modified energy method ([K], [P])

We will focus on how it works in these method. The first and
second topics are reviewed by other speakers. So, | will
mention them briefly and talk mainly on the third topic.
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Mechanism of the normal form reduction(1)

First, let us recall the mechanism of the normal form
reduction. As an example, we consider the following j th order
dispersive equation with k th power nonlinearity.

O+ i(0y/iYu = u, te R, xeR(orT),

where j, k > 2 and in N.
(Step 1) ‘
Put v(t) := U(—t)u(t) := Fte™u(t) (profile). Then,

0T = (T} 1 {e T x o x {7 T),
Therefore,

0,9(€) = / e 09(1) - 7(&)
&1t +Ek=E

where ® := (& + -+ &) — (& + - + &) (oscillation
function).
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Mechanism of the normal form reduction(2)

(Step 2)
Since e®® = 9,e"™®/i®, we have

0= [ demlio)rie)- u)

By Leibniz’'s rule,

itd
8:v(€) zat/H.% . e,-T)V(Sl) (&)
1 kieitCD . R
_ /£ e Eat(v(gl) . V(fk))
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Mechanism of the normal form reduction(3)

(Step 3)
Substituting

0,9(€) = / e9(&1) - T(E)
S

for the second term, we obtain

03(e) =0, | &) (&)

bttt 1P

itd*
K /5 &) V()

1+ +k—1=¢ i

where ®*(&1, -+ k1) == P(&r, - L k-1, &k - F k).
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Mechanism of the normal form reduction(4)

(Step 4)
In some cases, we also use the following integral form:

9(t,6) - 9(0,6)
eis¢ t
-/ (s, 6) - V(s.6) d&y - dEi
¢ 0

b=t 1P

lsd)*
-k/ I
&1t +&u—1=¢ i®

(no time integral, ® gain) + (time integral, higher order, ®* gain)

(57 61) o '/‘7(57 §2k—1) d£1 s dfzk_zds.
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Time resonances(1)

Germain, Masmoudi and Shatah introduced “space-time
resonances” in [GMS] to study global well-posedness of
quadratic Schrodinger equations with small initial data.

@ time resonances set

T = {(6751) | ¢(£17€2) = 07€ = 61 + 52}

@ space resonances set

S = {(5751) | 8§1¢(€1>€2) - 075 - 61 + 52}
For (£,&1) away from 7T NS,

1

P . .
0 ) > it _ It¢'
i(¢+P8§1¢)< et 3la)e =

If we focus only on “time resonances”, then it is the normal
form reduction.
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Time resonances(2)

The normal form reduction (time resonances) is a method to
study ordinary differential equations originally. As far as |
know, the first application to partial differential equations is by
Shatah in '85. In [S], Shatah used it to study the small data
global well-posed problem of quadratic nonlinear Klein-Gordon
equations. He used the normal form reduction not to gain ®,
but to transform the quadratic nonlinear terms to higher order
terms. In the study of small data global well-posedness
problems, decay estimates of solutions with respect to t play
an important role. We can expect faster decay with t for
higher order terms.
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l-method (1)

The key idea in [lteam] is to obtain a priori estimate of H*
norm of the solution of the KdV equation:

Oiu — O3u=0(v?), teR,xER

(KdV) {
u(0,x) = o(x) € H°,

where 0 > s > —3/4. We put

() = m()ae). m(e) = {Z_'f,'@f T

Then, ||u|lps S |[lull2 S N=5||ul|ws. Therefore, we will show

~Y

a priori estimate of ||/ul| ;> for sufficiently large N.
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l-method (2)

[ I(equation) X lu dx yields

%5’t||lu(t)||f2 _ / 104(u2) lu dx.

We can treat the right-hand side as an error term when
s > —3/10. Thus, we obtain

| fu(t)[|72 = ||lu(0)]|72 + (error).
When —3/10 > s > —3/4, we can not treat the right-hand

side as an error term. So, we need to add correction terms.
For that purpose, we use the normal form reduction.
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l-method (3)

Put v(t) := F e U(t). Then,
8,9(€) = / £ (i€)7(61) V().
Slarsa=4
where (D = (fl —|— 52)3 = ff — fg = 35152(51 —|— 62) Therefore,
00l = 04l = 2 [ m(oF(E)m(~¢)7(~¢) e
= / (6, + E2)m(E + E)T(E)T(E)M(E)V(ES),
§1+86+E83=0

where we put &3 = —€.
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l-method (4)

By Leibniz's rule,

eit® o )
=2 /{1%2%3:0 (atﬁ) i(& + &)m(& + &)v(E)v(E)m(&)v(E)
itd

29, / € iE + E)m(E + E)m(ENV(ENV(E)V(E)
&1+6+83=0 %

it®

L /5 € (6 + EIml6n + £)m(E)0: (VE)VEIV(E))

1+&+£3=0 %
=(correction term) + (error).

In [lteam], they used this argument twice. The style of the
proof in [lteam] looks different from above and they do not
use the word “normal form”. But, it is essentially same as the
normal form reduction.
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Modified energy method(1)

We consider the fifth order KdV type equations:

Owu+ u=udu, t e R x €R,

(5KdV) {u(07x) = p(x) € H™.

The contraction mapping argument and the standard energy
method do not work for (5KdV) because of the loss of 3
derivatives. [P]'93 Ponce (m > 4), [K]'07 Kwon (m > 5/2)
[GKK]Guo, Kwak and Kwon (m > 5/4) proved the local
well-posedness of (5KdV). In [P], [K], they use the modified
energy:

E(t) = [ID™u(t)lZ2 + u(t)lZ2
+ c/ u(t)D20,u(t)D7 20, u(t) (=: correction term).
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Modified energy method(2)

(Outline of the proof) For simpleness, we consider only the
case m > 4, € N. By the scaling argument, we can assume
that ||ug||wm << 1. First, we consider the parabolic
regularization of (5KdV):

Ocu, + O%u, — edu. = u.03u,, t € R, x €R,
0.(0,%) = po(x) * ()

where ¢ > 0, p. is a mollifier. We can easily prove the
existence of the local solution u. of (p5KdV) by the
contraction mapping argument. By Bona-Smith's argument
and taking € — 0, we have a solution u of (5KdV) as the limit

of u.. In this process, the following a priori estimate plays an
important role:

supo<e<a||te(t) || wm < C([|uo]| ) (1)

where C does not depend on .

(pbKdV)
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Modified energy method(3)

(1) follows from the following proposition and Gronwall's
lemma.

Proposition 1
Let m > 4 and u. be sol. of (p5KdV).Then,

BE(t) S llue()IEm + Ilu=(t)]Fm (2)
where
E(t) == (|07 ()72 + llue(t)]|72

- c/ u ()0 T u ()07 tu (t) dx.

4

In the rest of the talk, | will explain the proof of Proposition 1
with € = 0.
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Modified energy method(4)

Put v(t) ;= F~1e™T(t). Then, we have

GEY I U CLTNC

where ® := (& + &)° — (§ + &). Note that
S = c&16(& + E)(E2 + E + (& + £)?). The estimate of
O¢|lu(t)||?, is easy. So, we will estimate only

logu(oli: = ¢ [ enaw(e)ema(-€) de
Substitute (3) and put £ = —&3. Then,

. / e(&1 + &) MV(E)UE)ENV(Es)
&14+&+£3=0
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Modified energy method(5)

Since (G+86&)"=-&(&G + &)™
=— & ey P el e+ ),

we have

/g PRGBS

—: / UGG L) UGN (= R
&1+&+E3=

e / e'f%lv(gl)gm*“( 2)EMT(E) (= Ry)
&1+&+E3=

e / EIE)GUE)E  V(E)dEdE (= R)
&1+6+E=

' / EPHUE)GVEGV(E)(= Ra).
&1+&+E&=

0<p q,r<m
p+q+r=2m+3
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Modified energy method(6)

@ R, have no derivative loss. So, by the Sobolev,
Ral S (VI = [lullZm.
@ By symmetry, we can change the role of &, and &5 to have

Rl :/ ’t¢A(§ )§m+2A(f )gén—l—lf‘;(&))
&1+6+E3=
:/ eiwv(fl) FV(&)EV(E) = Ry,
&1+&6+E3

2Ry =Ry + R}
:/ V(a6 + ) E)E ()
&1+&+E&3=

—— RS ~ -
§1+6+E3=
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Modified energy method(7)

@ In the same manner, we have
Ry = / e 26O U5 dE
&1+62+€3=0
— / et E3U(E)ETV(E)ETV(Es) dErds.
&1+£6+63=0

Thus, we have |Rs| < ||u||lym.

@ The argument above is same as the standard energy
method.

@ Only R is difficult to estimate. So, we apply the normal
form reduction to R».
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Modified energy method(8)

Ry — / ) ) ()
&1+&+E3=
elt(b
5, / S AT G (= 0R)
&1+&2+E3= i

elt(b
- [ (e LS ) (= o)
E1+&+63=0 !
Recall & = c£1663(67 + €2 + &3).
o Since (& + &2 + £3) + 26,63 = 267, we have & ~ c£16363
when |§1| << |§2| ~ |§3| Thus,
Rs =~ ¢ [ ud™*udTu dx(= correction term of E(t)).
@ Since 0;v has 3 derivatives loss, Rg has3 —2 =1
derivative loss, which is removed in the same manner as
Rs (the standard energy method).

Kotaro TSUGAWA On the normal form reduction



References(1)

e [BIT] A. V. Babin, A. A. llyin and E. S. Titi, On the
regularization mechanism for the periodic Kortewegde
Vries equation, C. P. A. M., 64 (2011), no. 5, 591-648.

@ [lteam] J. Colliander, M. Keel, G. Stafilani, H. Takaoka
and T. Tao, Sharp global wellposedness for KdV and
modified KdV on R and T, J. Amer. Math. Soc., 16,
(2003), no. 3, 705-749.

@ [GMS] P. Germain, N, Masmoudi and J. Shatah, Global
solutions for 3D quadratic Schrdinger equations, |. M. R.
N., (2009), no. 3, 414-432.

e [GKK] Z. Guo, C. Kwak and S. Kwon, Rough solutions of
the fifth-order KdV equations, to appear in J. Funct.
Anal.

Kotaro TSUGAWA On the normal form reduction



References(2)

o [K] S. Kwon, On the fifth-order KdV equation: local
well-posedness and lack of uniform continuity of the
solution map, J. Differential Equations 245 (2008), no. 9,
2627—-2659.

e [P] G. Ponce, Lax pairs and higher order models for water
waves, J. Differential Equations 102 (1993), no. 2,
360-381.

@ [S] J. Shatah, Normal forms and quadratic nonlinear
Klein-Gordon equations, C. P. A. M. 38 (1985), no. 5,
685-696.

Kotaro TSUGAWA On the normal form reduction



Thank you for paying attention!
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